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Mehdi K. BALAYEV

ON NON-LOCAL SOLVABILITY OF NON-LINEAR

DIFFERENTIAL OPERATOR EQUATIONS OF

PARABOLIC TYPE IN BANACH SPACE

Abstract

In the paper we study the Cauchy problem for non-linear differential-operator
equations with unbounded, non densely given, variable operator coefficients in
Banach space. New classes of evolution equations for which Cauchy problem is
globally solvable, are distinguished.

The Cauchy problem for differential-operator equations of first order was studied
in different aspects by many authors (see. e.g. [1-3,6], in which there is a wide bibli-
ography). The Cauchy problem for differential-operator equations of second order in
the Banach space was also studied [4-5]. The present paper is devoted to studying
quasilinear differential-operator equations of parabolic type with unbounded, non
densely defined variable operator coefficients in Banach space.

At first, let’s consider the Cauchy problem for quasilinear differential-operator
equation of first order

u′(t) + A(t, u(t))u(t) = f(t, u(t)) (0 < t ≤ T ) (1)

u(0) = u0, (2)

in Banach space E. Here, A(t, υ) is a linear operator given for each t ∈ [0, T ] and
υ ∈ E with domain of definition D(A(t, υ)) = D(t), f(t, υ) is the given continuous
function and u0 is the given element from E.

Definition 1. The function u(t) continuous on [0, T ], continuously differential
on (0, T ] with values in E, satisfying for each t ∈ (0, T ] equation (1) and initial
condition u(0) = u0, for which it holds the inequality

‖Aα
0 u(t)−Aα

0 u(τ)‖ ≤ Cω (|t− τ |) (3)

where A0 = A(0, u0), α ∈ [0, 1), Aα
0 is fractional power of the operator A0; ω(t)

is a positive, monotonically increasing, defined on (0,∞) function for some p ∈[
1

2β − 1
,∞

)
β ∈

(
1
2
, 1

]
satisfies the condition

T0∫
0

ωp(r)
rp

|log r|p dr < ∞.

will be said to be a solution of problem (1), (2) on [0, T ].
This problem was researched in the paper [3] provided that the operator A(t, υ)

generates analytic semi-group of the class (C0), the domain of definition D(t) of
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the operator A(t, υ) is densely set in E, the right hand side in (1) is Holderian
continuous. In the paper [4] problem (1), (2) was studied in the case when the
operator A(t, υ) is a generating operator of the class (0, A). The right hand side
f(t, A−1

0 u) on [0, T ]× S0 (S0 ⊂ E is some ball) has partial derivatives continuous in
totality of variables, satisfying the Lipschitz condition.

In this paper the problem (1)-(2) is considered in the case of variable domain of
definition D(t) of the operator function A(t, υ). Here we consider a more general
case, when the set D(t) may depend on t; D(t) is non densely set in E, and the
operator A(t0, υ) for each t0 ∈ [0, T ] and υ ∈ E generates a strongly continuous
semi-group having power singularity in zero.

The following conditions are imposed everywhere on the operator function A(t, υ):
(I). For each t ∈ [0, T ], υ ∈ E the operator A(t, A−α

0 υ) has a bounded inverse

operator A(t, A−α
0 υ) and for some η > 0, β ∈

(
1
2
, 1

]
satisfies the condition

∥∥R(λ;A(t, A−α
0 υ))

∥∥ ≤ C |λ|−β , |arg λ| < π

2
+ η, |λ| → ∞.

(II). For all 0 ≤ τ ≤ t ≤ T and for some α ∈ [1− β, 1) the inclusions
D(A(τ , A−α

0 u)) ⊂ D(A(t, A−α
0 u)) hold; for any 0 ≤ s ≤ τ , t ≤ T it is fulfilled

the inequality ∥∥[A(t)−A(τ)]A−1(s)
∥∥ ≤ Cω (|t− τ |) ,

where ω(t) is a positive, monotonically increasing, determined on the interval (0,∞)

function that for some p ∈
[

1
2β − 1

,∞
)

satisfies the following condition (for β = 1,

p = 1 see [9])
T0∫
0

ωp(r)
rp

|log r|p dr < ∞. (4)

For example, the functions:

ω(r) = c |1ogr|α , for α < −2, p = 1;

ω(r) = c
log(1 + r)

r
1
p |log r|α

for α >
p + 1

p
, p ≥ 1.

satisfy the condition (4).
Notice that these functions are not uniformly continuous by Holder in the vicinity

r = 0.
Fractional powers may be determined for the operators satisfying condition (I)

(see [1]). Negative fractional powers A−δ(t)A(t, A−α
0 υ) ≡ A(t) as in the case of

strongly continuous exponentially decreasing semi-groups are derived by the formula

A−δ(t) =
1

Γ(δ)

∞∫
0

sδ−1 exp {−s A(t)ds} .



