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ON SOLVABILITY OF A BOUNDARY VALUE
PROBLEM FOR A CLASS OF THIRD ORDER
OPERATOR-DIFFERENTIAL EQUATIONS WITH
DISCONNECTED COEFFICIENTS

Abstract

In the paper the sufficient conditions providing the solvability of boundary-
value problem for one class operator-differential equations of third order with
disconnected coefficients were obtained, and the principal part of the equations
possesses a normal operator. These conditions are expressed only by properties
of coefficients of operator-differential equations.

In the separable Hilbert space H we consider the following boundary value prob-
lem

d3u > ;
ﬁ+p(t)A3u+ZA3,ju(9) =f(t), teR, (1)
5=0
u(0) =0, (2)
where u (t) and f (t) are the vector-functions deteremined in Ry = (0,00) with

values in H and the operator coefficients satisfy the following conditions:
1) A is a normal invertible operator with a spectrum contained in an angular
sector
Se={M|arg)| <e}, 0<e< %;

2) the operators B; = A;A7J (j =0,1,2,3) are bounded in H;
3) p(t) is a scalar function such that

B a3, te(0,1),
p(t)_{ B3, te(1,00).

As in the book [1] the Hilbert spaces Ly (Ry; H) and W3 (R, ; H) are determined
as follows:

Ly (Ry; H) = f(t)\f(t)GHallin:/If(t)Hth<oo ,
0

d3u

: Bu . " 1o
W; (R+7H) = {U(t)‘ %,Adu € Lo (R+,H) , Hu”%v23 — HASuHLQ + Hdt?’

2
Lo

Let’s determine the following complete subspace of the space W3 (R ; H):

W5 (R H) = {u(t)|u € W5 (Ry; H) ,u (0) = 0}

Here and in sequel the derivatives are understood in the sense of distributions
theory [1].
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By fulfilling condition 1) the operator A is represented in the form A = UC,
where U is a unitary and C is a positive definite operator in H, moreover z € D (A)
|Az| = ||A*z| = ||Cx| and UCz = CUz.

Further, by H we denote a Hilbert scale of spaces generated by the operator C,
Le. Hy=D(C), [lz|, =[|C7z|, v >0,z € D(C).

Definition 1. If for f(t) € Lo (R4; H) there exists a vector-function u(t) €
W3 (Ry; H) satisfying equation (1) almost everywhere in Ry, we’ll call it a regular
solution of equation (1).

Definition 2. If for any f(t) € Lo (Ry; H) there exists a regular solution
u(t) € W3 (Ry; H) satisfying boundary condition (2) in the sense tl%inoo lw(@)ll5/2 =
= 0 and it holds the estimation HUHWé” < const || f|, we’ll call problem (1)-(2) regu-
larly solvable.

In the paper we’ll find sufficient conditions on the coefficients of an operator-
differential equation by fulfilling of which problem (1), (2) is regularly solvable.
Notice that for p(t) =1, =0 (A is a positive-definite operator) this problem was
studied in [2], and when p () is a discontinuous function and £ = 0 it was studied
in the paper [3].

Write problem (1)-(2) in the form of the equation

Pu = Pyu+ Piug = f, (3)

where f € Lo (Ry; H), uw € W3 (Ry; H), and

d3u 3 3 diu
Pou = g+ p(t) A®u,  Pru= jZ;AS_jdtj'
At first we research the non-perturbated equation
POU = f> (4)

where f € Lo (R H), u € W3 (Ry; H).
It holds
Theorem 1. Let A satisfy condition 1). Then the operator Py maps isomorphi-

cally the space W3 (Ry; H) onto Ls (Ry; H).
Proof. We can easily verify that the vector-functions

