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BEHAVIOR OF SOLUTIONS OF FIRST MIXED
PROBLEM FOR NONLINEAR DIVERGENT
PARABOLIC EQUATIONS

Abstract

In the paper the questions on stabilization of solutions of the first mized
problem for nonlinear divergent parabolic equations with the lowest coefficients
are considered. Conditions that connect the coefficients of equation with the
geometry of the domain, providing the estimation of solutions are found. In this
paper we indicated the class of domains, for which the estimation dependent on
the geometry of domain is established. The upper estimation of the solutions is
obtained. The Cauchy problem is also considered.

Let Q C R™, n > 2 be an arbitrary unbounded domain, x = (x1,...,2,) be a
point of this space. In the cylindrical domain D = Q x (¢ > 0) consider the first
mixed problem for the second order nonlinear parabolic equation
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Concerning the coefficients, it is supposed, that they are measurable functions,
satisfying for almost all (¢,x) € D and all £ € R™ the conditions

ao |‘£‘2 < Qij (l‘,t, Z¢pw> gzgg < 4 ‘§|2 (4)
|b1 (l‘,t)| <m, C(ZE,t) < —¢o
b(w,t,2,p) 2 < bi (x,t) |p|* + ¢ (x,t) |p|, (5)

where ag, Ag, m, ¢y are positive constants, by (z,t),c(x,t) are continuous functions
of their arguments, b (z,t) is nonnegative function.

With respect to the initial function we’ll suppose, that ¢ (z) belongs to the space
Ly () and has the compact support, i.e. ¢ (z) =0 for all z € {|x| > Rp}.

The questions of stabilization for solutions of the first mixed problem for lin-
ear divergent equations were studied by Yu.N.Cheromnykh [1], F.Kh.Mukminov
[2], for second mixed problem by A.K.Gushin [3], [4], for the third mixed problem
in noncylindrical domain by V.I.Ushakov [5], for high order linear divergent equa-
tions by F.Kh.Mukminov, I.M. Bikkulov [6], for high order nonlinear equations by
A.F.Tedeev][7].

For example, in the A.K.Gushin paper the following result for solution of mixed
problem in the wide classes of the domain €2 has been obtained:
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where V' (r) is a volume of the intersection 2, = B, NQ, B, ={x € R": |z| <r}.

For the second mixed problem the speed of stabilization of solution decreases
during the decrease of “opening of domain 2 at the infinity”, but for the first mixed
problem the situation is opposite. Really, let the domain Q C R? contain angular
point with the opening «. Then the solution of the first mixed problem for the heat
equation with nonnegative finite initial function decreases t — oo as at ¢~ (7/a+1),

Let Q, =QNB,, B, ={z € R", |z| <r}, and denote by A (r), r > 0 the basic
frequency of the set €2,

-1

A(r) = inf /|V77|2dx /nde ,
Q.

Qr

where the lower bound is taken by all functions n € Wi (Q,). A (r) is the first eigen
value of the Direchlet problem for the Laplace operator in €2,.. A (r) is a continuous
monotone nonincreasing function.

With respect to the domain suppose that the following conditions are fulfilled

lim 72\ (1) = 0o, lim A (r) = 0. (6)
T—00 r—00
It is possible to indicate estimations of the function A (r), characterizing its be-
havior as r — oo. For example, if  is the convex unbounded domain 2 =
{r € R", x = (x1,2'), |2/| < f(x1),z1 > 0}, where f is a continuous monotone in-
creasing function, then for all r > 1 the inequality ¢ 1f =2 (r) < A (r) < cf 2 (r) is
true.

Mark that, the properties of nonlinear basic frequency were studied in V.M.Miklukov
paper [8], and many important properties for different classes of domains in G.Polea,
P.Sege paper [9].

With the function we’ll also consider the function A(r), for which the lower
bound is taken by all functions u (). Note, that u(r) and A (r) as r — oo behave
equally, namely 8- A(r—1) < pu(r) < AX(r), 8 = const > 0.

