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TRANSIENT SH WAVES IN ELASTIC LAYER

LYING, ON ELASTIC HALF-SPACE

Abstract

Propagation of transient SH (shear horizontal) waves in an homogeneous
isotropic elastic layer, lying on elastic half-space, is studied. The waves are
created by giving horizontal concentrated tangential load on free surface of a
layer. The problem is solved by Laplace and Fourier integral transformations.
The inverse transformations are calculated by the Cagniard de Hoop method.

Introduction. Non-one dimensional problems on transient waves propagation
in deformable solids with boundaries are complicated problems of continuum me-
chanics [1,2]. The problems for elastic half-space excited by concentrated loads refer
to them. The problem on excitation of elastic half-space surface by normal concen-
trated load was considered by Lamb. Further, the Lamb problem was generalized
for the case of anisotropic, inhomogeneous and linear visco-elastic half-spaces with
using simplest models [3-6].

Recently, horizontally polarized (SH) shear harmonic elastic waves [1,2] are in-
tensively studied. Transient SH waves in elastic homogeneous isotropic half-space
were investigated in [7].

In the present paper we study two-dimensional transient problem on propaga-
tion of horizontally polarized shear wave in elastic layer lying on elastic half-space
excited by concentrated shear loads. The problem is solved by the Laplace and
Fourier integral transformations. The inverse transformations are determined by
the Cagniard-de-Hoop method. Notice that for an elastic half-space this method
was developed in the paper [7].

Problem statement. Let permutations field in an elastic layer 0 ≤ y ≤ h and
half-space y ≥ h be given in the form:

uk =
{

0, 0, wk(x, y, t)
}

(k = 1, 2, ) (1)

where the indices 1 and 2 correspond to a layer and half-space .
Considering that uk = 0, vk = 0, deformations accept the form:

ek =
∂uk

∂x
+
∂vk

∂y
+
∂wk

∂z
= 0,

ekxx =
∂uk

∂x
= 0, ekyx = 0, ekzx =

1
2
∂wk

∂x
,

ekxy =
1
2

(
∂uk

∂y
+
∂vk

∂x

)
= 0, ekyy =

∂vk

∂y
= 0, ekzy =

1
2
∂wk

∂y
,

ekzx =
1
2

(
∂uk

∂z
+
∂wk

∂x

)
=

1
2
∂wk

∂x
, ekyz =

1
2

(
∂vk

∂z
+
∂wk

∂y

)
=

1
2
∂wk

∂y
, ekzz =

∂wk

∂z
= 0.
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Stress tensor components are expressed by the relations

σk
11 = σk

12 = σk
22 = σk

33 = 0, σk
13 = µk

∂wk

∂x
, σk

23 = µk

∂wk

∂y
, k = 1,2, (2)

where µk-is shear modulus.
Allowing for (1)-(2) the motion equations
∂σk

ij

∂xj
= ρk

∂2uk
i

∂t2
uk

1 = uk,uk
2 = vk,uk

3 = wk,x1 = x,x2 = y, x3 = z (k = 1,2)

are represented in the form of hyperbolic type partial differential equations

µk∆w
k = ρk

∂2wk

∂t2
(−∞ < x <∞, y > 0, t > 0), k = 1,2, (3)

where ∆ =
∂2

∂x2
+

∂2

∂y2
is a Laplace operator.

The equation (3) is solved under the following initial and boundary conditions:

wk = 0,
∂wk

∂t
= 0 for t = 0 (−∞ < x <∞, 0 < y < h), k = 1,2, (4)

σ1
23 = −δ(x)f(t) for y = 0, (−∞ < x <∞, t > 0), (5)

w1 = w2, σ1
23 = σ2

23 for y = h (−∞ < x <∞, t ≥ 0), (6)

wk → 0 r =
√
x2 + y2 →∞, k = 1,2, (7)

where f(t) is a single-valued piece-wise smooth function vanishing for t < 0 and
varying no rapidly than exponential function as t→∞; δ(x) is a Dirac delta function.