Ua (t):217T / (—i*E + a34) ™" /f(s)ei(tOSds d¢, teR
—00 0
and
Uﬂ(t):;ﬁ / (—i*E+ 324) 7" /f(s)e“t—f)Sds d¢, te R
—00 0

satisfy the equations
d3u 3 .3
e +a’A%u = f(t),
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and
d3u
dat3
respectively, in R almost everywhere. Show that each of these vector-functions
belong to the space W3 (R; H), where R = (—o0,00), and W3 (R; H) is defined
similar to the space W3 (Ry; H). It follows from the Plancherel theorem that to
this end it sufficies to prove that A3d, (€), 34, (&) and A3g (€), 53@5 (&) belong
to Lo (R; H). Here 1, (§), U (§) is a Fourier transformation of the vector-functions
uq (), ug (§), respectively.
Obviously, if f (€) is a Fourier transformation of the vector-function f (t), then

+ B A% = f (1),

|40 )], = [[4° (-i°E +0*4) " fa ()] <
< sup |47 (—ig"E + a*4%) || £, (5)
EER 2

From the theory of normal operators it follows that for £ € R

|47 (-8B + 0*a%) 7| < sup [N (<i€PE+ a7 <
A€o (A)

< sup \A?’ (€% +a®X% = 26%a°N° smggo)*l/?’ <

A>0
lel<§

~1/2

< sup [\? (§6 +a®A% — 21¢> a*\3sin 35) ' <
A>0
_ 1
< sup ()\3 (a6/\6 cos? 35) 1/2) <5
AS0 o cos 3¢

Thus, from inequality (5) it follows A37, (€) € Lo (R; H). It is similarly proved
that &30, (£) € Lo (R; H). Thus, we showed u, € W3 (R; H). ug € W3 (R; H) is
proved in the same way.

We denote by 1, () and 1, (t) a contraction of the vector-functions u, () and
ug (t) on [0,1] and [1,00), respectively. Then ¢, (t) € W3 ([0,1]; H), ¥, (t) €
W3 ([1,00); H). From the traces theorem [1, p.29] it follows that there are exist
the boundary values ¢ (0), by (1), ¥y (1), g (1), by (1), moreover ¢y (0), 1y (1),
Vo (1) € Hyj, 1y (1), ¥o (1) € Hsja.

By means of the vector-functions 1 (¢) and 1, (t) we make up the vector-function

” (t) _ 91 (t) = wl (t) + eawlAtgol + eaLUQA(til) + eang(til)SO& te (07 1) )
92 (t) = ¢2 (t) + ewlﬂAt§047 te (07 OO) )

1 1
where w; = —1, we = 3 (1 —|—z\/§), ws =3 (1 — 2\/§), and @1, @y, 3, @4 are the
untill unknown vectors from Hy ;.
Obviously, u (t) satisfies equation (1) almost everywhere in R. In order it satisfy

boundary value problem (2) and belong to the space Wi (Ry; H) the conditions

01(0) =0, 61(1) =02(1), 01 (1) =05(1), 67 (1) = 05 (1),
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should be satisfied, i.e.

1 (0) + @y + e 24y + e sy, = 0
Py (1) 4 e + <P2 + 3 =1y (1) + 4
V) (1) + aw Ae®1 4o + aws Apy + awsAps = P4 (1 ) + w1 8Ap,
1)+ 0%ufe i, + atub A, + %l Aoy = (1) + A%,
Hence we get the equation ~
Ao (A)p=¢,
where
E e—ang e—ang 0
eowrA E E ~-E
Ao (4) = aw1e®4  qweE  awsE  —w1BE |’
a%;%eawlA o&u%E a2w§E —w%ﬂQE
—1y (0) #1
£ = ?2 (/1) — 1 (/1) P = Y2
(0 (1) = (1) | o3
A~ ( o (1) =47 (1) n

Obviously, Ag (A) is invertible in the space H* = H x H x H x H and each from
the components of the vector £ belongs to the space Hg/p. Therefore, the vectors
©1, P2, P3, Py are uniquely determined and belong to the space Hg/y. Consequently,

u(t) € W3 (Ry; H). Obviously, equation Pyu = 0 has only zero solution from the
space W3 (Ry; H). On the other hand

1Poull Ly (r, ;o) < const |ullys g, m) -

Therefore, affirmation of the theorem follows from Banach theorem on the inverse
operator.