Before passing to the main result, we’ll represent some auxiliary statements.

Lemma 1. Let u(z) € Wl (Q)and g (|z|) be measurable locally bounded in €,
functions. Then the following estimation

1 elydo < [X72 ) [9uf g (ol d ™)
18 true.
The proof of the lemma follows from the A.S.Kronrod, Y.M.Landis paper [10].

The generalized solution of problem (1)-(3) in Dy = Q x (0,7) is called the
function u (¢,z) € I/V21 1 (Dyp), satisfying the integral identity

n
/utljdl‘dt + / Z aij (2,6, U, Ug) U, Ve, + (2,1, u,ug) v | dodt =0 (8)
Dr Dr 63=1

and initial condition (3) for all v (t,z) € W' (Dr).
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The space VVQ1 a (Dr) is a completion by the norm

1/2
n

Hu”Wzl’l(DT) - / (Z ‘uﬂ»‘z‘g +uf + U2> dxdt

D i=1

of the set of infinitely differentiable functions from C'*° (Dr), vanishing at the neigh-
bourhood of 992 x (0,7). The function u (¢, z) is a solution of problem (1)-(3) in
T > 0, if at all it is the solution of the same problem in Drp.

We’ll suppose, that the solution of problem (1)-(3) exists and unique. It is proved
by the standard way under some conditions on smoothness of coefficients.

Lemma 2. Let u (t,2) € W, (D) be a solution of problem (1)-(3) in D. Then
u (t,x) belongs to C ([0,00) — L2 (£2)) and for almost all ¢ > 0 and

/u2 (t,z)dr = /gOde—

Q Q

n
_2// Z ij (T, T, U, Ug) Ug Us; + b (T, T, U, uz) | dadr. (9)
0 \W=l

Proof. For proof it is sufficient to substitute to integral identity (8) the test
function v = w (t,z), T =t, and to integrate by parts the obtained expression.
Note, that from lemma 2 it follows, that the function [u? (¢, z)dz is absolutely
Q

continuous and the equality

n

d
7 u? (t,x) de = —2/ Z aij (o, ) UgpUs; + b (2, T, u,uz) u | dx (10)
0 o \w=1
is fulfilled. .
Denote Egr(t) = [ w?(t,x)dr +aof [ . |ug|*dadr, G is a constant,
Q\Qr 0Q\Qpi=1

whose estimation will be given below.
Lemma 3. Let u(t,x) € W21’1 (D7) be a solution of problem (1)-(3) in D.
Assume that u(t,z) is bounded, sup |u (t,z)| < M. With respect to coefficients

D
suppose, that conditions (4), (5) and condition

ag > % <1 + sup A2 (7")) —¢p sup A2 (r) (11)

0<r<R 0<r<R
> (12)

holds for any R > Rgy, where c1,7y, are positive constants, independent of R and t.

are fulfilled. Then the estimation

(R — Ry)?
t

ER(t) <a HSOHZQ(Q) exp <—’Y1
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Proof. Let us consider the following patch function 7, (), £ € (0,00) is con-
tinuously differentiable function such that 7, (§) =0as0<{ < R, 0<n,(§) <1
as R< &< R4nr, n () =lasR+r <& <ooforany R> Ry, r > 0 and

dny. -1
‘ & < Kr—+.

To the integral identity (8) as a test function we’ll substitute v = u (¢,z) 15 (|z]) ,
s > 2. Then we have

1 1
2/ (t,z)nidx — 2/ Sdm+// aij (T, U, Ug) Uy, ug ;. | dodT =
Q Q 7.] 1

// aij (x,1) Uz, UMy, Ty Vb (z, 7, u,up) und | dedr. (13)
4,j=1

From (13), taking into account the conditions on coefficients, we have

/ (t,x dm+2a0//|uxl|2nfqud7' < Ao//‘uxl lul
Q\QR+T
—I—m//|u$l] nydrdr — C()// (t,x) n dzdr. (14)

