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SOME SPECTRAL PROPERTIES OF A FOURTH

ORDER DIFFERENTIAL OPERATOR WITH

SPECTRAL PARAMETER IN BOUNDARY

CONDITION

Abstract

In the paper we consider the spectral problem

y(4) (x)− (q (x) y′ (x))′ = λy (x) , x ∈ (0, l) ,

y (0) = y′ (0) = y′′ (l) = 0,

T y (l) = (aλ + b) y (l) ,

where λ is a spectral parameter, q is an absolutely continuous positive function
on interval [0, l], Ty ≡ y′′′ − qy′, a , b are real constants with a > 0.

The general characteristic of eigenvalues disposition on a real axis (com-
plex plane) is given, the structure of roots subspaces is studied, the oscillation
properties of eigenfunctions are investigated, and the asymptotic formulae for
eigenvalues and eigenfunctions of this problem are obtained.

Let’s consider the spectral problem

y(4) (x)−
(
q (x) y′ (x)

)′ = λy (x) , x ∈ (0, l) , (0.1)

y (0) = y′ (0) = y′′ (l) = 0, (0.2)

Ty (l) = (aλ + b) y (l) , (0.3)

where λ is a spectral parameter, q is an absolutely continuous positive function on
interval [0, l], Ty ≡ y′′′ − qy′, a , b are real constants with a 6= 0.

Problem (0.1)-(0.3), in case b = 0, arises at description of transverse vibrations
of pendulum formed of vertically situated homogeneous rod with fixed upper end
and the bottom end subjected to the action of tracing force. In particular, the case
a < 0 describes situation when on the right end of a rod, the additional mass of
the quantity (−a) is concentrated. We can find more exact informations on physical
meaning of the similar type problems in [1,2].

Boundary value problems with spectral parameter in the boundary condition
in different statements were studied in a whole series of papers (see, for example,
[3-13]). In [7-13] the basicity in spaces Lp of system of root functions of boundary
value problems for ordinary differential operators of the second and fourth orders
with spectral parameter in the boundary condition, are investigated.

Note that problem (0.1)-(0.3) in the case a < 0 in a more general formulation is
considered in [11], and in the case a > 0, b ≥ 0, is considered in [12]. In these papers
the oscillation properties of eigenfunctions are investigated, location of eigenvalues
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on real line is studied, and the basicity in Lp (0, l) , 1 < p < ∞, of the systems of
eigenfunctions with one removed eigenfunction was established.

Everywhere hereinafter we assume that the condition a > 0 holds.
To study the basis properties in the space Lp (0, l) , 1 < p < ∞, of the sys-

tems of root functions of problem (0.1)-(0.3) it has been ascertained conformation
between root functions of problem (0.1)-(0.3) and the known system forming basis
in Lp (0, l) , 1 < p < ∞, (see, for example, [7-13]). Ascertainment of such con-
formations real on attraction of asymptotic formulae for eigenfunctions of problem
(0.1)-(0.3). To obtain the asymptotic formulae for eigenfunctions it is necessary:
general characteristic of location of eigenvalues on real line (complex plane), the
structure of roots subspace and oscillation properties of eigenfunctions. Note that
reasonings used in [11, 12] don’t give full answer to above indicated questions. The
present paper is dedicated to detailed investigation of these questions (at this the
special attention is given to multiple eigenvalues).

§ 1. Some properties of solutions of problem (0.1), (0.2)
We introduce the boundary condition

y (l) cos δ − Ty (l) sin δ = 0, δ ∈ [0, π/2] . (0.3′)

Problem (0.1), (0.2), (0.3′) is considered in [14] where, in particular, the folllowing
oscillation theorem is proved.

Theorem 1.1(see [14; §5, theorem 5.4 and 5.5 ]). The eigenvalues of boundary
value problem (0.1), (0.2), (0.3 ′) are simple and form an infinitely increasing se-
quence {µn (δ)} such, that 0 ≤ µ1 (δ) < ... < µn (δ) < .... The eigenfunction ϑ

(δ)
n (x)

corresponding to an eigenvalue µn (δ) has n− 1 simple zeros in the interval (0, l).
There holds the following
Lemma 1.1(see [11; §2, theorem 2.1 ]). For each fixed λ ∈ C there exists a

unique nontrivial solution y (x, λ) of problem (0.1), (0.2) to within constant multi-
plier .