Now let’s solve equation (3).

It is valid

Lemma 1. Let condition 1) be fulfilled. Then for any u € W3 (Ry; H) it holds
the inequality

2
H 1l
At || 1, (r )

el

S + cos 3¢ Hu/ (O)HB/2 -

—1jpdu

—2sin e leﬂAgu‘ Lo(Ry;H) Hp dt3
2 +>

(6)

Lo(Ry3H)

< Hp1/2A3 ‘
Lo(R4;H)

Proof. Multiplying the equation Pyu = f by p~ /2 (t) we have:

2

2
i L

_ 1/2A3
Lo(Ry;H) H dt3 e “

Jo2ru], *

Ly(Ry;H) H dt? Ly (Ry;H)

H 1/2 43 ~-1/2 d*u 1/2 43
+||p A ‘ +2Re|p —=.p A =
La(Ry:H) dt La(Ry:H)
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2 d3
+2Re (u A3y

2

dPu
_||,~-1/22 "
Hp 3

e
)

Lo(Ry;H

(7)

L2(R+;H) dt?’ >L2(R+;H) .

Since for u € W3 (Ry; H)

3 3
d—u,ASu = d—u,ASu dt = (A2 (0), A3 (0)) —
dt3 dt3

Lo(RysH) )

[e.o]

d3u

i 3
_/ A3y, S8 g = (A*S/Qu/ (0) A2y (O)> — (A%, d’u
dt3 La(
0

then allowing for
3 3 3
2Re (Clg,A?’u) = (dg,A?’u) + (Agu, d’u
dt Lo(R;H) dt Lo(R;H)
3 3
- (ASU, dfj) + (A*3/2u (0), A2y (0)) - <A*3u, d“) >
A ) Lo(Rast) La

2 d3
Zcos?)sHC?’/Qu (O)H - ‘((A3—A*3u),g>
dt> ) (R sH)

AV

. 1/2 43 _1/2d3u
ZC083€HU(O)H3/2—281H3€Hp A u’ —

Lo(RosH) Hp dt3

Lo(Ry;H)
from (7) we get the affirmation of the lemma.
This lemma implies

Corollary 1. For any u € W3 (Ry; H) the inequalities

=

< bl
La(Ry;H) — cos3e

, 8
Lo(Ry;H) (8)

<oz |
Lo(Ry;H)  COS 3e

dPu
-12% ®
Hp I

dPu
-1/2% ®
Hp i3

p*1/2P0u‘

, 9
Ly(Ry;H) ©)

2 2

<

Lo(RyH

2
< (1—sin3e)” " Hp_lpPou‘

10
LaRit)” (10)
follow.

Proof. We apply the Cauchy inequality and rrom inequality (6) we get:

2

2 d3u |’
o270 o P A +
La(R;H) La(R4;H) dt La(Ry;H)
/ 2 . 1/2 43, || _1/2d3u i
+ cos 3¢ ||u (O)H:,)/2 — sm3€Hp A u‘ Lot + H e LR =
) 2 +3
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2
= cos® 3¢ le/QAgu‘

Lo(Ry;H)
i.e.

e

< ol
Lo(R4;H) cos 3¢

Lo(Ry;H)

Validity of inequality (8) is proved. Inequality (9) is proved in a similar way.

Further,
2 2 d3u ||?
Hp_lﬂpou‘ > le/QAgu‘ i H —1/207U _
Lo(Ry;H) La(Ry;H) dt’ Lo(Ry;H)
3 2
—sin3e le/QAS,u’ 2 H _12d%u —
Lo(Ry;H) dt3 Lo(RyH)
2 3ull?
= (1 —sin3e) Hp1/2A3u‘ + H _1/2%
Lo(Ry:H) At || 1 Ry m)

follows from inequality (6).
Hence, it follows validity of inequality (10). Now, let’s estimate the norms of
intermediate derivatives.

