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AXISYMMETRIC LONGITUDINAL WAVE

PROPAGATION IN CIRCULAR CYLINDER

EMBEDDED WITH COMPRESSIBLE ELASTIC

MEDIUM WITH INITIAL FINITE COMPRESSING

STRAINS

Abstract

Within the scope of the piecewise homogeneous body model with the use of the
three-dimensional linearized theory of elastic wave propagation in the initially
stressed bodies the axisimmetric longitudinal wave propagation in the finite pre-
strained cylinder surrouded with the finite pre-compressed infinite elastic body is
investigated. It is assumed that the materials of the components are compressible
and the elasticity relations of those are given through the harmonic potential.
The numerical results illustrating the influence of the finite initial compressing
strains on the wave propagation velocity are presented and discussed.

1. Introduction
At present, many investigations on wave propagation in initially (residual) stressed

bodies are carried out with the use of Three-dimensional Linearized Theory of Wave
Propagation in Initially-stressed Bodies (TLTWPISB). Detailed analysis of the re-
sults of these investigations are in the monograph [1-3]. In these monographs the
principles of construction of TLTWPISB are stated, principal equations and rela-
tions of this theory are cited. A brief review of investigations of the last years is in
the papers [4-12].

Analysis of the monographs and papers mentioned above show that at present
there is no investigations on the wave propagation in fibrous pre-stressed (pre-
strained) composites. Considering this state, in the given paper we make attempt
in this direction and study propagation (dispersion) of longitudinal, axisymmetric
waves in one-directional fibrous composite made of compressible material with initial
finite strains. It is assumed that concentration of fibers in the composite is small
and the indicated composite may be modelled as an infinite elastic body containing
an infinitely-long cylinder of a circular cross section. Concrete numerical results and
their analysis are represented for the case when a finite initial strain appears because
of action of uniformly distributed normal compressing efforts at infinity. And it is
accepted that these efforts act along the cylinder (fiber).

2. Problem Statement. Principal equations and relations
Let’s consider an infinite elastic body containing an infinitely long cylinder of

a circular cross section. Assume that the materials of an infinite body and cylinder
are highelastic and compressible. In natural state, by R we denote a radius of
the indicated cylinder. We determine the state of the points of the cylinder and
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surrounding body with Lagrangian coordinates in a Cartesian system of coordinates
Oy1y2y3, and also in a cylindric system of coordinates Orθy3. Accept that the axis
Oy3 is directed along the central axis of the cylinder and at each component of the
considered body it holds a homogeneous axisymmetric (with respect to the axis Oy3)
finite initial strain. Such an initial strain may appear for example, in compressing
the body along the axis Oy3.

At initial state we determine the state of position of the points with Lagrangian
coordinates in Cartesian system of coordinates O′y′1y

′
2y

′
3 and in cylindrical system

of coordinates O′r′θ′y′3. Accept that elastic relations of the material of components
are determined through harmonic potential. We distinguish the quantities relating
to a cylinder and to an infinite body by the upper indices (2) and (1), respectively.
Moreover, the quantities relating to initial state - by an additional upper index O.
Thus, considering the above-stated one, the quantities relating to initial state may
be determined in the form

u
(k),0
m =

(
λ

(k)
m − 1

)
ym, λ

(k)
1 = λ

(k)
2 6= λ

(k)
3 , λ

(k)
m = constm,

m = 1, 2, 3; k = 1, 2,
(1)

where u
(k),0
m are permutations vector components, λ

(k)
m are elongation parameters in

the direction of the axis Oym.

According to the above-stated one and relation (1) we have

y′i = λ
(k)
i yi, r′ = λ

(k)
1 r, R′ = λ

(2)
1 R, (2)

where k = 1 for r > R (or for
√

y2
1 + y2

2 > R) and k = 2 for r < R (or for√
y2
1 + y2

2 < R).

Below, we’ll mark the quantities related with a system of coordinates O′y′1y
′
2y

′
3

or O′r′θ′y′3 by an upper prime.

