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ESTIMATION OF DIFFUSION PROCESS
PARAMETERS BY DISCRETE OBSERVATIONS

Abstract

Unknown parameters of the diffusion process are estimated by the results of
discrete observations.

We apply martingale methods for estimating the parameters based on the
approximation of likelihood function and obtain consistent and asymptotically
normal estimates of parameters.

In the paper we consider the methods for estimating unknown parameters in
discretely obseved diffusion type model. It is assumed that unknown parameters
enter into the model linearly.

In majority of cases for discrete observations there are no exact expressions for
the maximal likelihood function and the use of approximate likelihood function re-
duces to inconsistent estimates. For discretely observed diffusive processes described
by stochastic diffusive equarion we apple martingale methods for estimating the pa-
rameters based on the approximation of likelihood function. As a result we obtain
consistent and asymptotically normal estimates of parameters.

On a probability space (Ω, F, P ) we consider a diffusive process determined by
the stochastic differential equation

dXt = f (Xt; θ) dt + g (Xt) dWt , (1)

where X0 = x0, t ≥ 0, θ = (θ1, θ2, ..., θk)
T is a vector of parameters. Remind that in

the case of continuous observation instead of the equation (1) we consider a diffusive
type process with stochastic differential

dXt = (a + bXt) dt + XtdWt, t ≥ 0, X0 = x0 > 0, (∗)

where a and b are the unknown parameters and θ = (a, b)T , and Wt is a standard
Wiener process. Index T indecates transposition. It is assumed that the coefficients
of the drifts f (Xt; θ) and diffusion g (Xt) are such that the equation (1) has a unique
solution for all θ in the domain θ ⊂ Rk , moreover, the functions f (Xt; θ) and g (Xt)
are continuously differentiable with respect θ and g (Xt) is a positive function and
doesn’t depend on θ.

Our goal is to estimate an unknown vector parameter θ, by discrete observations
X0, X∆, X2∆, ..., Xn∆.

The likelihood function for the process Xt with continuous time given on the
segment [0, t] is expressed as

Lt (θ) = exp


t∫
0

f (Xs; θ)
g2 (Xs)

dXs −
1
2

t∫
0

f2 (Xs; θ)
g2 (Xs)

ds

 . (2)

This function is F -martingale that admits to get optimal estimates (see [9]).
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If the process Xt is observed at the discrete points X0, X∆, X2∆, ..., Xn∆, we’ll
approximate the function (2). To this end we’ll substitute the Lebesgue and Ito
integrals in (2) for the Riemann-Ito sum, take the upper integral sum and get the
approxomate likelihood function:

L̃n (θ) = exp

{
n∑

i=1

f (Xi; θ)
g2 (Xi)

∆Xi −
1
2

n∑
i=1

f2 (Xi; θ)
g2 (Xi)

}
.

Differentiating the logarithm of the approximate likelihood function L̃n (θ) with
respect to a vector parameter θ we get an estimator of a vector variable θ =
(θ1, θ2, ..., θk)

T :

∂ ln L̃n (θ)
∂θ

=
n∑

i=1

f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) (
Xi∆ −X(i−1)∆

)
−

−∆
n∑

i=1

f
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) · f ′θ
(
X(i−1)∆; θ

)
. (3)

Thus, the estimator is a vector of dimension k.
It a diffusion coefficient entering in (1) depends on θ, i.e. g (Xt; θ) , as is shown in

the paper [2] (pp. 33-37), when fulfilling some regularity conditions for a likelihood
function we can use the same estimator of a vector variable:

∂ ln L̃n (θ)
∂θ

=
n∑

i=1

f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆; θ

) (Xi∆ −X(i−1)∆

)
−

−∆
n∑

i=1

f
(
X(i−1)∆; θ

)
f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆; θ

) . (4)

In the same paper [2] it is established that the use of this expression for estimating
a vector parameter θ allows to get strictly consistent estimations if and only if max

1≤i≤n

|ti − ti−1| is small. In the case of equidistant observations the time interval between
the observations is determined by a fixed value of ∆ and is bounded below with
some quantity. The estimations of the vector parameter θ̂n obtained by means of
the estimator (4) become inconsistent [2] .

For solving this problem it was suggested [1] , [2] to use martingale estimation
finctions.

Let for a stochastic sequence A = (An, Fn) the elements An for each n ≥ 0
be Fn−1-measurable. Assuming F−1 = F0 we’ll write A = (An, Fn−1) and call A a
predictable sequence [6] . A stochastic sequence is said to be increasing if A0 = a0 > 0
with probability 1 and An ≥ An−1 with probability 1 [6].