Lemma 2. Let condition (1) be fulfilled. Then for any uw € W3 (Ry; H) the
inequalities

HA?’_ju(j)‘ - < Cj (a; B;8) [|1Poul 1y (ry oy » 5 = 0,3, (11)
where
Co (a; B;e) = 1 . !
O =)™ 083 min (a3;53)’
22/3 max (0[1/2751/2>
Cl (a,/375) = 17/2 (1 — Sin35)_1/2 )
3 min <a5/2;ﬂ5/2)
N 2 . 1/2 max (a, 3)
Co (v Bse) = 372 (1 — sin 3¢) W7
1 max (O(3/27 /83/2>
C : B — . R
3 (Oéa B 5) cos 3¢ min (063/2; ﬁ3/2>
hold.

Proof. Inequality (11) for j = 0 and j = 3 directly follows from inequalities (8)
and (9), respectively. Really, for, example, for j = 0 we have:

3 _ || ~1/2 172 43 ‘ < —-1/2 H 1/2 43 ‘ <
HA UHLQ(R+§H) Hp p AT Lo(Ry;H) — s ®)||p =A% Lo(Ry;H) —
< maxp V2 (t) - 1 Hp_l/QPou‘ <
-t cos 3¢ Lo(Ry;H) —
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1 1

cos3¢  min (a3

<

maxp~ " || Poullp, (m, i) =

cos3e t 3% 1Poull .y (ry ) -

Prove inequality (11) for j = 1. Obviously, for u € W3 (Ry; H)

/ <02d“ chu) dt =
La(Ry;H) 0 dt’ dt

d’u
<C’3u, C2dt2> at < [Pl

o2 du du

du ||?
A=
H dt

Lo(Ry:H) H dt

d’*u
Ry;H) Hcdﬁ

Lo(Ry;H)

d?u

< ~1/2 H 1/2 42 ‘ s
= haxp ®) ] “ Lo(Ry;H) dt?

La(Ry;H)

On the other hand we have [4]

&
dt3

2|
d?

2
d?u

A 9 ||c29u du

|

_ Hc

Lo(Ry3H) Lo(RysH) H At || 1y (r i) ' Lo(Ry:H)

B ||?
a3

sdu

A

:2' <

Lo(Ry;H) ‘ Lo(Ry;H)

2
dt

1 dPu

A
dt3

3

-maxp'/? (t) Hp

Ly(Ry;H) Ly(Ry;H)

Allowing for inequality (13) in (12) we get:

ot

- 21/2m§mp1/4><

< Intaxp_l/2 (t) HpI/QAQU‘

Lo(Ry;H) La(Ry;H)

—1jpdiu 2

X
dt3

20w du

p dt

La(Ry;H) ’ La(Ry;H)

or

|

Consequently,

3/4 ;33/4
3/2 <21/2max (a , 0 )

Spdu

sdu
o P -
Lo(Ry;H) dt

A
dt

1/23‘

|

Lo(R4+;H) min (()[3/2, ﬂ3/2) La(RysH) .

/2. 31/2
(0 & ) %

Lo(Ro:H) min («, 8

2 du
dt

|

1/23‘

Hp L2(R+;H)

C1jp

X
dt3

p

Ly(Ry;H)
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Hence, for any > 0 we have:

HA2du < 92/3 max (o, 3) ( Hp1/2A3u‘ 2 >2/3 y
dt |1, (R, .m) min (a2, 5?) La(Ry;H)
1/3
52 i3 La(Ry;H)

Applying the Young inequality we get:

2
'A2d“ <
A Ly (roim)
2
- gp/a max (0, ) 25 |2 P VAT .
min (o2, ﬁQ La(Ry;H) 352 dt’ Lo(Ry;H)

2 1
Choosing § = 271/3 ((5 = > we have:

3 367
2
I
dt |1, (R, .m)
2
_ 243 max (a, le/z A3 ‘ Hp—l/2d3“ .
~ 3 min (a2 62 La(Ry;H) dt’ Lo(Ri;H)

Further, applying inequality (10) we get:

92/3 max (al/z, 61/2)

< <
— 312 min(a,f)

Lo(Ry;H)

e

= (1 —sin3e) Hp_1/2Pou’