Without loosing generality, the solution y (x, λ) of problem (0.1), (0,2) for each
fixed x ∈ [0, l] can be considered as entire function of the parameter λ [11; remark
2.1].

Denote: Dn =
(
µn−1 (0) , µn (0)

)
, n = 1, 2, ... , where µ0 (0) = −∞.

Obviously, the eigenvalues µn (0) and µn (π/2) , n ∈ N, of boundary value prob-
lem (0.1), (0.2), (0.3′) are zeros of the entire functions y (l, λ) and Ty (l, λ), respec-
tively. Note that the function F (λ) = Ty (l, λ) /y (l, λ) is defined for λ ∈ D ≡
(C/R) ∪

∞⋃
n=1

Dn and is a meromorphic function of finite order and the eigenvalues

µn (π/2) and µn (0) , n ∈ N, of boundary value problem (0.1), (0.2), (0.3′) are zeros
and poles of this function, respectively.

Lemma 1.2 (see [11; §3, lemma 3.1]). Let λ ∈ D. Then the equality

dF (λ)
dλ

=

 l∫
0

y2 (x, λ) dx

 /y2 (l, λ) (1.1)
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holds.
Lemma 1.3. The following asymptotic formula

F (λ) =
4
√

λ3 cos 4
√

λl

cos 4
√

λl − sin 4
√

λl

[
1 + 0

(
1
4
√

λ

)]
(1.2)

is true.
Proof. In equation (0.1) we assume λ = ρ4. It is known (see [15; ch.II, i.5,

theorem 1]), that in any domain T of complex ρ-plane, equation (0.1) has four
linealy independent solutions zk (x, ρ), k = 1, 4, which are regular subject to ρ (for
sufficiently great |ρ|) and satisfy the relations

z
(s)
k (x, ρ) = (ρωk)

s eρωkx

[
1 + 0

(
1
ρ

)]
, k = 1, 4, s = 0, 3, (1.3)

where ωk, k = 1, 4, are fourth order distinct roots from 1.
Using relation (1.3) and taking into account boundary conditions (0.2) we get

y (x, λ) = sin ρx− cos ρx− e−ρx + (sin ρl − cos ρl) eρ(x−l) + 0
(

1
ρ

)
, (1.4)

Ty (x, λ) = ρ3

[
− cos ρx− sin ρx + e−ρx + (sin ρl − cos ρl) eρ(x−l) + 0

(
1
ρ

)]
. (1.5)

From (1.4) and (1.5) we find

Ty (l, λ)
y (l.λ)

= ρ3 cos ρl

cos ρl − sin ρl

(
1 + 0

(
1
ρ

))
. (1.6)

Assuming ρ = 4
√

λ in (1.6), we get (1.2).
Lemma 1.3 is proved.
By property 1 (see [14; §4]) and lemma 1.2 for δ ∈ (0, π/2) the relations

µ1

(π

2

)
< µ1 (δ) < µ1 (0) < µ2

(π

2

)
< µ2 (δ) < µ2 (0) < ... (1.7)

are true.
Lemma 1.4. The expansion

F (λ) = F (0) +
∞∑

n=1

λcn

µn (0) (λ− µn (0))
, λ ∈ D, (1.8)

hods; where cn, n ∈ N, are some negative numbers.
Proof. It is known (see [16; ch.6; §5]) that the meromorphic function F (λ) with

simple poles µn (0) allows the representation

F (λ) = G (λ) +
∞∑

n=1

(
λ

µn (0)

)sn cn

λ− µn (0)
, (1.9)
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where G (λ) is an entire function,

cn = res
λ=µn(0)

Ty (l, λ)
y (l, λ)

=
Ty (l, µn (0))
∂

∂λ
y (l, µn (0))

, (1.10)

and integers sn, n = 1, 2, ..., are chosen so that series (1.9) be uniformly convergent
in any finite circle (after truncation of terms having poles in this circle).