Now let’s consider the D. Doub’s expansion. It is as follows [6] , [7] . Let V =
(Vn, Fn) be a sub-martingale. Then there will be found a martingale m = (mn, Fn)
and predictable increasing sequence A = (An, Fn−1) such that for each n ≥ 0 it
holds the Doub expansion

Vn = mn + An with probability 1. (5)
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Such type expansion is unique ([6] , [7]) .
It follows from the Doub’s expansion (5) that the sequence A = (An, Fn−1)

compensates the sub-matingale V = (Vn, Fn) to the martingale and is said to be a
compensator [6] , [7] .

As is shown in [2] , each coordinate of the estimator
∂ ln L̃n (θi)

∂θi
, i = 1, ..., k,

determined in (3) is a sub-martingale.
The first method of construction of martingale estimation function is to com-

pensate
∂ ln L̃n (θ)

∂θ
and obtain the martingale G̃n . Subtracting a compensator from

∂ ln L̃n (θ)
∂θ

we get a Pθ-martingale with zero mean with respect to sigma-algebra

flow Fi = σ (X∆, ..., Xi∆) , i ≥ 1.

In order to construct a compensator for
∂ ln L̃n (θ)

∂θ
we prove the following theo-

rem.
Theorem 1. Let for the stochastic differential equation

dXt = f (Xt; θ) dt + g (Xt) dWt,

(X0 = x0 > 0, t ≥ 0, θ = (θ1, θ2, ..., θk)
T is a vector of parameters) observed at the

discrete points X∆, X2∆, ..., Xn∆ from (Xt)t≥0 , the estimation function of a vector
parameter θ be determined by the relation (3) .

Then a compensator for (3) is expressed as follows:

n∑
i=1

Eθ

(
∂ ln L̃i (θ)

∂θ
− ∂ ln L̃i−1 (θ)

∂θ

∣∣∣∣∣Fi−1

)
=

=
n∑

i=1

f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) (
F
(
X(i−1)∆; θ

)
−X(i−1)∆

)
−

−∆
n∑

i=1

f
(
X(i−1)∆; θ

)
f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) , (6)

where
F
(
X(i−1)∆; θ

)
= Eθ

(
Xi∆|X(i−1)∆

)
. (7)

Proof. In order to find an expression for the compensator, we consider the
difference for i = 2, ..., n,

∂ ln L̃i (θ)
∂θ

− ∂ ln L̃i−1 (θ)
∂θ

=
f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) (
Xi∆ −X(i−1)∆

)
−

−∆
f
(
X(i−1)∆; θ

)
f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) .

Let’s find conditional mathematical expectation of the previous expression:

E0

(
∂ ln L̃i (θ)

∂θ
− ∂ ln L̃i−1 (θ)

∂θ

∣∣∣∣∣X(i−1)∆

)
=

f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) ×
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×
(
E0

(
Xi∆|X(i−1)∆

)
−X(i−1)∆

)
−∆

f
(
X(i−1)∆; θ

)
f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) .

Using the denotation (7) we transform the last expression as follows

E0

(
∂ ln L̃i (θ)

∂θ
− ∂ ln L̃i−1 (θ)

∂θ

∣∣∣∣∣X(i−1)∆

)
=

=
f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) (
F
(
X(i−1)∆; θ

)
−X(i−1)∆

)
−∆

f
(
X(i−1)∆; θ

)
f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) .

Summing the right hand sides of the last expression with respect to i = 1, ..., n , the
compensator:

An =
n∑

i=1

f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) (
F
(
X(i−1)∆; θ

)
−X(i−1)∆

)
−

−∆
f
(
X(i−1)∆; θ

)
f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) .

Statement (6) of the theorem follows from the last expression.
The theorem is proved.
Thus, subtracting from (3) the expression (6) and assuming that in (1) g (Xt; θ) =

g (Xt) (does’t depend on the parameter θ) we obtain a martingale zero mean
estimation function of the form

G̃n (θ) =
∂ ln L̃i (θ)

∂θ
−An =

n∑
i=1

f ′θ
(
X(i−1)∆; θ

)
g2
(
X(i−1)∆

) (
Xi∆ − F

(
X(i−1)∆; θ

))
. (8)

General class of zero mean Pθ martingale estimation functions of the form [2]

Gn (θ) =
n∑

i=1

gi−1

(
X(i−1)∆; θ

) (
Xi∆ − F

(
X(i−1)∆; θ

))
, (9)

is an alternative variant, where for i = 1, ..., n the function gi−1

(
X(i−1)∆; θ

)
is

Fi−1 -measurable and continuously-differentiable with respect to θ, and the function
F
(
X(i−1)∆; θ

)
is determined in (7) .