Estimate the conditions on the right-hand side of (14). First of all we’ll estimate the
last two integrals using lemma 1 and applying Young inequality with e = 1, then we

have
m//\uwz |u| nidxdr < //\u$1| nedxdr (15)
—co//u2 (t,x) nydxdr < co// 7 Jug, |* nidedr <
0 Q

<o sup A2 (r // g, |? nidadr. (16)

0<r<R
0 Q

netdzdr+

Nra,

Pass to estimation of the first integral in (14). For that we’ll apply the Young in-
equality ab < %az + 2%62 with ¢ = 2“700 we have taken into account, that

777‘1. kns 17471

t t t
Ao//qui]|u!nrxinﬁ_1dxd73ao//\uxi\Qnid:vdr+cl//]u2
0'Q

0 Q 0 Q

t t
< ao// ]um\QnﬁdxdT-i-cl/ / \u|2r72dxd7', (17)
0 Q

0 O\Qp

2dxdr <

My, | T
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where ¢; = A3/ay.
Taking into account estimations (15), (16), (17) in (14) and denoting ag = ag —
m —cy sup A2 (r), we have

0<r<R
t t
/ u? (t,x) da + aO/ / |t | dadr < cl/ / lul?> r~2dadr. (18)
Q\Qr+r 0 O\QRyr 0 AN\QR4r

Estimate the integral on the right-hand side of (18) using the Nurenberg-Galyardo
inequality

t t t
// ]u\2r*2dxd7'§r*2 Et// ]umi\Qdde—l—Elcg//udedT , (19)

0 Q\Qp 0 Q\Qp 0 Q\Qg
where ¢, € are positive constants. Taking into account (19) in (18), we’ll obtain
t
Ener (1) < cyr2 etER(ﬂ-+s_1j/ER(T)dT (20)
0
c3 =max {1,cp}.
Suppose, that (R — R0)2t_1 > ~, if it is true the inverse inequality, then the

required estimation (12) is obvious. Let the parameters r and ¢ satisfy the inequality
r~2te < c4. Then inequality (20) can be written in the form

t
Erir(t) <cs | etr2Eg(t) + 5_17"_2/ER (r)dr |, (21)
0
where ¢5 = czmax {1, ¢4}.
Assume in (21) € = 1,R = Ro. As Epryyr(t) < ER,(t), then Ery, (t) <
H(pH%Q(Q). Suppose, that
il - -2

where cg = 2c¢5.
In (21) assume & = (k 4+ 1)"', then we have

5 (1) < 3 tocbr it oll7, @ el (k+1) - cgtHD
Ro+(k+1)r () = €5 (k+1){(k+ 1)} k+D{k+ 1] <
< HSOH%Q(Q) 'Clg+17“_2(k+1)t(k+l)
- {(k+2)1}

So, inequality (22) is proved at any k& > 1. Let us take r = (R — Ry) /k. Then from
the Stirling formula we have (k +1)! > A\ok¥exp (—k), here )\ is some absolute
constant. Therefore inequality (22) can be rewritten in the form

(R — Rp)?
cg-t-kexp(1)| [~

ER (t) < cr @l - Ao " exp {—kln
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Now assuming k, that is equaled to the whole part of the expression
(R— RO)2 . cgl “t~lexp (—1)}, from the last inequality we’ll obtain

[(R ~ Ry)%- t_l} } .

Br(t) < s ol7, 0 exp {_CGeXp(2)

That proves estimation (12).

1
Introduce the function F' (r) =r/(A(r))2, r > 0. This function is a monotone
increasing continuous function. Denote by r (¢), t > 0 the inverse to F' (r) function.

Note, that r (¢t) /v/A (r (t)) = t, and, hence,

=A(r(#) -t =r @) VA(r ). (23)

It is possible to indicate the estimations, characterizing behavior of the func-
tions A (r), F(r) as r — oo. In particular, if Q is the convex unbounded domain
Q={zeR" x=(x1,2):|2/| < f(x1),21 >0}, where f is continuous monotone
increasing on [0, +00) function, for all 7 > 1 the inequalities

) SA(r) Sef () (24)

are true.
Conditions (6) in this case will take the form

r
lim —— = o0, lim f(r) = cc.
rﬂoof(r) r—00 ( )

And function F (r) by virtue of (24) satisfies the inequality
c*%rf (r)y<F(r)< c%rf (r), m>1.