By lemma 1.2 we have: y (l, λ) Ty (l, λ) < 0 for λ ∈
(
−∞, µ1

(π

2

))
, y (l, λ) Ty (l, λ)

> 0 for λ ∈
(
µ1

(π

2

)
, µ1 (0)

)
. Without loosing generality, we can assume y (l, λ) > 0

for λ ∈ (−∞, µ1). Then Ty (l, λ) < 0 for λ ∈
(
−∞, µ1

(π

2

))
, Ty (l, λ) > 0 for

λ ∈
(
µ1

(π

2

)
, µ1 (0)

)
. Since the eigenvalues µn (π/2) and µn (0), n ∈ N, are simple

zeros of functions Ty (l, λ) and y (l, λ), respectively, then by (1.7) the relations

(−1)n+1 Ty (l, µn (0)) > 0, (−1)n+1 ∂y (l, µn (0))
∂λ

< 0, n ∈ N, (1.11)

are true.
Taking into account (1.11) in (1.10) we get cn < 0. Asymptotic form (1.2) holds

outside of domains Bn (ε) =
{

λ ∈ C
∣∣∣ 4
√

λ− 4
√

µn (0)
∣∣∣ < ε

}
, where ε > 0 is some

small number. From asymptotic formula 4
√

µn (0) =
(

n +
1
4

)
π/l + 0

(
1
n

)
(see

[11, §6, formula (6.2)]) it follows that for ε <
π

4l
the domains Bn (ε) asymptotically

don’t intersect and contain only one pole µn (0) of the function F (λ). Following
corresponding reasonings (see [17, chapter VII, §2, i.4 ]) we see that outside of
domains Bn (ε) the estimation

|F (λ)| ≤ M
4
√

λ3, ( M = const > 0) , (1.12)

holds, using which in (1.10) we get

|cn| =

∣∣∣∣∣∣∣
1

2πi

∫
∂Bn(ε)

F (λ) dλ

∣∣∣∣∣∣∣ =
2
π

∣∣∣∣∣∣∣∣∣
∫

�
�
�ν− 4

√
µn(0)

�
�
�=ε

ν3F
(
ν4

)
dν

∣∣∣∣∣∣∣∣∣ ≤ M1n
6

( M1 = const > 0) .

By asymptotic formula 4
√

µn (0) =
(

n +
1
4

)
π/l+0

(
1
n

)
the series

∞∑
n=1

|cn ‖µn (0)‖|−2

converges. Then according to theorem 2 from [16, chapter 6, §5] in the formula (1.9)
we can assume sn = 1, n ∈ N.

Let Γn be sequence of the expanding circles which are not crossing domains
Bn (ε). Then according to formula (9) [18, chapter V, §13] we have
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F (λ)− F (0)−
∑

µk(0)∈int Γn

λck

µk (0) (λ− µk (0))
=

1
2πi

∫
Γn

λF (ξ)
ξ (ξ − λ)

dξ. (1.13)

By (1.12) the right side of equality (1.13) tends to zero as n →∞. Then from (1.13)
we get

F (λ) = F (0) +
∞∑

k=1

λck

µk (0) (λ− µk (0))
,

whence it follows, that G (λ) ≡ F (0).
Lemma 1.4 is proved.
From (1.8) it follows the equalities

F ′ (λ) = −
∞∑

n=1

cn

(λ− µn (0))2
, (1.14)

F ′′ (λ) = 2
∞∑

n=1

cn

(λ− µn (0))3
, (1.15)

F ′′′ (λ) = −6
∞∑

n=1

cn

(λ− µn (0))4
. (1.16)

§2. Structure of root subspace and location of eigenvalues of problem
(0.1)-(0.3) on real line (complex plane)

Lemma 2.1. Problem (0.1)-(0.3) can have at most one pair of adjoint complex
eigenvalues..

Proof. By (0.1) we have

(Ty (µ, x ))′ y (x, λ)− (Ty (x, λ))′ y (µ, x) = (µ− λ) y (x, µ) y (x, λ) .

