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NONLINEAR LONG WAVES IN DISPERSIVE

LIQUID ENCLOSED IN VISCO-ELASTIC TUBE

Abstract

In the paper we theoretically study wave flow of dispersive weakly compress-
ible liquid in semi-infinite thin-shelled visco-elastic tube. Using diffusion ap-
proximation, inertia effect of relative motion of phases is neglected and mixture
velocity is given on the whole. Dispersibility is taken into account by means
of ”correction” of dynamic viscosity coefficient and mixture density. Evolution
equation describing non-linear waves propagation in dispersible liquid allowing
for tube reaction, is derived. We consider principal regularities following from
numerical integration of Korteweg-de Vries-Burgers (KdVB) modified equation
by means of the finite difference method.

Dispersible liquid is a mixture of solid particles, liquid drops or bubbles (discrete
phase) distributed in liquid (continuous carrier phase) [1].

Investigations of dynamics of dispersible liquid cover wide fields of science and
engineering and are connected with solution of fundamental problems. Moreover,
non-linear wave processes are modelled in cardio-viscular system [2,3]. In the paper
[4] pulsating flow of viscous incompressible liquid in visco-elastic tube is considered.

1. Let’s consider wave flow of dispersible liquid in annular semi-infinite visco-
elastic tube. It is assumed that a tube is rigidly fastened in environment so that there
is no shift in axial direction along X. Accept the following assumptions: 1) strain of
the tube is determined by the change of its radius R (X, t); 2) shift of a tube wall ζ

and its thickness h is assumed to be small in comparison with equilibrium radius R0,
typical lenghs of waves are significantly greater than R0; 3) density of tube wall is
constant and dispersible liquid is weakly compressible (elastic); 4) typical velocity
of wave is greater than mean velocity of the flow; 5) hydraulic resistance in the tube
is given by Darcy-Weisbach linearized formula.

For describing dispersible liquid flow in visco-elastic axially symmetric tube of
variable thickness we use equations of continuity and motion of viscous liquid aver-
aged by cross-section of the tube [5].
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We accept rheological equation of the tube as follows [6](
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Equations (1.1)-(1.3) close state equation of barotropic dispersible liquid

ρ = ρ (p) . (1.4)

Here u is a mean axial component of velocity along the section, s = πR2 (X, t)
is a cross-section area of the tube. ρ = (1− α) ρf + ερs, α is volume concentration
of dispersion phase, ρf , ρs are true densities of liquid and dispersion phases, p (X, t)
is a mean hydradynamical pressure along the section, p0 (X), u0 = const are aver-
aged stationary pressure and velocity before perturbation, respectively, µ is dynamic
viscosity of the mixture that depending on the form of discrete particles and con-
centration of α will be given below [1,4], β is Koriolis coefficient for non-uniform
distribution of velocities, 2a = λu/4R ≈ const, λ is hydraulic resistence coefficient.
For a round tube of radius R, as is known, 2a = 8µ/ρR [5], b1 = θ1 + θ∗, b2 = θ1θ∗,(
1− ν2

)
a0 = E2, a1 = (E1 + E2) θ1 + (E2 + E∗) θ∗, a2 = θ1θ∗E2 + (E1 + E2) θ1θ∗,

θ1 = µ1/E1, θ∗ = µ∗/E∗ , E1, E2, E∗ are Young’s longitudinal elasticity modules, ν

is a Poisson ratio, µ∗ is dynamical vicosity of particles.

Fig.1. Rheological scheme of summation of elastic and viscous stresses.

Rheological model corresponding to these coefficients in shown is figure 1. Be-
sides, preservation of nonlinear summands by Oldroid in the derivatives Dl/Dtl and
in the mass and pulse balance equations allows to get evolution equation of long
nonlinear waves. Let before perturbation flow be stationary and uniform

dp0

dX
+ 2aρ0u0 = 0. (1.5)

2. When there is no damping the system of equations (1.1)-(1.4) has the solution:
f = f

(
c−1
s X − t

)
, where f is an arbitrary argument function. It is natural to sup-

pose that in the case of small damping and non-linearity the form of the function f

will slowly variable with distance from the entrance, i.e. f = f
(
ηX, c−1

s X − t
)
.

