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MATHEMATICS

Anar R. ABDULKARIMOV

HAUSDORFF-YOUNG TYPE THEOREM FOR
UNITARY SYSTEMS WITH MEASURABLE

COEFFICIENTS

Abstract

In the paper we consider unitary systems with measurable coefficients. Hausdorff-
Young type theorem is obtained under definite conditions on the coefficients.

Let’s consider the following unitary system of exponents{
A (t) eint −B (t) e−int

}
n≥1

(1)

with measurable coefficients A (t) ≡ |A (t)| eiα(t), B (t) ≡ |B (t)| eiβ(t) on [0, π] . The
basicity of the system (1) in Lp with measurable coefficients was earlier studied in
B. T. Bilalov’s paper [1] .

Assume that the following conditions are fulfilled:
1) A (t) ; B (t) ∈ L∞ ≡ L∞ (0, π) moreover∥∥∥|A (t)|±1 ; |B (t)|±1

∥∥∥
∞

< +∞;

2) The arguments α (t) and β (t) are representable in the form

α (t) = α1 (t) + α2 (t) ; β (t) = β1 (t) + β2 (t) ,

where α1 (t) , β1 (t) are continuous; α2 (t) , β2 (t) are measurable parts, moreover

β1 (0)− α1 (0)
2π

=
β1 (π)− α1 (π)

2π
∈ Z;

‖β2 (t)− α2 (t)‖∞ ≤ νπ, 0 ≤ ν < min
{

1
p
; 1− 1

p

}
, p ∈ (1,+∞) is some number.

Theorem. Let the coefficients A (t) and B (t) satisfy the conditions 1), 2).
Then there exists an absolute constant M > 0 for which: (1 < p ≤ 2)

a) For ∀f ∈ Lp it holds∥∥∥{fn}n≥1

∥∥∥
lq
≤ M · ‖f‖p

1
p

+
1
q

= 1;

where {fn}n≥1 are biorthogonal coefficients of the function f (t) by the system (1) ;
b) If the sequence {fn}n≥1 belongs to the space lp then ∃f ∈ Lq , for which

‖f‖q ≤ M ·
∥∥∥{fn}n≥1

∥∥∥
lp

moreover {fn}n≥1 are biorthogonal coefficients of the function f (t) by the system
(1) .
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Proof. Is carried out similar to the proof of appropriate theorem of the paper
[2] . So, let all the conditions of the theorem be fulfilled. Then by the results of the
paper [1] the system (1) forms a basis in Lp.

We consider a conjugation problem:{
F+ (t) + G (t) F− (t) = g (t) , |t| = 1,
F (∞) = 0,

where

G
(
eiθ

)
=

{
B (θ) A−1 (θ) , 0 < θ < π,
A (−θ) B−1 (−θ) , −π < θ < 0,

g ∈ Lp (−π, π) is an arbitrary function.
As is already known, the index of the problem equals zero and F+ (0) = 0 [1] .

Thus, biorthogonal coefficients {fn}n≥1 of the function f (t) :

f (t) ≡
{

A (t) g (t) , 0 < t < π,
−B (−t) g (−t) , −π < t < 0,

by the system (1) are the Fourier coefficients of the function F+
(
eit

)
by the classic

system of exponents
{
eint

}+∞
−∞. Given the case a). Obviously∥∥∥{fn}n≥1

∥∥∥
lq
≤ M ·

∥∥F+
(
eit

)∥∥
p
.

Again, using Sokhotskiy-Plemel relation and considering that appropriate singular
integral acts boundedly from Lp to Lp, we have:∥∥F+

(
eit

)∥∥
p
≤ M1 ‖g (t)‖p ≤ M2 ‖f (t)‖p .

This proves the case a).
Consider the case b). We take an arbitrary sequence {fn}n≥1 ∈ lp. Organize

F+ (z) =
∑
n≥1

fnzn.

