MATHEMATICS

Anar R. ABDULKARIMOV

HAUSDORFF-YOUNG TYPE THEOREM FOR UNITARY SYSTEMS WITH MEASURABLE COEFFICIENTS

Abstract

In the paper we consider unitary systems with measurable coefficients. Hausdorff-Young type theorem is obtained under definite conditions on the coefficients.

Let's consider the following unitary system of exponents

$$\left\{A\left(t\right)e^{int} - B\left(t\right)e^{-int}\right\}_{n \ge 1} \tag{1}$$

with measurable coefficients $A(t) \equiv |A(t)| e^{i\alpha(t)}$, $B(t) \equiv |B(t)| e^{i\beta(t)}$ on $[0, \pi]$. The basicity of the system (1) in L_p with measurable coefficients was earlier studied in B. T. Bilalov's paper [1].

Assume that the following conditions are fulfilled: 1) A(t); $B(t) \in L_{\infty} \equiv L_{\infty}(0, \pi)$ moreover

, () = 50 50 ())

$$\left\| |A(t)|^{\pm 1}; |B(t)|^{\pm 1} \right\|_{\infty} < +\infty;$$

2) The arguments $\alpha(t)$ and $\beta(t)$ are representable in the form

$$\alpha(t) = \alpha_1(t) + \alpha_2(t); \quad \beta(t) = \beta_1(t) + \beta_2(t),$$

where $\alpha_1(t)$, $\beta_1(t)$ are continuous; $\alpha_2(t)$, $\beta_2(t)$ are measurable parts, moreover

$$\frac{\beta_{1}(0) - \alpha_{1}(0)}{2\pi} = \frac{\beta_{1}(\pi) - \alpha_{1}(\pi)}{2\pi} \in Z;$$

 $\|\beta_2(t) - \alpha_2(t)\|_{\infty} \le \nu \pi, \quad 0 \le \nu < \min\left\{\frac{1}{p}; \ 1 - \frac{1}{p}\right\}, \quad p \in (1, +\infty) \text{ is some number.}$

Theorem. Let the coefficients A(t) and B(t) satisfy the conditions 1), 2). Then there exists an absolute constant M > 0 for which: (1

a) For $\forall f \in L_p$ it holds

$$\left\| \{f_n\}_{n \ge 1} \right\|_{l_q} \le M \cdot \|f\|_p \qquad \frac{1}{p} + \frac{1}{q} = 1;$$

where $\{f_n\}_{n\geq 1}$ are biorthogonal coefficients of the function f(t) by the system (1); b) If the sequence $\{f_n\}_{n\geq 1}$ belongs to the space l_p then $\exists f \in L_q$, for which

$$\|f\|_q \le M \cdot \left\|\{f_n\}_{n\ge 1}\right\|_{l_1^2}$$

moreover $\{f_n\}_{n\geq 1}$ are biorthogonal coefficients of the function f(t) by the system (1).

5

6_____[A.R.Abdulkarimov]

Proof. Is carried out similar to the proof of appropriate theorem of the paper [2]. So, let all the conditions of the theorem be fulfilled. Then by the results of the paper [1] the system (1) forms a basis in L_p .

We consider a conjugation problem:

$$\begin{cases} F^{+}(t) + G(t) F^{-}(t) = g(t), |t| = 1, \\ F(\infty) = 0, \end{cases}$$

where

$$G\left(e^{i\theta}\right) = \begin{cases} B\left(\theta\right)A^{-1}\left(\theta\right), & 0 < \theta < \pi, \\ A\left(-\theta\right)B^{-1}\left(-\theta\right), & -\pi < \theta < 0, \end{cases}$$

 $g \in L_p(-\pi,\pi)$ is an arbitrary function.

As is already known, the index of the problem equals zero and $F^{+}(0) = 0$ [1]. Thus, biorthogonal coefficients $\{f_n\}_{n>1}$ of the function f(t):

$$f(t) \equiv \begin{cases} A(t) g(t), & 0 < t < \pi, \\ -B(-t) g(-t), & -\pi < t < 0, \end{cases}$$

by the system (1) are the Fourier coefficients of the function $F^+(e^{it})$ by the classic system of exponents $\{e^{int}\}_{-\infty}^{+\infty}$. Given the case a). Obviously

$$\left\| \{f_n\}_{n\geq 1} \right\|_{l_q} \leq M \cdot \left\| F^+ \left(e^{it} \right) \right\|_p.$$

Again, using Sokhotskiy-Plemel relation and considering that appropriate singular integral acts boundedly from L_p to L_p , we have:

$$\|F^+(e^{it})\|_p \le M_1 \|g(t)\|_p \le M_2 \|f(t)\|_p$$

This proves the case a).