The function allowing to get optimal in asymptotic sense estimation of parame-
ters (1) interior to the class (9) [1] , [2] , is determined in the following way:

G∗
n (θ) =

n∑
i=1

F ′
θ

(
X(i−1)∆; θ

)
φ
(
X(i−1)∆; θ

) (Xi∆ − F
(
X(i−1)∆; θ

))
(10)

where

φ
(
X(i−1)∆; θ

)
= Eθ

[(
Xi∆ − F

(
X(i−1)∆; θ

))2∣∣∣X(i−1)∆

]
, i = 1, .., n. (11)

Optimality in asymptotic sense for estimation of parameters obtained on the
basis of (10) means [2] that as ∆ → 0 with probability 1 the estimation of parameters
converge to the maximal likelihood estimations.
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As it was established in [10] the function G∗
n (θ) interior the class (9) in some

sense is the nearest to the function based on ordinary unknown exact likelihood
function.

For small ∆ martigale estimation function G̃n (θ) determined in (8) is a first
order approximation with respect to ∆ of the function G∗

n (θ) determined in (10 )
[2] . This means that the function G̃n (θ) allows to get as ∆ → 0 with probability 1
estimations of parameters of the stochastic equation (1) , approximately being the
of maximal likelihood estimations.

Asymptotic properties of the estimation θ̂n obtained from the martingale esti-
mation functions (8) and (10), or by a general way-from the class of martingale
estimation functions Gn in the form of (9), are considered in [10] .

Let’s consider a diffusion process determined by a stochastic differential equa-
tion (∗) . To estimate the unknown parameters a and b by discrete observations
X0, X∆, X2∆, ..., Xn∆ from (Xn)t≥0 we use the martingale estimation function G̃n.

Comparing the equations (1) and (∗) we get the correspondence:

g (Xt, θ) = X(i−1)∆, f (Xt, θ) =
(
a + bX(i−1)∆

)
, θ = (a, b)T , (i− 1) ∆ = ti−1,

where the index T is transposition
Lemma 1. Let the diffusion process Xt be given by the equation (∗) .
Then the function

f (t) = Ea,b (Xt|X0)

is a solution of the differential equation

f ′ (t) = a + bf (t) . (12)

Proof. Let’s write the (∗) in an integral form.

Xt = X0 +

t∫
0

(a + bXs) ds +

t∫
0

XsdWs .

By the condition of X0 we have

Ea,b (Xt|X0) = Ea,b (X0|X0) +

+Ea,b

 t∫
0

(a + bXs) ds

∣∣∣∣∣∣X0

+ Ea,b

 t∫
0

XsdWs

∣∣∣∣∣∣X0

 ,

that is equivalent to

Ea,b (Xt|X0) = X0 + at + b

t∫
0

Ea,b (Xs|X0) ds,

since Ea,b

((
t∫
0

XsdWs

)∣∣∣∣X0

)
= 0. Consequently,

dEa,b (Xt|X0)
dt

= a + bEa,b (Xt|X0) .
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Notice that the function fτ (t) = Ea,b (Xt|XT ), 0 ≤ τ ≤ t satisfies the equation
(12) as well. The proof remains the same, as the expression

Ea,b

 t∫
0

XsdWs

∣∣∣∣∣∣XT

 =

T∫
0

XsdWs,

is independent of t and that is why it doesn’t influence on the derivative.
The lemma is proved.
Corollary. The function

F
(
X(i−1)∆; a, b

)
= Ea,b

(
Xi∆|X(i−1)∆

)
,

determined by the expression (7) , for the stochastic equation (∗) has the form:

F
(
X(i−1)∆; a, b

)
= X(i−1)∆ · eb∆ +

a

b

(
eb∆ − 1

)
. (13)

Proof. The solution of the linear differential equation

f ′ (t) = a + bf (t) , f (t0) = f0, t ≥ t0,

under the given initial conditions has the form

f (t) = f0e
b(t−t0) +

a

b

(
eb(t−t0) − 1

)
.

Consequently, for Ea,b (Xti |Xti−1) = f (ti) when observations are performed by
the interval ∆ = ti − ti−1 for all 1 ≤ i ≤ n we get

Ea,b (Xti |Xti−1) = Ea,b (Xti−1|Xti−1) eb∆+
a

b

(
eb∆ − 1

)
= Xti−1e

b∆+
a

b

(
eb∆ − 1

)
.