Introducing new variables [7,8]

x = ηX, τ = c−1
s X − t, η << 1, (2.1)
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and substututung them into the equation (1.1)-(1.3), we have
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Using the assumptions of the estimation [X] ∼ Cs [τ ], |∂τ | >> η |u∂/∂x|,
|∂/∂τ | >> c−1

s |u∂/∂t| we simplify the rheological equation (2.4)[
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In order to study evolution of perturbations in the approximation of long waves
of small amplitude it is convenient to look for the solution of (2.2), (2.3) and (2.5)
in the form of series by the power η [7,8]
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It follows from (2.6)
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Substituting (2.6) and (2.7) in (2.2), (2.3) and (2.5) allowing for (1.5) and equat-
ing the coefficients for η, we have relations in the first approximation(
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Condition of non-trivial solution of the system (2.8) gives dispersive relation by
which phase velocity of linear waves propagation in dispersive liquid with reaction
of the tube is found. If we take into account supposition 4, the variance relation is
simplified and the expression for the velocity takes the form

cs =

√
ha0

4R0ρ0 + c−2
f ha0

. (2.9)

Hence it follows that phase velocity cs is inversely proportional to square root of
density ρ0 = (1− α0) ρ0

f + α0ρ
0
s.

Let’s find evolution equation for describing perturbations in flowing dispersing
liquid in visco-elastic tube. After substitution of (2.6), (2.7) into (2.3)-(2.5), equating
the expressions at the same degrees of η2 we get the second approximation(
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sl+1 = (al − bla0) Γ2−l, Γ2−l = 1, 2− l ≥ 0.

According to supposition 4 the coefficients (2.11) of the system of equations
(2.10) for u0/cs << 1 are significantly simplified.

Variance relation in the first approximation corresponds to the principal deter-
mination of (2.10). Solvability condition of a system of equations in the second
approximation gives the desired nonlinear evolution equation
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A3 = −N3/ρ0cs, A2 = −N2/ρ0cs.

Introducing a new variable w = ηA1ζ1 = A1ζ and using the previous coordinate
X = x/η and also Boussinesq approximation ∂/∂x ≈ c−1

s ∂/∂τ and substituting
them into the equation (2.12) we have
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Pressure perturbations, density of dispersive liquid and flow velocity in the tube
are subjected to similar equations.

3. For ideal liquid non-linear evolution equation (2.14) passes to Korteveg-de
Vries-Burgers equation [8]
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where
Γ−1 =

h (a1 − b1a0)
bc2

sρ0

, Ω−2 =
h (a2 − b2a0)

bc2
sρ0

.

Detailed chart of numerical solutions for different pulses in the plane Ω, ΩΓ−1 is
represented in the paper [9]. It is shown that for ΩΓ−1 < 0, 4 dispersing properties
are prevalent, and for Ω > 12 the solution may contain solutions. For Ω <

√
12

typical solution is a wave packet that for Ω < 1, 4 is described by a quasilear solution.
The obtained modified equation (2.14) whose form indicates the accounting of

additional dissipation of dispersing liquid and hydraulic resistance of the tube wall
is

∂w

∂X
+ w

∂w

∂τ
+ Ω−2 ∂3w

∂τ3
+

A2w
2

A1
+ A3w = Γ−1

2

∂2w

∂τ2
, Γ−1

2 = Γ−1 +
3
2
B2. (3.2)

By comparison of separate members of (3.2) we can conclude that relaxation and
dissipation effects smooth out the wave front.

Let a profile of impute pulse has the form of Gauss distribution

w (0, τ) = 10−2e−(1/4)τ2
. (3.3)

By numerical method we research the solution of the equation (3.2) correspond-
ing to the condition (3.3) provided its sufficient smoothness and convergence to zero
with its derivatives as |τ | → ∞.

w (X,∞) = w (X,−∞) = 0, (∂w/∂τ)τ→∞ = 0. (3.3)

For numerical realization of the problem (3.2)-(3.4) we accept the following data:

ν = 4 · 10−6m2/s, ρ0 = 1 · 103kg/m3, R0 = 0, 1m, h = 0, 01m

cf = β0 = 1/3, E2 = 108n/m2, u0 = 0, 1m, g = 9, 8m/sec2,

θ1 = 10−3sec, θ∗ = 10−2sec.

Profiles of waves for different sections of the tube: X = 0, 1; 0, 4; 0, 5 are shown
in figure 2. It is seen from the figure that at the left part steepness of the profile of
front is reinforced, at the right part profile steepness decreases. Such deformation
of wave profile is connected with boundary conditions and with influence of KdV
nonlinearity. Wave amplitude essentially depends on concentration and it decreases
according increase of its values.
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Fig.2. Wave propagation along the axis X, curve 1 corresponds to
X = 0.1 m, 2. - X = 0.3 m, 3.- X = 0.5 m.
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