By the results of the paper [3] the function F+ (z) belongs to the Hardy class H+
q(

1
p

+
1
q

= 1
)

in a unit circle. Consequently, boundary value of F+
(
eit

)
on a unit

circle belongs to the space Lq, moreover

F+
(
eit

)
=

∑
n≥1

fneint.

From similar reasonings we get that the function

F− (z) =
∑
n≥1

fnz−n.

belongs to the space H−
q outside of a unit circle, and

F−
(
eit

)
=

∑
n≥1

fne−int.
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belongs to Lq. Thus, the function

f (t) = A (t) F+
(
eit

)
−B (t) F−

(
eit

)
belongs to the space Lq, moreover

f (t) =
∑
n≥1

fn

[
A (t) eint −B (t) e−int

]
(2)

It follows from the basicity of the system (1) in Lp that it is minimal in Lq, since q ≥
p. Then, it follows from representation (2) that {fn}n≥1 is a sequence of biorthogonal
coefficients of the function f (t) by the system (1) . Indeed, it follows from f ∈ Lq

that f ∈ Lp. Obviously ∃M1 > 0 :∥∥F±
(
eit

)∥∥
q
≤ M1

∥∥∥{fn}n≥1

∥∥∥
lq

.

Thus,
‖f‖q ≤

∥∥A (t) F+
(
eit

)∥∥
q
+

∥∥B (t) F−
(
eit

)∥∥
q
≤

≤ ‖A (t)‖∞
∥∥F+

(
eit

)∥∥
q
+ ‖B (t)‖∞

∥∥F−
(
eit

)∥∥
q
≤

≤ M1 (‖A (t)‖∞ + ‖B (t)‖∞)
∥∥∥{fn}n≥1

∥∥∥
lp

= M
∥∥∥{fn}n≥1

∥∥∥
lp

.

Clearly, the constant M is independent of the sequence {fn}n≥1 .
The theorem is proved.
We obtain many interesting corollaries from this theorem. We give some of them.
Having taken in (1) A (t) ≡ eiγ(t); B (t) ≡ e−iγ(t) we get the following.

Corollary 1. Let γ (t) ∈ LR
∞ and ‖γ (t)‖∞ ≤ ν

2
π ; ν < min

{
1
p
; 1− 1

p

}
,

p ∈ (1, 2] be some number. Then for a system of sines

{sin (nt + γ (t))}n≥1 (3)

the Hausdorff-Young type statements are true, i.e. ∃M > 0, for which
a) for ∀f ∈ Lp it holds∥∥∥{fn}n≥1

∥∥∥
lq
≤ M · ‖f‖p

1
p

+
1
q

= 1;

where {fn}n≥1 are biorthogonal coefficients of the function f by the system (3) ;
b) Let {fn}n≥1 ∈ lp. Then ∃f ∈ Lq for which

‖f‖q ≤ M ·
∥∥∥{fn}n≥1

∥∥∥
lp

moreover {fn}n≥1 are biorthogonal coefficients of the function f by the system (3) .

In a similar way, having taken A (t) ≡ eiγ(t); B (t) ≡ e−i(γ(t)+π) we arrive at the
following conclusion.

Corollary 2. Let γ (t) ∈ LR
∞ and ‖2γ (t)± π‖∞ ≤ νπ; ν < min

{
1
p
; 1− 1

p

}
,

p ∈ (1, 2] be some number. Then by a system of cosines

{cos (nt + γ (t))}n≥1
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the Hausdorff-Young type statements are true.

Corollary 3. Let γ (t) ∈ LR
∞ and ‖γ (t)‖∞ ≤ ν

2
π ; ν < min

{
1
p
; 1− 1

p

}
,

p ∈ (1, 2] be some number. Then for a system of cosines

1 ∪ {cos (nt + γ (t))}n≥1

the statements of Corollary 2 hold.
The author expresses his deep gratitude to doctor of physico-mathematical sci-

ences B. T. Bilalov for the problem statement and his deep attention to the paper.
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