In all sections parallel to the plane xOy the wave pattern is identical (cylin-
drical waves propagate from the source). According to that has been said we can
represent the problem in the form of laminated plane strip subjected to the action
of instantaneous concentrated load perpendicular to free surface. On the axis Ox
the permutations differ from zero, they are created by the stress σ1

13. At the given
statement of the problem the stress σ1

23 = 0 at all the points of the axis Ox(y = 0),
except the origin x = 0. As the point x = 0 it is given in the form of Diracs δ
function.

Problem solution. The problem (3)-(7) is solved with using Fourier integral
transformations in coordinate x and Laplace transformations in time t, determined
by the relations

wkF =
∞∫
−∞

wk(x,y,t)eiqxdx (Im q = 0),

wk ≡ wkL =
∞∫
0

e−ptwk(x,y,t)dt (Re p > 0).

Applying these transformations to equations (3) and allowing for the initial con-
ditions (4) we get
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µk

(
d2wkLF

dy2
− q2wkLF

)
= ρkp

2wkLF or
d2wkLF

dy2
=
(
q2 +

ρkp

µk

)
wkLF ,

whose solution will be in the form:

wkLF = Ake
−nky +Bke

nky (k = 1,2). (8)

Here nk =
√
q2 + η2

k, η
2
k = ρkp

2/µk, by the condition (7) B2 = 0. For isolating
one-valued branch of this radical, in the plane q a cut is carried out from the points
±iηk to the infinity along the rays arg q = arg ηk ± π/2 and it is accepted that

for q = 0 the equality
√
q2 + η2

k = ηk is fulfilled. Then Re
√
q2 + η2

k > 0 for
Im q = 0, Re p > 0. Substituting the solution (8) to conditions (5) and (6) the
problem is reduced to the following system of algebraic equations with respect to
integration constants A1, A2, B1:

A1 −B1 =
f

µ1n1
,

A1e
−n1h +B1e

n1h −A2e
−n2h = 0,

A1e
n1h −B1e

n1h − µ2n2

µ1n1
A2e

−n2h = 0.

(9)

Hence we get:

A1 =
f

µ1n1

1

1− µ1n1 − µ2n2

µ1n1 + µ2n2
e−2n1h

,

B1 = A1
µ1n1 − µ2n2

µ1n1 + µ2n2
e−2n1h, (10)

A2 =
f

µ1n1

1

1− µ1n1 − µ2n2

µ1n1 + µ2n2
e−2n1h

(
e−n1hµ1n1 − µ2n2

µ1n1 + µ2n2
e−n1h

)
e−n2h.

Allowing for (10), the expressions of double transformations for permutations
function will be of the form:

w1LF =
f

µ1n1

1
1− ψe2n1h

(
e−n1h + ψe−2n1h+n1y

)
, (11)

w2LF =
f

µ1n1

1
1− ψe2n1h

(
e−n1h + ψe−n1h

)
e−n2(y−h), (12)

where ψ =
µ1n1 − µ2n2

µ1n1 + µ2n2
.

We represent the function w2LF in the form:

w2LF = w1LF
∣∣∣y=he

−n2(y−h). (13)

It is seen from (13) that the function w2(x,y,t) is a solution for elastic half-
space with boundary conditions equal to the inverse transformation of the function
w1LF |y=h , coinciding with the result of the paper [7].
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Taking into account that at the right half-plane Re p > 0 the condition
∣∣e−n1h

∣∣ <
1 is fulfilled, then absolutely convergent series

w1LF =
f

µ1n1

∞∑
k=0

(
ψke−y1n1 + ψk+1e−y2n1

)
, (14)

where y1 = y + 2kh, y2 = 2(k + 1)h− y, exists and will be uniform.
The Cagniard-de Hoop method will be used for calculating the inverse transfor-

mations of the function (14).
For the function ψ independent of the parameters p and q, the inverse transfor-

mations of the function (14) may be found by direct use of the results of the paper
[7]. In the case of harmonic waves ψ is constant.