Integrating this equality in the range from 0 to l, using the formula of integration
by parts and taking into account (0.2) we obtain

y (l, λ) Ty (l, µ)− y (l, µ) Ty (l, λ) = (µ− λ)

l∫
0

y (x, µ) y (x, λ) dx. (2.1)

Let problem (0.1)-(0.3) have two pairs of complex eigenvalues, λ, λ and µ, µ,
λ 6= µ.

Taking into account (0.3) in (2.1) we have

ay (l, µ) y (l, λ) =

l∫
0

y (x, µ) y (x, λ) dx. (2.2)
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ay (l, µ)y (l, λ) =

l∫
0

y (x, µ)y (x, λ) dx. (2.3)

Multiplying the both hand sides of equation (0.1) by the function y (x, λ) and
integrating the obtained equality in range from 0 to l, using formula of integration
by parts, and also taking into account (0.2), we get

b |y (l, λ)|2 +

l∫
0

{∣∣y′′ (x, λ)
∣∣2 + q (x)

∣∣y′ (x, λ)
∣∣2} dx =

= λ

 l∫
0

|y (x, λ)|2 dx− a |y (l, λ)|2
 . (2.4)

Since λ ∈ C\R, from (2.4) it follows the equality

l∫
0

|y (x, λ)|2 dx = a |y (l, λ)|2 . (2.5)

Similarly, we get
l∫

0

|y (x, µ)|2 dx = a |y (l, µ)|2 . (2.6)

By theorem 1.1 y (l, µ) 6= 0, y (l, λ) 6= 0 for λ, µ ∈ C\R.
Equalities (2.2), (2.3), (2.5), (2.6) can be rewrittten in the following form

l∫
0

y (x, µ)
y (l, µ)

y (x, λ)
y (l, λ)

dx = a, (2.2′)

l∫
0

y (x, µ)
y (l, µ)

y (x, λ)
y (l, λ)

dx = a, (2.3′)

l∫
0

∣∣∣∣y (x, λ)
y (l, λ)

∣∣∣∣2 dx = a, (2.5′)

l∫
0

∣∣∣∣y (x, µ)
y (l, µ)

∣∣∣∣2 dx = a, (2.6′)

Summing equalities (2.2′) and (2.3′) we obtain

2

l∫
0

y (x, λ)
y (l, λ)

Re
y (x, µ)
y (l, µ)

dx = 2a. (2.7)
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Summing (2.5′) and (2.6′) and subtracting (2.7) from the obtained equality we
find

l∫
0

{(
Re

y (x, µ)
y (l, µ)

− Re
y (x, λ)
y (l, λ)

)2

+ Im2 y (x, µ)
y (l, µ)

+

+ Im2 y (x, λ)
y (l, λ)

− 2iRe
y (x, µ)
y (l, µ)

Im
y (x, λ)
y (l, λ)

}
dx = 0,

whence it follows that Im
y (x, λ)
y (l, λ)

= 0, Im
y (x, µ)
y (l, µ)

= 0, which by (0.1) contradict the

conditions λ ∈ C\R, µ ∈ C\R.
Lemma 2.1 is proved.
Lemma 2.2. Let λ ∈ R be eigenvalue of boundary value problem (0.1)-(0.3)

and F ′ (λ) ≤ a. Then problem (0.1)-(0.3) has no complex eigenvalues.
Proof. By (1.1) we have

l∫
0

(
y (x, λ)
y (l, λ)

)2

dx ≤ a. (2.8)

If µ ∈ C\R is eigenvalue of problem (0.1)-(0.3), then equalities (2.2′), (2.3′),
(2.6′), (2.7) are hold. From (2.6′), (2.7), (2.8) we get

l∫
0

{(
Re

y (x, µ)
y (l, µ)

− y (x, λ)
y (l, λ)

)2

+ Im2 y (x, µ)
y (l, µ)

}
dx < 0, if F ′ (λ) < a,

l∫
0

{(
Re

y (x, µ)
y (l, µ)

− y (x, λ)
y (l, λ)

)2

+ Im2 y (x, µ)
y (l, µ)

}
dx = 0, if F ′ (λ) = a.

