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ON THE APPLICATION OF THE NET METHOD
TO THE SOLUTION OF A PROBLEM FOR A

PARABOLIC TYPE LINEAR, LOADED
DIFFERENTIAL EQUATION

Abstract

Application of the net method to the solution of a problem for a parabolic
type linear, loaded differential equation is investigated. The difference problem
approximating the initial problem is constructed, and the method of its solution
is given. The validity of the maximum principle from which the uniqueness
of the solution of the difference problem follows, is proved by fulfilling some
conditions. The comparison theorem by means of which the convergence of the
solution of the difference problem to the initial value problem is established,
is proved simultaneously. The convergence rate of the difference problem is
determined.

Problem statement. It is required to find in the closed domain
D = {0 ≤ x ≤ l, 0 ≤ t ≤ T} a continuous function u = u (x, t) satisfying the equa-
tion

∂u

∂t
= a2∂

2u

∂x2
+ bu (x, t) + b1u (x, t) + f (x, t) , 0 < x < l, 0 < t ≤ T, (1)

the boundary conditions

u (0, t) = µ1 (t) , u (l, t) = µ2 (t) , 0 ≤ t ≤ T (2)

and initial condition
u (x, 0) = φ (x) , 0 ≤ x ≤ l, (3)

where a, b, b1 are real numbers, x ∈ (0, l) is a fixed point, f (x, t), µ1 (t), µ2 (t) and
φ (x) are the known continuous functions of own arguments.

The equation (1) is a loaded differential equation of parabolic type. It should
be noted that we meet loaded differential equations is studying many phenomens of
biology [1].

1. Difference of problem and its error. In a closed domain D we introduce
a net

ωhτ = {(xj , tn) , xj = jh, tn = nτ, j = 0, 1, ..., N, n = 0, 1, ..., n0} ,

with steps h = l/N and τ = T/n0. By yn
j we denote the value of the net function y

in the node (xj , tn) of the net ωhτ . On this net we associate to the problem (1)-(3)
the difference problem

yn
t,j

= a2Λ
(
σyn

j + (1− σ) yn−1
j

)
+ b

yn
j +yn−1

j

2 + b1
yn

j0
+yn−1

j0
2 + ϕn

j ,

j = 1, 2, ..., N − 1, n = 1, 2, ..., n0,
(1.1)
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yn
0 = µ1 (tn) , yn

N = µ2 (tn) , n = 0, 1, ..., n0, (1.2)

y0
j = φ (xj) , j = 0, 1, ..., N, (1.3)

where
j0 = x/h, ϕn

j = f (xj , tn − 0, 5τ) .

Here we use the denotation accepted in [2].
Let Cm

k (D) be a class of functions having k continuous derivatives with respect
to x and m continuous derivatives with respect to t in a domain D.

The difference problem (1.1)-(1.3) has an approximation O
(
h2 + τ2

)
, if σ = 0.5,

u (x, t) ∈ C3
4 (D) and O

(
h2 + τ

)
, if σ 6= 0.5, u (x, t) ∈ C2

4 (D).

2. Solution of the difference problem. We rewrite the difference problem
(1.1)-(1.3) in the form

−a
2σ

h2
yn

j−1 +
(

1
τ

+
2a2σ

h2
− b

2

)
yn

j −
a2σ

h2
yn

j+1 −
b1
2
yn

j0
= Fn−1

j ,

j = 1, 2, ..., N − 1, n = 1, 2, ..., n0,
(2.1)

yn
0 = µ1 (tn) , yn

N = µ2 (tn) , n = 0, 1, ..., n0, (2.2)

y0
j = φ (xj) , j = 0, 1, ..., N, (2.3)

where

Fn−1
j =

a2 (1− σ)
h2

(
yn−1

j−1 − 2yn−1
j + yn−1

j+1

)
+

1
τ
yn−1

j +
b

2
yn−1

j +
b1
2
yn−1

j0
+ ϕn

j ,

j = 1, 2, ..., N − 1, n = 1, 2, ..., n0.