For calculating the inverse joint transformations of the function (14) we consider
the following expression

ξLF =
f(p)
µn

e−ny. (15)

Applying to (15) the Fourier inverse transformation with respect to q, we get:

ξ(x, y, p) =
1
2π

∞∫
−∞

f

µ
√
q2 + η2

e−iqx−y
√

q2+η2
dq. (16)

We can write the relation (16) as

ξ(x, y, p) =
f

2πµ

∞∫
−∞

1√
q2 + p2/c2

e−iqx−y
√

q2+p2/c2dq, (17)

where c =
√
µ/ρ is the velocity of shear wave propagation.

We calculate the Laplace inverse transformation of the function (17) with using
the Cagniard-de-Hoop method [8, 9]. The essence of the method is that integral
(17) is transformed into the integral of the form of Laplace transformation with
respect to t. To this end, at first we make change of integration variable of the form
q = −isp, and reduce the expression (17) to the form

ξ =
ifc

2πµ
∫
L

1√
1− c2s2

e−p[sx+y
√

c−2−s2
ds, (18)

Where the straight line L passes through the origin of coordinates in a com-
plex plane s with inclination to positive semi-axis (fig.1). The branches of the
radical

√
c−2 − s2 are determined so

√
c−2 − s2 = c−1 that for s = 0. More-

over, the cuts for isolating this single valued branch pass along real semi-axes
(−∞,−c−1) and (c−1,+∞).

For the integral (18) to look like the Laplace integral it is necessary to deform
the contour L to such a path L1, along which the expression sx + y

√
c−2 − s2 be

real. Assume
sx+ y

√
c−2 − s2 = t (19)

where real quantity t should be considered as a parameter changing along the inte-
gration path L1 in a complex plane s.
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Fig.1.

Solving equation (19) with respect to s we find

s =
xt± y

√
r2c−2 − t2

r2
, |t| < rc−1, r =

√
x2 + y2, x ≥ 0, (20)

s =
xt± iy

√
t2 − r2c−2

r2
, |t| > rc−1, r =

√
x2 + y2, x ≥ 0, (21)

where the radicals are assumed to be ariphmetical.
For s = 0 the expression (19) yields t = y/c. In this connection in (20) it is

necessary to take the sign ”minus” and leave the both signs in (21) in order to get
a contour described by the expression (19) provided t > 0 and x ≥ 0. In fig.1 in the
area Re s > 0 by bold-face curve we depict the contour L1 for x ≥ 0 that consists of
the segment OM and the curve N ′MN described by the expressions:

s =
xt− y

√
r2c−2 − t2

r2
,

(y
c
< t <

r

c
, x ≥ 0

)
, (22)

s =
xt± iy

√
t2 − r2c−2

r2
,

(
t >

r

c
, x ≥ 0

)
. (23)

The signs ”plus” and ”minus” in (23) belong to the curves on upper and lower
half-planes s, respectively.

As t→ +∞ having accepting in relations (22), (23) x = r cos θ, y = r sin θ (0 <
θ < π/2) we have:

s(t, r, θ) =
1
r

{
t cos θ −

√
r2c−2 − t2 sin θ (t < r/c),

t cos θ ± i
√
t2 − r2c−2 sin θ (t > r/c).

We’ll assume that r and θ are fixed. In this case s → e±iθt/r, and the curve
L1, as t → +∞ will be bounded by the asymptotes outgoing from the origin s =
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0 at the inclination angle ±θ to a real axis (fig.1). As s → ∞ the expression
p
(
sx+ y

√
c−2 − s2

)
behaves as follows:

p
(
sx+ y

√
c−2 − s2

)
=
{
| p ‖s | rei(ω+ϕ+θ) (Re s > 0),
| p ‖s | rei(ω+ϕ−θ) (Re s < 0),

where p = | p | eiω (| ω | < π/2), s = | s | eiϕ. Since

min
(
θ,− π

2
− ω

)
≤ ϕ ≤ max

(
θ,− π

2
− ω

)
(Re s < 0),

min
(
−θ,π

2
− ω

)
≤ ϕ ≤ max

(
−θ,π

2
− ω

)
(Re s > 0),

we get
− π

2
< min

(
−π

2
− θ,ω

)
≤ (ϕ− θ + ω) ≤

≤ max
(
−π

2
− θ,ω

)
<
π

2
(Re s < 0),

−π
2
< min

(π
2

+ θ,ω
)
≤ (ϕ+ θ + ω) ≤

≤ max
(π

2
+ θ,ω

)
<
π

2
(Re s > 0).