From the second relation it follows that Im
y (x, µ)
y (l, µ)

= 0, which by (0.1) contra-

dicts the condition µ ∈ C\R. The obtained contradictions prove lemma 2.2.
If µ is real eigenvalue of problem (0.1)-(0.3), then by (1.7) we have y (l, µ) 6= 0.
Lemma 2.3. Let λ1, λ2 ∈ R, λ1 6= λ2, be eigenvalues of problem (0.1)-(0.3) and

F ′ (λ1) ≤ a. Then F ′ (λ2) > a.
Proof. Let F ′ (λ2) ≤ a. By (1.1) and (2.2) we have

l∫
0

(
y (x, λ1)
y (l, λ1)

)2

dx ≤ a,

l∫
0

(
y (x, λ2)
y (l, λ2)

)2

dx ≤ a,

l∫
0

y (x, λ1)
y (l, λ1)

y (x, λ2)
y (l, λ2)

dx = a.
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Hence we get

l∫
0

{
y (x, λ1)
y (l, λ1)

− y (x, λ2)
y (l, λ2)

}2

dx < 0, if F ′ (λ1) < a or F ′ (λ2) < a,

l∫
0

{
y (x, λ1)
y (l, λ1)

− y (x, λ2)
y (l, λ2)

}2

dx = 0, if F ′ (λ1) = F ′ (λ2) = a. (2.9)

From (2.9) it follows, that
y (x, λ1)
y (l, λ1)

=
y (x, λ2)
y (l, λ2)

, x ∈ [0, l]. Therefore

y (l, λ2) y (x, λ1) = y (l, λ1) y (x, λ2) .

Since λ1 6= λ2 and y (l, λ2) 6= 0, then by (0.1) y (x, λ1) ≡ 0. The obtained contradic-
tions prove lemma 2.3.

Note, that the eigenvalues of problem (0.1)-(0.3) are the roots of the equation

G (λ) ≡ Ty (l, λ)− (aλ + b) y (l, λ) = 0. (2.10)

If µ is eigenvalue of problem (0.1)-(0.3), we have y (l, µ) 6= 0, and therefore, each
root (taking into account multiplicity) of equation (2.10) is a root of the equation

F (λ) = aλ + b. (2.11)

Lemma 2.4. Problem (0.1)-(0.3) can have at most one multiple real eigenvalue.
Multiplicities of real eigenvalues of problem (0.1)-(0.3) don’t exceed three.

Proof. Problem (0.1)-(0.3) has multiple real eigenvalue µ just in case, when
F ′ (µ) = a. Then by lemma 2.3 for remaining eigenvalues there holds F ′ (λ) > a.
Therefore, problem (0.1)-(0.3) can have only one multiple real eigenvalue.

From (1.16) we get F ′′′ (λ) > 0, ∀λ ∈ Dn, n ∈ N, whence it follows, that
multiplicity of real eigenvalue of problem (0.1)-(0.3) doesn’t exceed three.

Lemma 2.4 is proved.
Theorem 2.1. One of the statements holds:
(i) all eigenvalues of problem (0.1)-(0.3) are real, at that D1 contains alge-

braically two (either two simple, or one double) eigenvalues, and Dn, n = 2, 3, ...,
contains one simple eigenvalue;

(ii) all eigenvalues of problem (0.1)-(0.3) are real, at that D1 doesn’t contain
eigenvalues, meanwhile there exists natural number nb (nb ≥ 2) such that Dnb

contains algebraically three (either tree simple, or one simple and one double, or one
triple) eigenvalues, and Dn, n = 2, 3, ..., n 6= nb, contains one simple eigenvalue;