Transactions of NAS of Azerbaijan
[On non-local solvability of non-linear ...]

35

However, unlike the strongly continuous semi-groups, only for β + δ > 1 this for-
mula determines bounded operators. Positive fractional powers Aδ(t) are determined
as the inverse operators to negative powers A−δ(t). Another approach to definition of
fractional powers of “badly positive” operators is given in [18]. By D(A−δ(t)) we de-

note a set of elements υ ∈ E, for which the integral

∞∫
0

sδ−1 exp {−s A(t)} υds (δ >

0) converges improperly (in zero). For such ν we assume

A−δ(t)υ =
1

Γ(δ)

∞∫
0

sδ−1e−sA(t)υds (δ > 0).

Continuous imbedding D(A(t)) ⊂ D(A−δ(t)) for each t ∈ [0, T ] easily follows
from this definition. If δ > 1−β, then D(A−δ(t)) = E and the operators A−δ(t) are
bounded. For 0 < δ < 1− β as the example from [1] shows, these operators may be
unbounded.

On the elements ν ∈ D
(
A−δ(t)

)
(0 < δ < 1) the equality A−(2−δ)(t) A−δ(t)ν =

A−2(t)ν is valid. It follows of this that ν = 0, if ν ∈ D
(
A−δ(t)

)
and A−δ(t)υ = 0,

therefore there exist inverse operators [A−δ(t)]−1. Now, let’s define positive frac-
tional operators A(t) by means of the equality Aδ(t) = [A−δ(t)]−1 (0 < δ ≤ 1). For
investigation of problem (1)-(2) we apply the methods of semi-groups theory.

1. Solvability of problem (1)-(2). For the problem (1)-(2) we prove the
following solvability theorem.

Theorem 1. Let conditions (I) and (II) be fulfilled.
Let, further:
(III). For any t, s ∈ [0, T ]; ν, w ∈ E with ‖ν‖ , ‖w‖ ≤ R it hold the inequality∥∥[

A(t, A−αν)−A(s,A−α
0 w

]
A−1

0

∥∥ ≤ C(R) [ω(|t− s)|+ ‖ν − w‖] ;

(IV). For any t, s ∈ {0, T ]; υ, w ∈ E it hold the inequality∥∥f(t, A−α
0 ν)− f(s,A−α

0 w
∥∥ ≤ C(R) [ω(|t− s)|+ ‖ν − w‖] ;

(V). For any t, s ∈ [0, T ]; υ ∈ E it hold the estimation∥∥f(t, A−α
0 ν)

∥∥ ≤ C(1 + ‖ν‖);

(VI). u0 ∈ D(Aδ
0) for some δ > α.

Then problem (1)-(2) has a unique solution on [0, T ].
Proof. Under conditions (I), (II), (III) and (VI) problem (1)-(2) is equivalent

to the integral equation (see, e.g. [3]).

u(t) = Uu(t, 0)u0 +

t∫
0

Uu(t, s)fu(s)ds, (5)



36
[M.K.Balayev]

Transactions of NAS of Azerbaijan

where Uu(t, s) is an evolution operator generated by the operator

A(t, A−α
0 u(t)), fu(t) = f(t, A−α

0 u(t)).

It is known the following estimation [see (10)]∥∥∥Aδ(t)U(t, s)A−α(t)
∥∥∥ ≤ C(α, β, δ) |t− s|α+β−δ−1 . (α)

In this equation the integrated summand admits the estimation

‖Uu(t, 0)u0‖ =
∥∥∥Uu(t, 0)A−δ

0

∥∥∥ · ∥∥∥Aδ
0u0

∥∥∥ ≤ Ctβ+δ−1
∥∥∥Aδ

0u0

∥∥∥ ≤ C(β, δ)
∥∥∥Aδ

0u0

∥∥∥ ,

since here δ > 1 − β, and for δ > 1 − β the operator function Uu(t, 0)A−δ
0 is con-

tinuous on t ∈ [0, T ] (see [1]). Therefore the principle of contracted mappings is
applied to equation (5). Consequently, equation (5) on some interval [0, t0], where
t0 ∈ (0, T ], has a unique solution, that may be found by successive approximations
method. Let u(t) be any solution of equation (5). Then