Ly(Ry;H)

§ 92/3 max <a1/2, 61/2>

— 312 min(a,f)
92/3 Max (al/Q,ﬂl/z

=3 min <a5/2”35/2> 1Pottll s sa) -

~1/2

(1 —sin3e) maxp™ /= (t) || Poull 1 (r ;) <

Now, let’s prove inequality (11) for j7 = 2. Aloowing for inequality (12) in (13)
we have:

d2 2 d3 2
HA;L < 2maxp'/? (t) le/Qg X
dt La(Ry;H) t dt Lo(R+4;H)
_ 1/2 d?ul|*?
Xmaxp () HPI/QA?’U‘ X HAclt2 =
Lo(Ry;H) Lo(Ry:H)
3/2
meaX (ag/Q’ﬁ / ) H _1pdPu le/zAs ’ 1/2 HAdz“ i
i (‘W 4B 4) (Ol TR Lo(BeiH) || dE 1, p o)
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Consequently,
3/2
HAdQu 3/2 _ 2HlaX (0[3/276 / ) H 1/2 3 ‘1/2 H _1/2@
dt? T min <a3/4,ﬁ3/4> p Lo(Ry3H) at ||y rem)
ie.
2/3
HAdQ;L < g2/ A (a,3) le/QA?’u‘ 1/3 H 71/25137;5 ‘
dt Lo(Ry;H) min (al/Q,ﬂ1/2> L2 (R :H) dt Lo(Ry;H)

Hence for any § > 0 we have:

HAdQU < 24/37“16LX (o2, 5° (52 le/zAS ’ )1/3 x
dt? Lo(Ro:H) min («, ) Lo(Ry;H)
2/3
x| =|p — :
6 dt LQ(R+;H)
Here, applying Young inequality we have:
2 2
[ =
At || 1 Ry sm)
st (P )
< min (a, 3) 3 Lo(Ry;H Lo(Ry:H)

1 2
Here, assuming 6 = 21/3 (352 = > we get:

30
H < 4 max (o?, 5) le/z A3 ‘ 2 le/ngu i
L2 R+ H) 3 mln (Oé, /8 LQ(R+;H) dt.?) LQ(R+;H) '
Applying inequality (10) we have:
2 2
H d% < 2 max (a, ) (1 —sin3e) /2 Hpil/ZPou‘ <
dt La(R4;H) 31/ min (041/2, ﬂ1/2> La(R+;H)
2 max (o, 3) . _ -
< (1 —sin3e) 1/2 maxp 172 (1) 1 Poull 1y my sy =

32 (al/z, 51/2>

1/2 max (o, B)

(1 —sin3e)” W HPOU||L2 (Ry;H)

31/2

The lemma is proved.
Now, we’ll prove the main theorem on regular solvability of problem (1)-(2).
Theorem 2. Let conditions (1)-(2) be fulfilled and the inequality

3
(a5 8;) =Y Cj(a; Bie) || Bl < 1
=0
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hold.

Then problem (1)-(2) is regularly solvable. Here, the numbers C; (o 3;¢€) (j = ()TS)
are defined in lemma 2.

Proof. After substitution of Pyu = v we can write equation (3) in the form
v+ PPy v = f, where v € Ly (Ry; H), f € Ly (Ry; H).

On the other hand for any v € Ly (R4 ; H) we have:

3
1 (4)
I3 i = VPt < 32 [0
3
< B HA3 J J)’ :
_ZH 53—l La(RusH)
7=0
By lemma 2
3—3,.(5) . . Q.
HA Tu? ‘ Lo(Ry;H) < Cj (3 fie) ”POU||L2(R+;H)'
Then
3
| PPy UHLQ(R+, < Z (a; B:e) 1 Bs—jll [Vl 1y (my sy = K (05 858) [[0l] py sy -
=0

Since K (a; B;¢) < 1, the operator P1P; ' + E is invertible in Ly (R ; H). Therefore
_ _1y—1
=P (E+ PR f and [ullws e, < const 1,
The theorem is proved.
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