(iii) problem (0.1)-(0.3) has one pair adjoint complex eigenvalues, at that D1

doesn’t contain eigenvalues, and Dn, n = 2, 3, ..., contains one simple eigenvalue.
Proof. Let’s fix a number a. On the basis of lemma 1.2 the function F (λ)

increases on the interval D1. By (1.2) we have lim
λ→−∞

F (λ) = −∞, lim
λ→µ1(0)−0

F (λ) =

+∞. From (1.15) it follows that F ′′ (λ) > 0, λ ∈ D1, therefore, the function F (λ)
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is convex on the interval D1. Since F (0) < 0, in case of b > 0, equation (2.11)
has exactly two solutions λ1 ∈ (−∞, 0) and λ2 ∈ (0, µ1 (0)), at this F ′ (λ1)− a < 0
and F ′ (λ2)− a > 0. Then by Cauchy theorem there exists (a unique) point λ̃ such
that F ′

(
λ̃
)

= a. Denote ba = F ′
(
λ̃
)
− aλ̃. By virtue of convexity of the function

F (λ) in the interval D1, equation (2.11) for b > ba has two simple roots λ1 < λ2,
for b = ba has one double root λ1 = λ̃ (at this the functions y1 (x) = y (x, λ1) and

y[1] (x) =
∂y (x, λ1)

∂λ
form a chain of eigen and associated functions), and for b < ba

has no roots (see, also [12]).
By lemma 1.1 equation (2.11) has at least one solution λ∗n in the interval Dn,

n = 2, 3, ....
Let b > 0. Multiplying both sides of equation (0.1) (supposing λ = λ∗ in (0.1))

by the function y (x, λ∗n) and integrating the obtained equality in the range from 0
to l, using formula of integration by parts, and also taking into account (0.2) we get

by2 (l, λ∗n) +

l∫
0

[
y′′2 (x, λ∗n) + q (x) y′2 (x, λ∗n)

]
dx =

= λ∗n

 l∫
0

y2 (x, λ∗n) dx− ay2 (l, λ∗n)

 , (2.12)

whence it follows that

l∫
0

y2 (x, λ∗n) dx− ay2 (l, λ∗n) > 0.

Since y (l, λ∗n) 6= 0, hence we get l∫
0

y2 (x, λ∗n) dx/y2 (l, λ∗n)

− a > 0,

and according to (1.1)

d

dλ
(F (λ)− (aλ + b))

∣∣∣∣
λ=λ∗n

> 0.

Thus, the function F (λ) − (aλ + b), λ ∈ Dn, n = 2, 3, ..., possesses the value
zero steadily increasing. Therefore, equation (2.11) in the interval Dn, n = 2, 3, ...,
has a unique solution λn+1 = λ∗n.

Let b < 0 be any fixed number. By lemma 2.3 either F ′ (λ∗n) > a, n = 2, 3, ...,
or there exists nb ∈ N (nb ≥ 2) such that F ′ (λ∗nb

)
≤ a and F ′ (λ∗n) > a, n = 2, 3, ...,

n 6= nb. By (1.2) there exists sufficiently great natural number N (N > nb) such
that the inequalities

aRN + b > 0,
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|F (λ)− (aλ + 1)| > |1− b| , λ ∈ SRN
, (2.13)

are fulfilled; where RN = µN

(π

2

)
+ δ0, δ0 is sufficiently small positive number,

SRN
= {z ∈ C : |z| = RN}.

We have

∆SRN
arg (F (λ)− (aλ + b)) = ∆SRN

arg (F (λ)− (aλ + 1))+

+∆SRN
arg

(
1 +

1− b

F (λ)− (aλ + 1)

)
, (2.14)

where ∆SRN
arg f (z) =

1
i

∫
SRN

f ′ (z)
f (z)

dz (see [18, ch.IV,§10]).

By (2.13)
∣∣∣∣ 1− b

F (λ)− (aλ + 1)

∣∣∣∣ < 1, λ ∈ SRN
, therefore, the point

ω = (1− b) / (F (λ)− (aλ + 1)) doesn’t go out of circle {|ω| < 1}. Therefore vector
w = 1 + ω can’t turn around the point ω = 0, and the second summand in (2.14)
equals zero. Thus,

∆SRN
arg (F (λ)− (aλ + b)) = ∆SRN

arg (F (λ)− (aλ + 1)) . (2.15)