‖u(t)‖ ≤
∥∥∥Uu(t, 0)A−δ

0

∥∥∥ · ∥∥∥Aδ
0u0

∥∥∥ +

t∫
0

‖Uu(t, s)‖ · ‖fu(s)‖ ds, (6)

since
∥∥∥Uu(t, 0)A−δ

0

∥∥∥ ≤ C(β, δ) and

‖fu(s)‖ =
∥∥f(s,A−α

0 u(s))
∥∥ ≤ C(1 + ‖u(s)‖), (7)

we get from (IV) and (V)

‖u(t)‖ ≤ C
∥∥Aδ

0u0

∥∥ +

t∫
0

c |t− s|β−1 (1 + ‖u(s)‖)ds ≤ C +

t∫
0

C |t− s|β−1 ds+

+C

t∫
0

C |t− s|β−1 ‖u(s)‖)ds ≤ C + C

t∫
0

C |t− s|β−1 ‖u(s)‖)ds.

Hence, by the theorem on integral inequalities [ [6] p. 206] we get estimation ‖u(t)‖ ≤
CE(θ, t), t ∈ [0, T ],

where θ = (CΓ(β))
1
β , Eβ(t) =

∞∑
n=0

znβ

Γ(nβ + 1)
;

(
Eβ(z) ≈ 1

β
ez for z → +∞

)
Consequently for any solution u(t) we have a priori estimation ‖u(t)‖ ≤ C. Now,

acting by the operator Aδ(t, A−α
0 u(t)) in (5) we get

Aδ(t, A−α
0 u(t))u(t) = Aδ(t, A−α

0 u(t))Uu(t, 0)u0 +

t∫
0

Aδ(t, A−α
0 u(t))Uu(t, s)fu(s)ds.

From estimation (α) we have:∥∥∥Aδ(t, A−α
0 u(t))Uu(t, s)

∥∥∥ ≤ C(β, δ) |t− s|β−δ−1



Transactions of NAS of Azerbaijan
[On non-local solvability of non-linear ...]

37

Besides, by condition (I) and inequality of moments for fractional powers of
operators [7] for any ν ∈ E c ‖ν‖ ≤ R it holds the inequality

∥∥A−δ(t, A−αu(t))
∥∥ ≤

C(R). Then, by (IV) and (α), taking into account a priori estimation ‖u(t)‖ ≤ C

we get ∥∥Aδ(t, A−α
0 u(t))u(t)

∥∥ ≤ ∥∥∥Aδ(t, A−α
0 u(t))Uu(t, 0)A−ρ

0

∥∥∥ · ∥∥∥A−ρ
0 u0

∥∥∥+

+

t∫
0

C(β, δ) |t− s|β−δ−1 (1 + ‖u(s)‖)ds ≤ C(α, δ, β, ρ)+

+

t∫
0

C(β, δ) |t− s|β−δ−1
∥∥∥Aδ(s,A−α

0 u(s))
∥∥∥ ds

Here ρ > 1 + δ − β. By the theorem on integral inequalities we again have:∥∥∥Aδ(t, A−αu(t))U(t)
∥∥∥ ≤ C(α, δ, β, ρ)Ed(θt) ≤ C,

where d = β − δ. So, by [3] the theorem is completely proved.
Remark. If u(t) is the solution of problem (1), then under the conditions of the

theorem A(t, u(t))u(t) will be continuous on (0, T ]. Really, by condition (III) and
by inequality (3) we get

‖f(t, u(t))− f(s, u(s))‖ ≤ C [ω(|t− s|) + ‖Aα
0 (u(t)− u(s))‖] ≤ Cω(|t− s|).

This shows that the vector-function f(t, u(t)) is continuous on [0, T ]. But since
by definition u′(t) is continuous on (0, T ], continuity of A(t, u(t))u(t) on (0, T ] is
obtained from equation (1).

2. Now go over the problem for a second order equation

u′′(t) + A(t, u(t), u′(t))u′(t) = f(t, u(t), u′(t)); (8)

u(0) = u0, u′(0) = u1 (9)

Definition 2. The function u(t) continuously differentiable on [0, T ], twice con-
tinuously differentiable on (0, T ] with values in E, satisfying for each t ∈ (0, T ]
equation (8) and initial conditions of (9), for which it holds the estimation∥∥Aα

0 u′(t)−Aα
0 u′(s)

∥∥ ≤ Cω (|t− s|) ,

where A0 = A(0, u0, u1); the function ω(r) satisfies the condition (4), will be said to
be a solution of problem (8) (9) on [0, T ].