Consider the case b). We take an arbitrary sequence $\{f_n\}_{n\geq 1} \in l_p$. Organize

$$F^+(z) = \sum_{n \ge 1} f_n z^n.$$

By the results of the paper [3] the function $F^+(z)$ belongs to the Hardy class $H_q^+\left(\frac{1}{p}+\frac{1}{q}=1\right)$ in a unit circle. Consequently, boundary value of $F^+(e^{it})$ on a unit circle belongs to the space L_q , moreover

$$F^+\left(e^{it}\right) = \sum_{n\geq 1} f_n e^{int}.$$

From similar reasonings we get that the function

$$F^{-}(z) = \sum_{n \ge 1} f_n z^{-n}.$$

belongs to the space H_q^- outside of a unit circle, and

$$F^{-}\left(e^{it}\right) = \sum_{n\geq 1} f_n e^{-int}.$$

Transactions of NAS of Azerbaijan

[Hausdorff-Young type theorem for unitary...]

belongs to L_q . Thus, the function

$$f(t) = A(t) F^{+}(e^{it}) - B(t) F^{-}(e^{it})$$

belongs to the space L_q , moreover

$$f(t) = \sum_{n \ge 1} f_n \left[A(t) e^{int} - B(t) e^{-int} \right]$$
(2)

It follows from the basicity of the system (1) in L_p that it is minimal in L_q , since $q \ge p$. Then, it follows from representation (2) that $\{f_n\}_{n\ge 1}$ is a sequence of biorthogonal coefficients of the function f(t) by the system (1). Indeed, it follows from $f \in L_q$ that $f \in L_p$. Obviously $\exists M_1 > 0$:

$$\|F^{\pm}(e^{it})\|_{q} \leq M_{1} \|\{f_{n}\}_{n\geq 1}\|_{l_{q}}$$

Thus,

$$\|f\|_{q} \leq \|A(t) F^{+}(e^{it})\|_{q} + \|B(t) F^{-}(e^{it})\|_{q} \leq \\ \leq \|A(t)\|_{\infty} \|F^{+}(e^{it})\|_{q} + \|B(t)\|_{\infty} \|F^{-}(e^{it})\|_{q} \leq \\ \leq M_{1} (\|A(t)\|_{\infty} + \|B(t)\|_{\infty}) \|\{f_{n}\}_{n \geq 1}\|_{l_{p}} = M \|\{f_{n}\}_{n \geq 1}\|_{l_{p}}$$

Clearly, the constant M is independent of the sequence $\{f_n\}_{n\geq 1}$.

The theorem is proved.

We obtain many interesting corollaries from this theorem. We give some of them. Having taken in (1) $A(t) \equiv e^{i\gamma(t)}$; $B(t) \equiv e^{-i\gamma(t)}$ we get the following.

Corollary 1. Let
$$\gamma(t) \in L_{\infty}^{R}$$
 and $\|\gamma(t)\|_{\infty} \leq \frac{\nu}{2}\pi$; $\nu < \min\left\{\frac{1}{p}; 1-\frac{1}{p}\right\}$, $p \in (1,2]$ be some number. Then for a system of sines

$$\{\sin\left(nt+\gamma\left(t\right)\right)\}_{n>1}$$

the Hausdorff-Young type statements are true, i.e. $\exists M > 0$, for which a) for $\forall f \in L_p$ it holds

$$\left\| \{f_n\}_{n\geq 1} \right\|_{l_q} \le M \cdot \|f\|_p \qquad \frac{1}{p} + \frac{1}{q} = 1;$$

where $\{f_n\}_{n\geq 1}$ are biorthogonal coefficients of the function f by the system (3); b) Let $\{f_n\}_{n\geq 1} \in l_p$. Then $\exists f \in L_q$ for which

$$\|f\|_q \le M \cdot \left\|\{f_n\}_{n \ge 1}\right\|_{l_p}$$

moreover $\{f_n\}_{n\geq 1}$ are biorthogonal coefficients of the function f by the system (3).

In a similar way, having taken $A(t) \equiv e^{i\gamma(t)}$; $B(t) \equiv e^{-i(\gamma(t)+\pi)}$ we arrive at the following conclusion.

Corollary 2. Let $\gamma(t) \in L_{\infty}^{R}$ and $||2\gamma(t) \pm \pi||_{\infty} \leq \nu\pi; \nu < \min\left\{\frac{1}{p}; 1 - \frac{1}{p}\right\}, p \in (1, 2]$ be some number. Then by a system of cosines

$$\{\cos\left(nt + \gamma\left(t\right)\right)\}_{n \ge 1}$$

7

(3)

Transactions of NAS of Azerbaijan

[A.R.Abdulkarimov]

the Hausdorff-Young type statements are true.

Corollary 3. Let $\gamma(t) \in L_{\infty}^{R}$ and $\|\gamma(t)\|_{\infty} \leq \frac{\nu}{2}\pi$; $\nu < \min\left\{\frac{1}{p}; 1-\frac{1}{p}\right\}$, $p \in (1,2]$ be some number. Then for a system of cosines

$$1 \cup \{\cos\left(nt + \gamma\left(t\right)\right)\}_{n \ge 1}$$

the statements of Corollary 2 hold.

The author expresses his deep gratitude to doctor of physico-mathematical sciences B. T. Bilalov for the problem statement and his deep attention to the paper.

References

[1]. Bilalov B.T. Completeness and basicity of some special systems of functions. Abstract of thesis of ph D. M. MGU, 1988, 13p. (Russian).

[2]. Bilalov B.T. Karakash M. Kh. Hausdorff-Young type inequalities for a system of exponents. // Trans. sci. Azer., 2004, v.XXIV, No4, pp.33-36.

[3]. Privalov I.I. Boundary properties of analytic functions. M. L. Gostechizdat, 1950.

Anar R. Abdulkarimov

Institute of Mathematics and Mechanics of NAS of Azerbaijan. 9, F. Agayev str., AZ1141, Baku, Azerbaijan. Tel.: (99412) 439 47 20 (off.)

Received March 16, 2007; Revised July 11, 2007

8___