By the argument principle (see [18; ch.IV, §10, theorem 1]) we have

1
2π

∆SRN
arg (F (λ)− (aλ + 1)) =∑

λ
(1)
n ∈intSRN

α
(
λ(1)

n

)
−

∑
µn(0)∈intSRN

β (µn (0)) , (2.16)

where α
(
λ

(1)
n

)
and β (µn (0)) are multiplicity of zero λ

(1)
n and pole µn (0) of the

function F (λ) − (aλ + 1), respectively. Obviously, that
∑

λ
(1)
n ∈intSRN

α
(
λ

(1)
n

)
= N

and
∑

µn(0)∈intSRN

β (µn (0)) = N − 1. Then from (2.16) we obtain

1
2π

∆SRN
arg (F (λ)− (aλ + 1)) = 1. (2.17)

From (2.17) and (2.15) it follows the validity of equality

1
2π

∆SRN
arg (F (λ)− (aλ + b))) = 1.

Using argument principle again, from the last equality we get,∑
λn∈intSRN

α (λn)−
∑

µn(0)∈intSRN

β (µn (0)) = 1,

whence it follows ∑
λn∈intSRN

α (λn) = N, (2.18)
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where λn, n ∈ N, are eigenvalues of problem (0.1)-(0.3). From the above mentioned
reasonings, by (2.18) we have∑

λs∈intSRN

α (λs) = n, n = N,N + 1, ..., (2.19)

where Rn = µn

(π

2

)
+ δ0, SRn = {z ∈ C : |z| = Rn}, and therefore problem (0.1)-

(0.3) in the interval Dn for n = N , N + 1,..., has only one simple eigenvalue.
From equality (2.19) it follows, that in case ba ≤ b ≤ 0 problem (0.1)-(0.3) in

the interval Dn, n = 2, 3, ..., has one simple eigenvalue: λn+1 for ba < b ≤ 0; λn for
b = ba.

Let b < ba. Remind, that at this problem (0.1)-(0.3) has no eigenvalues in the
interval D1. Consider two cases.

Case 1. For all real eigenvalues of problem (0.1)-(0.3) the inequalities F ′ (λn) >

a, λn ∈
∞⋃

k=2

Dk are fulfilled. Then problem (0.1)-(0.3) in every interval Dk, k =

2, 3, ..., N−1, has one simple eigenvalue. (Indeed, if problem (0.1)-(0.3) in the inter-
val Dk has two different eigenvalues λ∗k < λ∗∗k , then under relations lim

λ→µk−1(0)+0
F (λ) =

−∞, lim
λ→µk−1(0)−0

F (λ) = +∞ and F ′ (λ) > 0, λ ∈ Dk, we get that F ′ (λ∗∗k ) < a

(F ′ (λ∗k) > a), which contradicts the condition F ′ (λ∗∗k ) > a). Hence, problem (0.1)-
(0.3) in the interval (0, SRn), n ≥ N , has n − 2 simple eigenvalues, and hence, by
(2.19) problem (0.1)-(0.3) in the circle SRn ⊂ C has one pair of simple complex
(adjoint) eigenvalues. In this case location of eigenvalues will be in the following
form: λ1, λ2 ∈ C, λ2 = λ1, λn ∈ Dn−1, n = 3, 4, ....

Case 2. F ′ (λ∗nb

)
≤ a, F ′ (λn) > a, λn ∈ R, λn 6= λ∗nb

. By lemma 2.2 problem
(0.1)-(0.3) has no complex eigenvalues. From above mentioned reasoning it follows
that in each interval Dn, n 6= nb, n = 2, 3, ..., problem (0.1)-(0.3) has one simple
eigenvalue λ∗n.

