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DEFLECTION OF MEDIUM-FILLED CYLINDRICAL

SHELL REINFORCED BY A REGULAR SYSTEM
OF CROSS RIBS ON CRITICAL STRESSES OF

GENERAL STABILITY LOSS

Abstract

In the paper we investigate influence of initial deflection of medium-filled
shell reinforced by a regular system of cross ribs on critical stresses of general
stability loss. The statement of the problem using mixed energetic method and
nonlinear equation of joint deformation is on basis of investigations.

Introduction. Ribbed cylindrical shells are important structural elements of
rockets, submarines, motor cars and etc. Investigation of behavior of such construc-
tions allowing for external factors has special value in the field of contact problems
of the theory of ribbed shells.

Problem statement. Total energy of the system is written in the form [1]:
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Here ξ = x
r , θ = y

r ;Es, Gs are elasticity and shear modulus of the material of
longitudinal ribs; k is the quantity of longitudinal ribs; σx are axial contracting
stresses u, v, w are components of displacement vector of the shell; h and R are
thickness and radius of the shell, respectively; E and ν are the Young modulus and
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Poisson ratio of the shell’s material; ξ1 = L1
r , L1 is the length of the shell, Icr.s is

inertia moment in torsion, w0 is initial deflection.
Influence of medium on the shell is determined as of external surface loads applied

to the shell and is calculated as work done by these loads when changing over the
system from strain state to initial unstrained one and is represented in the form:

A = −R2

ξ1∫
0

2π∫
0

qzwdξdθ. (2)

In order to determine qz the Pasternak model is used [2]. The essence of this
method is that the influence of medium on the shell on the contact surface is deter-
mined by the relation

qz =
(∼
q + q̃0∇2

)
w = kw (3)

where ∇2 is Laplace two dimensional operator on the contact surface.
Strain continuity equation is written in the form [1] :
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We give initial deflection as
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The coefficients am0n0 , bm0n0 are calculated by the formula
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where M and N are the amount of intervals of partitioning of shell’s surface in lon-
gitudinal and annular directions, respectively, fi1j1 is the measured initial deflection

at the point with coordinates ξi1 =
ξ1i1
M

, θj1 =
2π

N
j1.

Solution method. The and faces of the shell are assumed to be simply
supported. Deflection of the shell under load is approximated by the expression

w = f1 sin dmξ sin nθ + f2 sin4 dmξ sin2 nθ, (6)

where f1 and f2 are variable parameters, m is the number of half waves in longi-
tudinal direction, n is the number of waves in peripheral direction. The expression
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accepted for w satisfies the boundary conditions w = Mx = 0.Putting (6) in (4) and
integrating we can obtain an expression for ϕ, that integrally satisfies the boundary

conditons
∂2ϕ

∂θ2 = 0,
∂2ϕ

∂ξ∂θ
= 0.

After subsititution of expressions for w,w0 and ϕ in (1) and (2), use of necessary
conditions of extremality 3 with respect to f1 and f2 the problem is reduced to the
solutions of the following system of nonlinear algebraic equations:
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Analysis of calculation results. On the basis of the joint solution of the sys-
tem of equations (7),(8) we construct a curve of equilibrium states whose maximum
corresponds to critical value of the load. The load is calculated as follows. The
equations (7) and (8) are written in the form of two relations for the parameter of
the load
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and are third order equations of two surfaces, and their intersection line is a curve
of equilibrium state. The numerical values of the parameters m, n and of variable f2

are given for its construction and the intersection point of the curves η̃1 (f1) , η̃2 (f)
is sought by means of variation of the variable f1. After the intersection point of
these lines is found, some increment is given to f2 and computation procedure is
repeated until maximum of the curve of equilibrium states is contructed for each
pair. The least value of critical load is determined by maximums of these curves.

Fig 1. Dependence of the critical load parameter µ on relative distance
between cross ribs b1

Analysis shows that mean values of critical loads obtained with regard to initial
imperfections for 8 cross ribs will be larger than mean values of smooth shells. This
is explained by the fact that in the availability of reinforcement the influence of
initial deviation on stability of shells decreases.

Naturally, there arises a question on the choice of such reinforcement of the shell
in longitudinal direction at which influence of initial deviations will decrease as a
result of rational choice of the number of longitudinal ribs and their rigidity.

The dependencies of the critical load parameter on relative distance between the
cross ribs b1, are given in fig. 1. In calculations we accept

E = Ec = 6, 67 · 109H/m2, ρ = ρc = 0, 26 · 104H · c2/m4, ν = 0, 3, M = 18,
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N = 32,m0 = 9, n0 = 16, k = 2 · 106H/m3, R = 20sm,L1 = 45sm, h =

= 0, 5mm, γ̃(1)
c = 0, 306, q̃/q̃0 = 0, 25.

Perfect and imperfect shells were considered. The curves in the figures with
indices p and i relate to perfect and imperfect shells, respectively. Solid lines corre-
spond to vibrations of mediumless shell, the dash line-to vibrations of a shell with
medium. Notice that the presence of medium reduces to decrease of the value of
critical load parameter.
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