(24)

Consequently, the index of a exponent equal to −p
(
sx+ y

√
c−2 − s2

)
has a

negative real part as | s | → ∞ in the area between the curves L and L1 (fig.1).
Therefore, using the Jordan lemma [10] we can deform integration contour L in L1

passing in such order: N ′MOMN . Moreover, a segment of a real axis OM will pass
twice in opposite directions along the lower and upper banks. Then we deform the
contour L in L1, make change of variable s for t by formula (19), and get (x ≥ 0):

ξ =
−ifc
2πµ

∫
L1

Fds =
−ifc
2πµ

[ ∫
N ′MO

Fds+
∫

OMN

Fds

]
=

=
−ifc
2πµ

[
y/c∫
+∞

F
ds

dτ
dτ +

+∞∫
y/c

F
ds

dτ
dτ

]
=

f

πµ

+∞∫
y/c

Im
[

y

(sx− t)
ds

dt

]
e−ptdt. (25)

Here in the integrand expression s is expressed by the relations (22), (23). And in
the relation (23) the sign ”plus” is taken. When obtaining relation (25) it was taken
into account that the curves N ′MO and OMN are symmetric with respect to a real
axis, and the integrand function is complexly-conjugated in complexly conjugated
points s and s, respectively on OMNand N ′MO. Moreover, at these points the
function

(
sx+ y

√
c−2 − s2

)
takes real values equal to t.

We can write relation (25) for x ≥ 0, y ≥ 0 in the form:

ξ(x, y, p) =
f

πµ

∞∫
0

Im
[

y

(sx− t)
ds

dt

]
H(t− r/c)e−ptdt, (26)

where H(t−r/c) is a Heavyside unit function. Since the integral in the relation (26)
is a Laplace integral, we have

ξ(x, y, p) = f

{
1
πµ

Im
[

y

(sx− t)
ds

dt

]
H(t− r/c)

}L

.
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Then the original ξ(x, y, t) is found in the form

ξ(x, y, t) =
1
πµ

f(τ) ∗ Im
[

y

(sx− t)
ds

dt

]
H(t− r/c), (27)

where the asterisks between the functions mean their convolution

f(t) ∗ g(t) =
t∫
0

f(t− τ)g(τ)dτ .

Taking the expression of the function s(t) into account in (27) we finally get:

ξ(x, y, t) =
1
πµ

t∫
r/c

f(t− τ)dτ√
τ2 − r2/c2

. (28)

Using (27) and denoting the original of the function ψ
k by ψk(t) we determine

the original of the function (14) in the form:

w1(x, y, t) =
1
µ1π

n∑
k=0

(
ψk(t) ∗

t∫
r1/c1

f(t− τ)dτ√
τ2 − r21/c

2
1

+

+ψk+1(t) ∗
t∫

r2/c1

f(t− τ)dτ√
τ2 − r22/c

2
1

)
, c1 =

√
µ1

ρ1

. (29)

Thus, for final determination of w1(x,y,t) it is necessary to know the expression
of the original of the function:

ψ
k ≡

(
µ1n1 − µ2n2

µ1n1 + µ2n2

)k

=

(
µ1

√
q2 + p2/c21 − µ2

√
q2 + p2/c22

µ1

√
q2 + p2/c21 + µ2

√
q2 + p2/c22

)k

,

c2 =
√
µ2

ρ2

, (k = 0, 1, 2,...).

The Fourier inverse transformation ψ is written in the form

ψ =
1
2π

∞∫
−∞

e−iqxµ1

√
q2 + p2/c21 − µ2

√
q2 + p2/c22

µ1

√
q2 + p2/c21 + µ2

√
q2 + p2/c22

dq.