So, let’s investigate propagation of axisymmetric longitudinal waves in the di-
rection of the axis O′y′3 in the above-indicated infinite body involving a finite initial
strain determined by means of (1). We carry out investigations in the scope of
a piece-wise homogeneous body model with the use of TLTWPISB in coordinates
connected with initial state. According to [3] in a cylindrical system of coordinates,
in the considered case we have the following motion equations
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and mechanical relations
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In (3) and (4) the following denotation were accepted:Q′(k)
r′r′ ,..., Q

′(k)
3r′ are disturbances

of Kirkhoff stress tensor components in a cylindrical system of coordinates; u
′(k)
r′ and

∂u
′(k)
3 are disturbances of permutation vector components; ω

′(k)
1111,..., ω

′(k)
3131 are the

constants whose values are calculated by mechanical constants and initial strains;
ρ′(k) = ρ(k)/

(
λ

(k)
1 λ

(k)
2 λ

(3)
3

)
and ρ(k) are densities of the k-th material in natural

state.
Accept that mechanical relations of materials and infinite surrounding body of

the cylinder are given through harmonic potential that have the following expression:

Φ(k) =
1
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In (5), (6) λ(k) and µ(k) are the constants of the material, ε
(k)
i (i = 1, 2, 3) are the

principal values of the Green strain tensor.
Conducting appropriate mathematical calculations stated for example in [3] we

get the following expression for λ
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We write boundary and contact conditions in the scope in which we’ll study wave
propagation
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Thus, the problem statement is exhausted by the above-mentioned ones. Notice
that when λ

(k)
1 = λ

(k)
2 = λ

(k)
3 = 1.0 (k = 1, 2) the stated statement passes to the

statement of appropriate problems of classic (linear) theory of elastodynamics for
the considered infinite body containing an infinite cylinder of a circular cross section.

3. Solution method
Substitute expression (4) into equation (3) and derive motion equations in permu-

tations. For solving these equations we use the following representation for desired
permutations [3].
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In (9) and (10) we used the following denotation
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According to the problem statement we represent the function X(n) = X(n) (r′, y′3, t)
(n = 1, 2) in the form X(n) = X
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1 (r′) cos (ky′3 − ωt) and substituting this represen-

tation into equation (10) we get the following equation for the function X
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where the constants ζ
′(n)
2,3 are determined from the following equation:
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In (13) phase velocity of wave propagation is denoted by c = ω/k. So, by equation
(13), (12) and damping condition in (8) we determine the function X
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following way
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In (15) and (16) by J0 (x), Y0 (x) we denote the first and second kind Bessel
function, respectively, of zero order, and by I0 (x) and K0 (x) we denote a Bessel
function of purely imaginary argument and Mc.Donald function, respectively, of zero
order.

So, substituting (14)-(16) into equation (9), from (4) and (8) we derive the
variance equation

det ‖αij‖ = 0, i, j = 1, 2, 3, 4, (17)

where αij are the coefficients of unknowns in algebraic equations obtained from
contact conditions (8) for the unknowns B

(1)
2 , B

(1)
3 , B

(2)
2 and B

(2)
3 that enter into

expression (14). Therewith, in general form we can represent these coefficients in
the following form:

αij = αij

(
c/c

(2)
2 , kR, µ(2)/µ1, λ(2)/µ(2), λ(1)/µ(1), λ

(2)
3 , λ
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3

)
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where c
(2)
2

√
µ(2)/ρ(2). For shortening the volume of the paper we don’t cite explicit

form of expression (18). Thus, solving equations (17) and (18) we construct dis-
persive curves c = c (kR) and study the influence of problem parameters on these
curves.

4. Numerical results and their discussion
In this section we’ll mark the quantities relating to the cylinder by the upper

index (f), the quantities relating to surrounding infinite body - by an upper index
(m). Accept that ρ(f)/ρ(m) = 1.0, λ(f)/µ(m) = 1.5 and consider a dispersive curve
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c = c (kR) and analyse influence of initial contractions, i.e. influence of parameters
λ

(f)
3 and λ

(m)
3 when λ

(f)
3 < 1.0; λ

(m)
3 < 1.0 to these curves. Assume λ
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introduce denotation λ3 = λ
(f)
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(m)
3 . Let’s consider the following two cases. In

the first case accept µ(f)/µ(m) = 5.0; in the second case accept µ(f)/µ(m) = 0.2.
Notice that construction of above-mentioned dispersive curves is conducted in the

following form. At first, for each fixed value kR we find definite number of sequential
root of equation (17) (denote these roots by
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(19)