Theorem 2. Let the following conditions be fulfilled:
(I) For each t ∈ [0, T ], u, ν ∈ E,A(t) = A(t, Aα

0 u, A−α
υ ν) is a closed linear opera-

tor with domain of definition D(A(t)), has a bounded inverse operator A−1(t, Aα
0 u, A−α

0 υ)

and for some η > 0, β ∈
(

1
2
, 1

]
‖R(λ;−A(t))‖ ≤ C |λ|−β , |arg λ| < π

2
+ η, |λ| → ∞.
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(II) For some α ∈ (1− β, 1] and any u, υ, u′, υ′ ∈ E, with ‖u‖ + ‖υ‖ < R,
‖u′‖ + ‖υ′‖ ≤ R where R is some positive number and for 0 ≤ τ ≤ t ≤ T ;
D(A(τ , A−α

0 u, A−α
0 υ)) ⊂ D(A(t, A−α

0 u, A−α
0 υ)); for any 0 ≤ s ≤ τ , t ≤ T,∥∥[

A(t, A−α
0 u, A−α

0 υ)−A(τ , A−α
0 u′, A−α

0 υ′)
]
A−1

0 (s)
∥∥ ≤

≤ C [ω (|t− τ |) + ‖u− u′‖+ ‖υ − υ′‖] ;

where A0 = A(0, u0, u1); the function ω(t) satisfies the condition (4).
(III) For any t, τ ∈ [0, T ];u, υ, u′, υ′ ∈ E with ‖u‖+ ‖υ‖ < R, ‖u′‖+ ‖υ′‖ ≤ R it

holds∥∥f(t, Aα
0 u, A−αυ)− f(τ , A−α

0 u′, A−α
0 υ′)

∥∥ ≤ C
[
ω (|t− τ |) +

∥∥u− u′
∥∥ +

∥∥υ − υ′
∥∥]

.

(IV) u0 ∈ D(Aα
0 ), u1 ∈ D(Aδ

0) for some δ > α.
Then on some segment [0, t0] where t0 ∈ [0, T ], there exists a unique solution of

the problem (8)-(9).
Let u(t) be a solution of the problem (8)-(9). Then the functions

V1(t) = Aα
0 u(t), V2(t) = u′(t) (10)

are continuous on [0, T ] and continuously differentiable on (0, T ], since the functions
Aα

0 u(t) and u′(t) possess these properties. Then differentiating on (0, T ] each relation
of (10) and taking into account that u(t) satisfies equation (8) on (0, T ] we get that
the function υ(t) = (υ1(t), υ2(t)) in the Banach space E × E satisfies the problem

ν ′(t) + U(t, ν(t))ν(t) = F (t, ν(t)); (11)

ν(0) = ν0 (12)

where

U(t, υ) =
(

I 0
0 A(t, A−α

0 ν1, ν2)

)
, (13)

F (t, υ) =
(

υ1 + Aα
0 ν2

f(t, A−αν1, ν2)

)
, υ0 =

(
Aα

1 u0

u1

)
. (14)

Directly calculating, we find

(U0 + λI)−1 =
(

(λ + 1)−1 0
0 (A0 + λI)−1

)
, (15)

where U0 = U(0, ν0).

Hence, by the formula U−α
0 =

sin πα

π

∞∫
0

t−α(tI + U0)−1dt we get U−α
0 =

=
(

I 0
0 A−α

0

)
.

Now, let’s prove that the function υ(t) satisfies the inequality

‖Uα
0 ν(t)− Uα

0 ν(s)‖ ≤ Cω (|t− s|) .
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Since
Uα

0 ν(t)− Uα
0 ν(s) =

(
Aα

0 u(t)−Aα
0 u(s), Aα

0 u′(t)−Aα
0 u′(s)

)
,

hence we get the estimation

‖Uα
0 ν(t)− Uα

0 ν(s)‖ ≤ ‖Aα
0 u(t)−Aα

0 u(s)‖+
∥∥Aα

0 u′(t)−Aα
0 u′(s)

∥∥ ≤ Cω (|t− s|) .

We showed that if u(t) is a solution of the problem (8)-(9), the function ν(t) =
(Aα

0 u(t), u′(t)) will be a solution of the problem (11)-(12). The inverse statement is
easily proved. Thus, the problems (9)-(10) and (11)-(12) are equivalent.