Considering q = −isp where p is a real number, and assuming sx = t we get

ψ(x, y, p) =
−ip
2π

∞∫
0

c−1
1 µ1

√
1− s2c21 − c−1

2 µ2

√
1− s2c22

c−1
1 µ1

√
1− s2c21 + c−1

2 µ2

√
1− s2c22

e−psxds =

= − ip

πx

∞∫
0

µ1

√
x2

c21
− t2 − µ2

√
x2

c22
− t2

µ1

√
x2

c21
− t2 + µ2

√
x2

c22
− t2

e−ptdt.
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Thus, ψ(x, y, t) will be expressed by the relation

ψ(x, y, t) =
1
πx

Im
∂

∂t

µ1

√
t2 − x2c−2

1 − µ2

√
t2 − x2c−2

2

µ1

√
t2 − x2c−2

1 + µ2

√
t2 − x2c−2

2


1
πx

∂

∂t

2µ1µ2

√
t2 − x2c−2

1

t2
(
µ2

1 − µ2
2

) −

√
x2c−2

2 − t2

x2(µ1ρ1 − µ2ρ2)

 . (30)

Notice that the functions ψk, k = 2,3,... are obtained from ψ(x,y, t) with using
the convolution of functions given by the recurrent relations

ψk(x, y, t)
t∫
0

ψk−1(x, y, t− τ)ψ1(x,y,t)dτ , k = 2, 3,... (31)

where ψ1 = ψ.

Now, on the basis of relation (13) we determine the function w2(x, y, t). To
conduct this operation, by (29) we write the function w1(x, y, t) in the form:

w1(x, h, t) =
1
µ1π

∞∑
k=0

[
ψk(t) + ψk+1(t)

]
∗

t∫
r1/c1

f(t− τ)dτ√
τ2 − r2c−2

1

. (32)

Now, calculate the inverse transformation of the function e−n2α, where α = y−h.
We denote the original of this function by β(x, y, t). Obviously,

βLF = µ
∂

∂y
ξLF for f(p) = 1.

By (28) we have:

−µξLF
∣∣∣f(p)=1 = − 1

π

1√
t2 − r2c−2

,

whence
β(x, y, t) =

1
π

∂

∂y

1√
t2 − r2c−2

= − 1
πc2

y√
(t2 − r2c−2)3

. (33)

Using (33) we define the form of the function w2 in the form

w2(x, y, t) =
∞∫
−∞

t∫
0

w1(ξ, h, τ)β(x− ξ, y − h, t− τ)dτdξ.

When obtaining this relation, it was assumed that all the met singular integrals
converge uniformly with respect to parameters and we can differentiate them in
parameter under the sign of integral.

In special case, when k = 0 and f = 1 we have:

w2LF = 2
1

µ1n1 + µ2n2
e−n1he−n2(y−h).
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Hence for w2 we get

w2 1
π

∞∫
−∞

1
µ1

√
q2 + p2/c21 + µ2

√
q2 + p2/c22

e−h
√

q2+p2/c21−(y−h)
√

q2+p2/c22dq. (34)

Following the Cagniard-de-Hoop method, allowing for q = −isp, and also intro-
ducing the denotation

h

√
c−2
1 − s2 + (y − h)

√
c−2
2 − s2 = t. (35)

we get

w2 = −f
π

∫
L

1

µ1

√
c−2
1 − s2 + µ2

√
c−2
2 − s2

∂s

∂t
e−stdt,

Whence the desired solution

w2(x,y,t) = − 1
π

Re
1

µ1

√
c−2
1 − s2 + µ2

√
c−2
2 − s2

∂s

∂t
.

is defined.
Moreover, this function expresses leading front of permutations area in a half-

space. Here s(t,y)
∂s

∂t
are determined from (35), moreover

∂s

∂t
= −

√
c−2
1 − s2

√
c−2
2 − s2

s

[
h
√
c−2
2 − s2 + (y − h)

√
c−2
1 − s2

] .

Conclusion

1) Analytic solution of a two-dimensional problem on propagation and reflection
of transient cylindrical waves in elastic layer with plane parallel surfaces lying on an
elastic half-space, is found;

2) The fields of interferential cylindrical waves in a layer and transient waves in
a half-space are determined;

3) The method of application of joint Laplace-Fourier integral transformations by
the Caniard-de-Hoop method to the problems of mathematical physics, is developed.
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