Let’s consider the following three-point difference problems with respect to un
j

and νn
j : (

1
τ

+
2a2σ

h2
− b

2

)
un

1 −
a2σ

h2
un

2 = Fn−1
1 +

a2σ

h2
µ1 (tn) ,

−a
2σ

h2
un

j−1 +
(

1
τ

+
2a2σ

h2
− b

2

)
un

j −
a2σ

h2
un

j+1 = Fn−1
j , j = 2, 3, ..., N − 2, (2.4)

−a
2σ

h2
un

N−2 +
(

1
τ

+
2a2σ

h2
− b

2

)
un

N−1 = Fn−1
N−1 +

a2σ

h2
µ2 (tn) ;(

1
τ

+
2a2σ

h2
− b

2

)
νn

1 −
a2σ

h2
νn

2 =
b1
2
,

−a
2σ

h2
νn

j−1 +
(

1
τ

+
2a2σ

h2
− b

2

)
νn

j −
a2σ

h2
νn

j+1 =
b1
2
, j = 2, 3, ..., N − 2, (2.5)

−a
2σ

h2
νn

N−2 +
(

1
τ

+
2a2σ

h2
− b

2

)
νn

N−1 =
b1
2
.

It should be noted that the solution of the last two difference problems may be
found, for example, by the known transfer method.

Lemma. If un
j satisfies the problem (2.4) and νn

j - the problem (2.5), the
function

yn
j = un

j + yn
j0ν

n
j , j = 1, 2, ..., N − 1, (2.6)
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satisfies the problem (2.1)-(2.2).
We note that for proving the lemma in difference equations (2.1) at first we have

to take into account the conditions (2.2) and then to substitute the expression yn
j

defined by the equality (2.6) into these equations.
Using the lemma, for each value n, beginning with the first one, we can find the

solution of the problem (2.1)-(2.3) by means of the following algorithm:
1) we find the solutions of the problems (2.4) and (2.5) by the transfer method;

2) assuming j = j0 in the equality (2.6), we find yn
j0

= un
j0
/

(
1− νn

j0

)
;

3) we find the solution of the problem (2.1)-(2.3) allowing for the found value of
yn

j0
by the equality (2.6).
Remark. For n = 1 at the right hand sides of difference equations (2.4) we

take into account the values y0
j , j = 0, 1, ..., N determined by the equality (2.3). For

n > 1 at the right hand sides of these equations the values yn−1
j , j = 0, 1, ..., N

found at the previous value of n, are taken into account.

3.Convergence of the difference problem. We rewrite the problem (1.1)-
(1.3) in the form:

a2σ

h2
yn

j−1 −
(

2a2σ

h2
+

1
τ
− b

2

)
yn

j +
a2σ

h2
yn

j+1 +
b1
2
yn

j0 +
a2 (1− σ)

h2
yn−1

j−1−

−
(

2a2 (1− σ)
h2

− 1
τ
− b

2

)
yn−1

j +
a2 (1− σ)

h2
yn−1

j+1 +
b1
2
yn−1

j0
= −ϕn

j ,

j = 1, 2, ..., N − 1, n = 1, 2, ..., n0,
(3.1)

yn
0 = µ1 (tn) , yn

N = µ2 (tn) , n = 0, 1, ..., n0, (3.2)

y0
j = φ (xj) , j = 0, 1, ..., N. (3.3)

Let a parameter σ, the coefficients b, b1 and the steps h, τ of the net ωhτ entering
into the difference equation (3.1) satisfy the conditions

0 ≤ σ ≤ 1, b1 > 0, b+ b1 ≤ 0, τ ≤ 2h2/
(
4a2 (1− σ)− bh2

)
. (3.4)

Theorem 1 (The maximum principle). Let the conditions (3.4) be fulfilled.
If ϕn

j ≤ 0
(
ϕn

j ≥ 0
)
, j = 1, 2, ..., N − 1, n = 1, 2, ..., n0, the solution yn

j of the
problem (3.1)-(3.3) differ from the constant can’t accept the greatest positive (the
greatest negative) value for j = 1, 2, ..., N − 1, n = 1, 2, ..., n0.