Now, prove that under the conditions of theorem 2 the conditions (I), (II), (III)
and (VI) of theorem 1 are satisfied. The operator U0 has a domain of definition
D(U0) = E × D(A0) ⊂ E × E. Besides, it is clear from (15) that for any λ that
|arg λ| ≤ π

2
+ η, it holds ∥∥∥(U0 + λ)−1

∥∥∥ ≤ C |λ|−β .

Now, let ν = (ν1, ν2) where ν1, ν2 ∈ E. Then we can easily get

U(t, U−α
0 ν) =

(
I 0
0 A(t, A−α

0 ν1, ν2)

)
.

By condition (II) the operator U(t,U−α
0 ν) is determined on D(U0). Besides, for

0 ≤ s ≤ t ≤ T it holds the inclusion D(U(τ , U−α
0 ν) ⊂ D(U(t, U−α

0 ν)) and for any
ν = (ν1, ν2), ν ′ = (ν ′1, ν

′
2)c ‖ν‖ , ‖ν ′‖ ≤ R we have[

U(t, U−α
0 ν)− U(s,U−α

0 ν ′)
]
U−1

0 = .

=
(

I 0
0

[
A(t, A−α

0 ν1, ν2)−A(s,A−αν ′1, ν
′
2)

]
A−1

0

)
Hence, by condition (II) we get∥∥[

U(t, U−α
0 ν)− U(s,U−α

0 ν ′)
]
U−1

0

∥∥ ≤ C
[
ω (|t− s|) +

∥∥ν − ν ′
∥∥]

.

Besides, since F (t, U−α
0 ν) = (ν1 + Aα

0 ν2, , f(t, Aα
0 ν1, ν2)), then for any t, s ∈

∈ [0, T ], ν = (ν1, ν2), ν ′ = (ν ′1, ν
′
2)c ‖ν‖ , ‖ν ′‖ ≤ R we get

F (t, U−α
0 ν)−F(s,U−α

0 ν ′) = (ν1 − ν ′1 + Aα
0 ν2 −A0ν

′
2,

f(t, A−α
0 ν1, ν2)− f(s,A−αν ′1, ν

′
2),

Consequently, by condition (III) we have:∥∥F(t, U−α
0 ν)−F(s,U−α

0 ν ′)
∥∥ ≤ C

[
ω (|t− s|) +

∥∥ν − ν ′
∥∥]

.

Finally, since Uδ
0ν0 =

(
Aδ

0u0

Aδ
0u1

)
we get from condition (IV) that ν0 ∈ D(Uδ

0 ).

Thus, the conditions (I-III) and (VI) of theorem 1 hold. Then by [10] there
exists a unique solution of the problem (11)-(12) on [0, t0]. Therewith we proved the
existence of a unique solution of the problem (8)-(9) on [0, t0] where t0 ∈
∈ (0, T ].
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Theorem 3. Let the following conditions be fulfilled:
I. For any t0 ∈ (0, T ], ν1, ν2 ∈ E,A(t, A−α

0 ν1, A
−α
0 ν2) = A(t) a closed lin-

ear operator with domain of definition D(A(t)) has a bounded inverse operator

A−1(t, A−α
0 ν1, A

−α
0 ν2), moreover for some η > 0,β ∈

(
1
2
, 1

]
‖R(λ;−A(t))‖ ≤ C |λ|−β , |arg λ| ≤ π

2
+ η, |λ| → ∞.

II. For some α ∈ (1− β, 1] for any ν1, ν2, w1, w2 ∈ E with ‖ν1‖+ ‖ν2‖ ≤
≤ R, ‖w1‖+ ‖w2‖ ≤ R, and for 0 ≤ τ ≤ t ≤ T ; D(A(τ , A−α

0 ν1, A
−α
0 ν2)) ⊂

⊂ D(A(t, A−αν1, A
−αν2)); 0 ≤ s ≤ τ , t ≤ T for any∥∥[

A(t, A−α
0 ν1, A

−α
0 ν2)−A(τ , A−α

0 w1, A
−α
0 w2)

]
A−1

0 (s)
∥∥ ≤

≤ C [ω (|t− τ |) + ‖ν1 − w1‖+ ‖ν2 − w2‖] ;

III. For any t, τ ∈ [0, T ]; ‖νi‖ ≤ R, ‖wi‖ ≤ R, (i = 1, 2) it holds∥∥f(t, A−α
0 ν1, A

−α
0 ν2)− f(τ , A−α

0 w1, A
−α
0 w2)

∥∥ ≤
≤ C [ω (|t− τ |) + ‖ν1 − w1‖+ ‖ν2 − w2‖] .