Hence the statement of the corollary (13) follows:
The corollary is proved.
Substituting (13) into (8) we get that for the equation (∗) the function G̃n (a, b)

is given by the following formula:

G̃n (a, b) =

[
n∑

i=1

1
X2

(i−1)∆

(
Xi∆ −X(i−1)∆eb∆ +

a

b

(
1− eb∆

))
,

n∑
i=1

1
X(i−1)∆

(
Xi∆ −X(i−1)∆eb∆ +

a

b

(
1− eb∆

))]T

.

Obviously, any estimation function is a vector, whose number of coordinates
equals the number of estimated parameters.

Substituting into (10) from (11) and (13) we get the estimation, function G∗
n (a, b)

for the differential stochastic equation (∗)

G∗
n (a, b) =

[
n∑

i=1

eb∆ − 1
bφ
(
X(i−1)∆; a, b

) (Xi∆ −X(i−1)∆eb∆ +
a

b

(
1− eb∆

))
,
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n∑
i=1

∆eb∆
(
X(i−1)∆ +

a

b

)
+

a

b2

(
1− eb∆

)
φ
(
X(i−1)∆; a, b

) (
Xi∆ −X(i−1)∆eb∆ +

a

b

(
1− eb∆

))T

,

where φ
(
X(i−1)∆; a, b

)
is given in (11) .

Let’s find estimates of parameters ãn and b̃n that are the solutions of a system
of equations G̃n (a, b) = 0.

Theorem 2. Let Xt, 0 ≤ t ≤ T be a random process given by the equation
(∗) .

Then the estimates of the parameters ãn and b̃n obtained on the basis of the
solution of the equation G̃n (a, b) = 0, where the function G̃n (a, b) is given in (8)
are of the form:

e
ebn∆ =

(
n∑

i=1

Xi∆

X(i−1)∆

)(
n∑

i=1

1
X2

(i−1)∆

)
−
(

n∑
i=1

1
X(i−1)∆

)(
n∑

i=1

Xi∆

X2
(i−1)∆

)

n
n∑

i=1

1
X2

(i−1)∆

−
(

n∑
i=1

1
X(i−1)∆

)2 , (14)

ãn =
b̃n

1− eebn∆

e
ebn∆

n∑
i=1

1
X(i−1)∆

−
n∑

i=1

Xi∆

X2
(i−1)∆

n∑
i=1

1
X2

(i−1)∆

. (15)

Proof. To get the equations for estimating the parameters ãn, b̃n we equate
each coordinate of the function G̃n (a, b) to zero, and get

n∑
i=1

Xi∆

X2
(i−1)∆

− eb∆
n∑

i=1

1
X(i−1)∆

+
a

b

n∑
i=1

1
X2

(i−1)∆

= 0,

n∑
i=1

Xi∆

X(i−1)∆
− neb∆ +

a

b

(
1− eb∆

) n∑
i=1

1
X(i−1)∆

= 0.

(16)

We transform the obtained system in the following way

n∑
i=1

Xi∆

X2
(i−1)∆

− eb∆
n∑

i=1

1
X(i−1)∆

= −a

b

n∑
i=1

1
X2

(i−1)∆

,

n∑
i=1

Xi∆

X(i−1)∆
− neb∆ = −a

b

(
1− eb∆

) n∑
i=1

1
X(i−1)∆

= 0.

Having divided the first equation into the second one in the obtained system, we get
an equation for the parameter b.

n∑
i=1

Xi∆

X2
(i−1)∆

− eb∆
n∑

i=1

1
X(i−1)∆

n∑
i=1

Xi∆

X(i−1)∆
− neb∆

=

n∑
i=1

1
X2

(i−1)∆
n∑

i=1

1
X(i−1)∆

.
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From the last equation we get (14) .
In order to get the estimate ãn for the parameter a, we substitute b̃n, for example,

into the first equation of the system (16) . After obvious transformations we get (15) .
The theorem is proved.
Asymptotic properties of estimates ãn and b̃n obtained from the class of martin-

gale estimation functions G̃n (a, b) are defined in theorem 3 that is reduced without
proof.

Theorem 3. Let Xt, 0 ≤ t ≤ T be random process given by the equation (1) .
Let ãn and b̃n be estimates obtained by the values of the process Xi∆ , i =

0, 1, ..., n = [T/∆] on the basis of the martingale estimation function (8) . Then, as
n →∞, ∆ → 0 with probability 1 it holds:

1) ãn → âT ,
2) b̃n → b̂T ,

where âT , b̂T are the maximal likelihood estimates obtained by continuous observa-
tions.
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