Proof. Let’s prove the first part of the theorem. Let ϕn
j ≤ 0, j = 1, 2, ..., N − 1,

n = 1, 2, ..., n0 and there exist a node (xm, tk), 1 ≤ m ≤ N − 1, 1 ≤ k ≤ n0 where
the solution of the problem (3.1)-(3.3) accepts the greatest positive value:

yk
m = max

ωhτ

yn
j = M > 0.

Not losing generality, we can consider that even if in one of neighboring nodes
(xm±1, tk), (xm±1, tk−1) and (xm, tk−1) the value of the net function yn

j is less than
yk

m.
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Consider the equation (3.1) for j = m and n = k. Under our assumptions we
have:

−ϕk
m =

a2σ

h2
yk

m−1 −
(

2a2σ

h2
+

1
τ
− b

2

)
yk

m +
a2σ

h2
yk

m+1 +
b1
2
yk

j0 +
a2 (1− σ)

h2
yk−1

m−1−

−
(

2a2 (1− σ)
h2

− 1
τ
− b

2

)
yk−1

m +
a2 (1− σ)

h2
yk−1

m+1 +
b1
2
yk−1

j0
< (b+ b1)M ≤ 0,

i.e. ϕk
m > 0 that contradicts the condition ϕk

m ≤ 0.
The first part of the theorem is proved. We can prove the second part of the

theorem in a similar way.
Corollary 1. Let the conditions (3.4) be fulfilled. If ϕn

j ≤ 0
(
ϕn

j ≥ 0
)
, j =

1, 2, ..., N − 1, n = 1, 2, ..., n0, the solution of the problem (3.1)-(3.3) is not positive
(not negative).

Corollary 2. Let the conditions (3.4) be fulfilled. Then the problem (3.1)-(3.3)
for ϕn

j = 0, j = 1, 2, ..., N−1, n = 1, 2, ..., n0, yn
0 = 0, yn

N = 0, n = 0, 1, ..., n0, y0
j = 0,

j = 0, 1, ..., N , has only a trivial solution yn
j = 0, j = 0, 1, ..., N , n = 0, 1, ..., n0,

and so the problem (3.1)-(3.3) is uniquely solvable for any ϕn
j , µ1 (tn), µ2 (tn) and

φ (xj).
Theorem 2 (Comparison theorem). Let yn

j be a solution of the problem
(3.1)-(3.3), ỹn

j be a solution of the problem in substituting of the function ϕn
j ,

µ1 (tn), µ2 (tn) and φ (xj), respectively for ϕ̃n
j , µ̃1 (tn), µ̃2 (tn) and φ̃ (xj) in (3.1)-

(3.3). If the conditions (3.4) are fulfilled and
∣∣∣ϕn

j

∣∣∣ ≤ ϕ̃n
j , j = 1, 2, ..., N − 1, n =

1, 2, ..., n0, |µ1 (tn)| ≤ µ̃1 (tn), |µ2 (tn)| ≤ µ̃2 (tn), n = 0, 1, ..., n0, |φ (xj)| ≤ φ̃ (xj),

j = 0, 1, ..., N , then
∣∣∣yn

j

∣∣∣ ≤ ỹn
j , j = 0, 1, ..., N , n = 0, 1, ..., n0.