IV. For any t0 ∈ [0, T ], ν1, ν2 ∈ E the estimation∥∥f(t, A−α
0 ν1, A

−α
0 ν2)

∥∥ ≤ C (1 + ‖ν1‖+ ‖ν2‖)

is satisfied.
V. u0 ∈ D(Aα

0 ), u1 ∈ D(Aδ
0) for some δ > α. Then, problem (8)-(9) has a unique

solution on [0, T ].
Proof. We prove that in the given case all the conditions of theorem 1 are

satisfied for the problem (11)-(12). The conditions (II),(III) and (V) are verified by
the theorem.

2. In order to verify condition (I) of theorem 1, it suffices to remark that for any
t ∈ [0, T ]

[
U(t, U−α

0 υ) + λI
]−1 =

(
(λ + 1)−1I 0

0
[
A(t, A−α

0 ν1, A
−α
0 ν2) + λI

]−1

)
.

Hence, it follows that for any ν ∈ E × E it holds the estimation∥∥∥[
U(t, U−α

0 ν) + λI
]−1

∥∥∥ ≤ C |λ|−β , |arg λ| ≤ π

2
+ η, |λ| → ∞.

Now, let’s verify condition (IV). Let ν = (ν1, ν2) where ν1, ν2 ∈ E. Then by (14)
and (IV) we have∥∥F(t,U−α

0 ν)
∥∥ = ‖ν1 + ν2‖+ f

∥∥(t, A−α
0 ν1, A

−α
0 ν2)

∥∥ ≤ C(1 + ‖ν‖).

So, on the basis of theorem 1 problem (11)-(12) has a unique solution on [0, T ].
Thereby we proved (8)-(9) has a unique solution on [0, T ].
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3. Let’s consider an initial boundary value problem with non-local
boundary conditions:

∂u(t, x)
∂t

− a0

(
(t, x, u(t, x),

∂u(t, x)
∂x

)
∂2u(t, x)

∂x2
+

+a1

(
(t, x, u(t, x),

∂u(t, x)
∂x

)
u(t, x) =

= f(t, x, u(t, x)), (t, x) ∈ [0, T ]× [0, 1],

(16)


L1u =

1∫
0

ϕ1(x)u(t, x)dx = 0,

L2u =

1∫
0

ϕ2(x)u(t, x)dx = 0,

(17)

u(0, x) = ϕ0(x); (18)

We’ll consider this problem in the space L2(0, 1) and look for its classic solution .
Let the following conditions be fulfilled:∥∥∥∥ak

(
t, x, u0(t, x),

∂u0

∂x

)
− ak

(
τ , x, ν0(t, x),

∂ν0

∂x

)∥∥∥∥
L2(0,1)

≤

≤ C
[
|log| t− τ ‖α+‖ u0 − ν0‖W2(0,1)

]
,

‖f(t, x, u0(t, x))− f(τ , x, ν0(t, x))‖ ≤ C
[
|log| t− τ ‖α+‖ u0 − ν0‖L2(0,1)

]
where k = 0, 1;α < −2.

It we introduce the operator A(t, u(t)):L2(0, 1) determined by the formula

D(A(t, u)) =
{
u ∈ W 2

2 (0, 1);Lju = 0, j = 1, 2
}

,

A(t, u)u = a0k

(
t, x, u,

∂u

∂x

)
∂2u

∂x2
+ a1

(
t, x, u,

∂u

∂x

)
u,

and additionally assume a0(t, x,...) > M > 0, t ∈ [0, T ], x ∈ [0, 1],
∂a0(t, 0,...)

∂x
=

=
∂a0(t, 1,...)

∂x
= 0, a1(t,x,...) ∈ C[0,1], 4ϕ = ϕ1(0) ϕ2(1)− ϕ2(0) ϕ1(1) 6=

6= 0, ϕj ∈ C[0, 1], j = 1, 2 are linearly independent functions. Then for the operator
A(t, u) we have: D(A(t, u)) is not a compact set in L2(0, 1) and ‖R(λ, A(t, u))‖ ≤
C |λ|−3/4; (see [11]).

Then problem (16)-(17)-(18) is reduced to the Cauchy abstract problem{
u′(t) + A(t, u)u = f(t, u),
u(0) = u0.

in functional space L2(0, 1).
Now, applying theorem 1 to this problem we obtain its solvability in the class of

classic solutions.
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