As for any r > 0 and any 9.1 the inequality Jrf (r) < rf (9r) is true, and
consequently the inverse to rf (r) the function 7 (¢) for any ¢t > 0, ¢ > 1 satisfies
the inequality 7 (9t) < 97 (t), then for the function r (t) we have the estimations

I (1) gf(t-c—%) <r(t) gf(c%t) <eEF(t), t> F(1).

Theorem 1. Let u(t,x) € WQM (D) be a solution of problem (1)-(3) in D.
Suppose that with respect to coefficients, conditions (4), (5), and (11), and with
respect to domain, condition (6) are fulfilled, and ¢ = 0 at |z| < Ry. Then at
sufficiently large t > T

/ w? (t,z) dz < Cyexp {—72 {T:(t)] } : (25)

Q

where the constants Cy, 75 are independent of t.
Theorem 2. Let u(t,x) be bounded solution of problem (1)-(3) in the domain
D={zeR" |2|<z,0<a<(p+2)/2p+ (p—2)(n—1))}x{t >0}, where
p>2, ¢(x)=0at x| > Ry. With respect to coefficients we’ll require the fulfillment
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of conditions (4), (5), (11). Then there is a positive constant 3 = [ (n,a,p) such
that, at sufficiently large t it holds the inequality

/ u? (t,z) de < Cst™P, (26)
Q

where C3 = const > 0.
Remark 1. Let in theorem 1 the domain € have the form
Q={zeR", || <z, 0<a<1}. Then estimation (25) has the form

/U2 (t, SC) dx < CQ exp {_,y?t(lfa)/(1+a)} (27)
Q

Proof. Theorems 1 and 2 are proved similarly. Therefore let us prove one of
them. Prove theorem 2.
Denote 7 (t) = tV, where ¥ satisfies the conditions

2

1
— <Y< , 28
2 D@Dt 1)1 (28)
where p > 2.
Using definition of u (r) we have
/ u? (r,x) de < p~t (r (1)) / g, | dez. (29)
Q’I’(T) Q’I’(T)

Now taking into account lemmas 2, 3 and inequality (29) at sufficiently large ¢

we have
/u2 (t,z)dr = / u? (7, ) d + / u? (1,x) dx <
Q Qr(t) Q\Qr(t)
d [ o
< d(t) e (t,x)dx | +e(1), (30)
T
Q
2
where @ (t) = (%) pt(r(t); e(t) = caexp {—72 : TQt(t)} Integrating inequality

(30) from 0 to t/2, we’ll have

/ W2 (r,2) dz < co (tﬂ[amp/(p—mﬂnfl»]72/(p—2>) et

Qr(r)

Hence taking into account (28) we obtain (26). Theorem is proved.

Let us consider the Cauchy problem in the half-space R?fl = R"™ x {t > 0},
i.e. problem (1), (3). With respect to the initial function ¢ (z) suppose, that the
conditions

() >0, p(x) € L2 (R"), p(x) =0at |z] > Ro (31)
are fulfilled.
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Under the solution of problem (1), (3) we’ll understand the function w (¢, z) €
VV21’1 (Rﬁ“), satisfying integral identity (8) with Dy = R™ x (0,7T") at all T'> 0 and
v(t,z) e VV;’1 (R and to initial condition (3).

The existence and uniqueness of solution of problem (1), (3) under some smooth-
ness conditions follows from the known results.