Using the comparison theorem we get an estimation for solving the problem
(3.1)-(3.3). To this end we introduce the auxiliary function

wn
j = Ketn , j = 0, 1, ..., N, n = 0, 1, ..., n0, (3.5)

where K > 0 is a constant.
For wn

j , allowing for eτ − 1 = τ · eητ , 0 < η < 1, we have:

a2σ

h2
wn

j−1 −
(

2a2σ

h2
+

1
τ
− b

2

)
wn

j +
a2σ

h2
wn

j+1 +
b1
2
wn

j0 +
a2 (1− σ)

h2
wn−1

j−1−

−
(

2a2 (1− σ)
h2

− 1
τ
− b

2

)
wn−1

j +
a2 (1− σ)

h2
wn−1

j+1 +
b1
2
wn−1

j0
< −K, (3.6)

j = 1, 2, ..., N − 1, n = 1, 2, ..., n0,

wn
0 ≥ K, wn

N ≥ K, n = 0, 1, ..., n0, (3.7)

w0
j = K, j = 0, 1, ..., N. (3.8)

Let

K = max
{

max
D

|f (x, t)| , max
0≤t≤T

(|µ1 (t)| , |µ2 (t)|) , max
0≤x≤l

|φ (x)|
}
. (3.9)
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Then we compare (3.1)-(3.3) with (3.6)-(3.8) and by the comparison theorem we
get the validity of the following theorem.

Theorem 3. Let the conditions (3.4) be fulfilled. Then, for the solution of the
problem (3.1)-(3.3) it holds the estimation∣∣yn

j

∣∣ ≤ K · eT , j = 0, 1, ..., N, n = 0, 1, ..., n0, (3.10)

whereK is detemined by the equality (3.9).
Let u (xj , tn) be a value of the exact solution of the problem (1)-(3) in the node

(xj , tn) of the net ωhτ , and yn
j be a solution of the difference problem (3.1)-(3.3).

On the net ωhτ we define the net function zn
j by the equality zn

j = yn
j − u (xj , tn).

If we substitute the expression yn
j = zn

j + u (xj , tn) obtained from this equality into
(3.1)-(3.3) then for zn

j we get:

a2σ

h2
zn
j−1 −

(
2a2σ

h2
+

1
τ
− b

2

)
zn
j +

a2σ

h2
zn
j+1 +

b1
2
zn
j0 +

a2 (1− σ)
h2

zn−1
j−1−

−
(

2a2 (1− σ)
h2

− 1
τ
− b

2

)
zn−1
j +

a2 (1− σ)
h2

zn−1
j+1 +

b1
2
zn−1
j0

= −ψn
j , (3.11)

j = 1, 2, ..., N − 1, n = 1, 2, ..., n0,

zn
0 = 0, zn

N = 0, n = 0, 1, ..., n0, (3.12)

z0
j = 0, j = 0, 1, ..., N. (3.13)

where

ψn
j = a2 (σ − 0.5) τ

∂3u
(
xj , tn

)
∂x2∂t

+O
(
h2 + τ2

)
, j = 1, 2, ..., N, n = 1, 2, ..., n0

is the approximation error of the difference scheme (3.1)-(3.3) to the solution of the
equation (1).

By theorem 3, for the solution of the problem (3.11)-(3.13) we have:∣∣zn
j

∣∣ ≤ K · eT , j = 0, 1, ..., N, n = 0, 1, ..., n0,

where

K = max
1≤j≤N−1
1≤n≤n0

∣∣ψn
j

∣∣ .
Theorem 4. Let the conditions (3.4) be fulfilled. If the solution of the problem

(1)-(3) - the function u = u (x, t) satisfies the condition u ∈ C3
4 (D), then as h→ 0

and τ → 0 the solution of the differnce problem (3.1)-(3.3) converges to the solution
of the problem (1)-(3). And it holds the estimation∣∣yn

j − u (xj , tn)
∣∣ ≤ K1

(
h2 + τ2

)
if σ = 0.5∣∣yn

j − u (xj , tn)
∣∣ ≤ K2

(
h2 + τ

)
if σ 6= 0.5.

Here K1 and K2 are positive constants whose values depend on maximums of
modules on partial derivatives of the function u (x, t) with respect to t up to the
third, with respect to x up to the fourth orders in the domain D.
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