These roots follow from equation (13) and by the expression (7) the values of
these roots depend on λ3. In obtaining numerical results the values λ3 = 1.0; 0.9
and 0.8 are considered. For these values λ3 the following denotation
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(20)

was introduced.
In the above mentioned first (second) case, i.e. in the case when µ(f)/µ(m) = 5.0

(when µ(f)/µ(m) = 0.2) for each chosen value of λ3 the inequalities c
(m)
2 < c

(m)
1 <

c
(f)
2 < c

(f)
1 (c(f)

2 < c
(f)
1 < c

(m)
2 < c

(m)
1 ) are fulfilled. And by the expression (7) the

values c
(m)
2 , c

(m)
1 , c

(f)
2 and c

(f)
1 monotonically decrease due to decrease of λ3.

With moving off the roots of the values of kR from zero, i.e. with growth of
kR, the roots of the equation (17) appear between the roots of (19) and using these
roots we construct dispersive curves c = c (R) that for the cases µ(f)/µ(m) = 5.0
(µ(f)/µ(m) = 0.2) are given in figures 1 and 2 (fig.3 and 4).

In order to illustrate more clearly the influence of initial strain on the velocity (in
quality and quantity sense) of wave propagation, in these figures the indicated curves
are constructed only for two sequential values of λ3. Moreover, in these figures the
curves drawn with dotted (solid) lines are obtained for λ3 = 1.0, 0.9 (λ3 = 0.9, 0.8),
respectively. In these figures, the velocities determined by the expression (19) are
shown with straight lines. It follows from these figures that the above-mentioned N

number of roots found for each value of kR from the solution of dispersive equation
(17) form the first N − 1, N − 2, N − 3 and N − 4 modes for the velocity c for
which the following inequalities are fulfilled: c

(m)
2 < c < c

(m)
1 (i), c

(m)
1 < c < c

(f)
2

(ii), c
(f)
2 < c < c

(f)
1 (iii) and c > c

(f)
1 (iiii) (c(f)

2 < c < c
(f)
1 (i), c

(f)
1 < c < c

(m)
2
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(ii), c
(m)
2 < c < c

(m)
1 (iii) and c > c

(m)
1 (iiii)), for the above-mentioned first (second)

case, i.e. for the case when µ(f)/µ(m) = 5.0 (µ(f)/µ(m) = 0.2).

Fig. 1.

Fig. 2.

Notice that in the figures 3 and 4 for the explicitness of illustartion, the parts of
dispersive curves corresponding to the velocity c > c

(m)
1 are not shown. Therewith

for µ(f)/µ(m) = 5.0 (µ(f)/µ(m) = 0.2) it was accepted that N = 7 (N = 5).
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Fig. 3.

Fig. 4.

So, by the above-stated one, each dispersive curve is divided into I, II, III and IV
parts for which the inequalities (i), (ii), (iii) and (iiii) are fulfilled, respectively. These
parts are separated from each other with straight lines indicating the values of c

(m)
1 ,

c
(f)
2 and c

(f)
1 (c(f)

1 , c
(m)
2 and c

(m)
1 ) for the case when µ(f)/µ(m) = 5.0 (µ(f)/µ(m) = 0.2)

obtained for the chosen λ3. Interior to each of these parts the dispersive curves
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c = c (kR) and their derivatives, i.e. dc/d (kR) are continuous. This continuity holds
at transition points between the IV and III and also III and II parts. However, in
transition points between the parts I and II only the function itself is continuous,
its derivative is discontinuous.

The obtained results certify that the propagation velocity of the considered wave
has a lower bound. And this bound equals c

(m)
2 for the case µ(f)/µ(m) = 5, and c

(f)
2

for the case when µ(f)/µ(m) = 0.2. Since the value of c
(m)
2 and also of c

(f)
2 diminishes

due to decrease of λ3, so the lower bound of the propagation velocity of symmetric
wave in the considered body decreases according to increase of initial compressing
load acting along the wave propagation. The results indicated in the figures 1-
4 certify that the indicated parts I, II, III, and IV downward shift with growth of
initial compressing load. Therewith, by the expressions (7) and (19) ”length” of these
parts also decrease. Thus, initial compressing load acting along the axisymmetric
wave propagation in the considered case calls in principal, decrease of propagation
velocity of this wave.
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