Theorem 3. Let u(t,x) € VV21’1 (Rfrl) be a nonnegative and bounded solution
of problem (1), (3) in R?fl. Suppose, that with respect to the coefficients conditions
(4), (5), (11), and with respect to the initial function condition (31) are fulfilled.
Then for all t > 0 it holds the estimation

[ torde <€ (Il ) £ (32)
Rn

Proof. For solutions of problem (1), (3) lemmas 2, 3 are similarly proved with
substitution of the domain © by R™. At that equality (9) will be in the form

n
u? (t,z)dx = —2/ Z ij (T, T, U, Ug) Ug Ug; + b (2, T, u,uz) u | dz,  (33)
T o \iri—1

4
dt

and estimation (12) takes the form

(R— Ry)?
t

Er(t) <ciiexp {—73 } , VR > Ry, (34)

t

where Ep (t) = [ W (t,a)dv+aof [ |u2 |dzdr.
R"\Bgr 0R"\Bpg

By virtue of estimation (34) let prove the inequality

/ w(t,z) do < / o (z) dz, (35)

R, Ry

for almost all ¢ > 0. For this reason let us substitute the test function v (¢, z) = £ (|x|)
to integral identity (8) with Dy = R"™ x (0,t), where (i (|z]) =1 at |z] < R, 0 <
Er(lz)) <lat R<|z|< R+1, {p(lz]) =0at |z > R+ 1and £z (1), 7> 0 is

continuously differentiable and ‘dj—f‘ < K .After this substitution we’ll obtain

t t n
//utfRda?dT = —// Z QjjUg, (§R)Zi +b(z,t,u,uy) g | dedr. (36)

0 Rr 0 Rn \bI=1

Using conditions on coefficients (4), (5), conditions on the patch function {5, we’ll

obtain .
//utfRda:dT <

0 Rn
t

<enf [ @Aowmm+Zm|umi\253+(:o |u|fR> dedr.  (37)

0 Rn =1
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Applying to the first and second member of the right-hand side of inequality (37)
the Holder inequality, and to the third member first of all Holder inequality, and
then imbedding theorem W} (Bgy1\Bgr) — L2 (Bgy1\Br) we'll get

1/2

//utéRdxdT < c15t"? (mes (Bp41\Br))" / / |ug,|? dzdr ,  (38)

0 Rn 0 R™\B,

where the coefficient ¢13 depends on Ay, m, ¢g.
In inequality (38) tending R — oo and using estimation (34), we’ll obtain (35).
Now using inequality (35) and the multiplicative Nirenberg-Galyardo, inequality,
we’ll obtain

9 0
lll oy < Bt 7 gy - Nll ey < B Nt |7y gy - Ny ey (39)

where 9 =n/ (n + 2).

Let us return to (33). Estimating the right-hand side of (33), using conditions
(4), (5), applying the Holder inequality and imbedding theorem and taking into
account (39), we’ll obtain

1
)
d
p u? (t,x) dz < 2015/ lug,|? dz < —ci6 /u de | (40)
R R
where ¢16 = 2¢15 - B~ 2/9. Il HL - ﬂ))/ﬂ, and cy5 is a constant dependent on Ag, m, cg.

Integrating inequality (40) from 0 to t, we’ll obtain inequality (32).
Remark 2. The statements of theorems 1 and 2 are true for vrai maxu (z).

Really, under the conditions on coefficients of equation it is possible to obtain
the following type estimations

vraimaxu (t,z) < 017/u2 (t,z)dx. (41)

Q
Q

Although the proof of estimation (41) requires the separate consideration, but
from the reason don’t make the paper more complicated we’ll take the truth of
estimation (41). For example, this estimation can be proved similar to the paper
[11]. Then estimation (25) of theorem 1 will take the form

supu (£, 2) < Cy exp {—72 [TQ (ﬂ } (42)

Q t

and estimation (26) of theorem 2 will take the form

supu (t,z) < Cyt =, (43)
Q

So, it is possible to do such statement

Supposition 1. Under the condition of theorems 1, 2, taking into account
remark 2, estimations (42) and (43) are true.

I am highly obliged to Doctor of physical-mathematical sciences T.S.Gadjiev for
his sincere guidance and constant encouragement in the preparation of the paper.
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