Let F ′ (λ∗nb

)
= a, F ′′ (λ∗nb

)
6= 0, i.e. the eigenvalue λ∗nb

be double. Then from
(2.19) it follows, that the interval Dnb

besides the eigenvalue λ∗nb
, contains one

more simple eigenvalue λ∗∗nb
, at this either λnb−1 = λ∗nb

, λnb
= λ∗∗nb

or λnb−1 = λ∗∗nb
,

λnb
= λ∗nb

. Moreover, λn ∈ Dn+1, n = 1, 2, .., nb− 2, λn ∈ Dn, n = nb + 1, nb + 2, ....
Let F ′ (λ∗nb

)
= a, F ′′ (λ∗nb

)
= 0. By (1.16) F ′′′ (λ∗nb

)
6= 0. Hence, λ∗nb

is

triple eigenvalue of problem (0.1)-(0.3), at this the functions y
(
x, λ∗nb

)
,

∂

∂λ
y

(
x, λ∗nb

)
,

1
2

∂2

∂λ2 y
(
x, λ∗nb

)
form a chain of eigen and associated functions. Then from (2.19)

it follows, that in the interval Dnb
problem (0.1)-(0.3) has unique triple eigenvalue

λnb−1 = λ∗nb
. At this λn ∈ Dn+1, n ∈ N.

Let F ′ (λ∗nb

)
< a, i.e. the eigenvalue λ∗nb

be simple. Then by (2.19) we have
that the interval Dnb

besides the eigenvalue λ∗nb
there contains two more simple

eigenvalues λ∗∗nb
and λ∗∗∗nb

. Without loosing generality, we can consider that λ∗∗nb
<

λ∗∗∗nb
. Then it is obvious that λ∗∗nb

< λ∗nb
< λ∗∗∗nb

, at this λnb−1 = λ∗∗nb
, λnb

= λ∗nb
,

λnb+1 = λ∗∗∗nb
. Moreover, λn ∈ Dn+1, n = 1, 2, .., nb − 2, λn ∈ Dn−1, n = nb + 2,
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nb + 3, ....
Theorem 2.1 is proved.

§3. Oscillation properties of eigenfunctions and asymptotic formulae
of eigenvalues and eigenfunctions of problem (0.1) - (0.3)

From theorems 3.1 [11; §3] and 2.1 it follows directly
Theorem 3.1. Let {λn}∞n=1 be sequence of eigenvalues of problem (0.1)-(0.3):

λ1 < λ2 < · · · < λn < · · · , if there holds statement (i) or (ii) of theorem 2.1;
λ1, λ2 ∈ C/R, λ2 = λ1, λ3 < λ4 < ... < λn < ..., if there holds statement (iii) of
theorem 2.1. Then eigenfunction yn (x), n ∈ N, corresponding to eigenvalue λn,
posesses the following oscillation properties:

(a) if D1 contains two simple eigenvalues λ1, λ2, then y1 (x) has no zeros in the
interval (0, l), and yn (x), n = 2, 3, ..., has n− 2 simple zeros in the interval (0, l);

(b) if D1 contains one double eigenvalue λ1, then yn (x), n = 1, 2, ..., has n− 1
simple zeros in the interval (0, l);

(c) if Dnb
contains three simple eigenvalues, thenyn (x), n = 1, 2, ...nb−1, has n

simple zeros, ynb
(x), ynb+1 (x) has nb−1 simple zeros, yn (x), n = nb +2, nb +3, ...,

has n− 2 simple zeros in the interval (0, l);
(d) if Dnb

contains one double eigenvalue, then yn (x), n = 1, 2, ...nb − 1, has n

simple zeros, ynb
(x) has nb− 1 simple zeros, yn (x), n = nb +1, ..., has n− 1 simple

zeros in the interval (0, l);
(e) if Dnb

contains one triple eigenvalue, then yn (x), n = 1, 2, ..., has n simple
zeros in the interval (0, l).

Theorem 3.2. The following asymptotic formulae

n
√

λn = (n + ν)
π

l
+ O

(
1
n

)
, (3.1)

yn (x) = sin (n + ν)
π

l
x− cos (n + ν)

π

l
x− e−(n+ν)π

l
x + O

(
1
n

)
, (3.2)

where

ν =



−3
4
, if eigenvalues of problem (0.1)-(0.3) are simple,

1
4
, if problem (0.1)-(0.3) has double eigenvalue,

5
4
, if problem (0.1)-(0.3) has triple eigenvalue.

are true.
Proof of theorem 3.2 is holded on scheme of proof of theorem 6.1 from [11] using

theorem 2.1 and 3.1.
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