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ON STRONG SOLVABILITY OF THE DIRICHLET
PROBLEM FOR SEMILINEAR ELLIPTIC
EQUATIONS WITH DISCONTINUOUS

COEFFICIENTS

Abstract

In the article the strong solvability of the Dirichlet problem for semilin-
ear elliptic equations with discontinuous coefficients is proved in Sobolev spaces
W 2

p (Ω) , p > 1.

1. Introduction. Let En − n dimensional Euclidean space of the points x =
(x1, x2, ..., xn), Ω is a bounded domain in En with the boundary ∂Ω from class C2.

Consider Ω the following Dirichlet problem in

n∑
i,j=1

aij (x) uxixj + |u|q−1 u = f (x) , x ∈ Ω, (1.1)

u|∂Ω = 0. (1.2)

Assume,that the coefficients aij (x) , i, j = 1, 2, ..., n of the operator

L =
n∑

i,j=1

aij (x)
∂2

∂xi∂xj

are measurable bounded functions satisfying the following conditions:

γ |ξ|2 ≤
n∑

i,j=1

aij (x) ξiξj ≤ γ−1 |ξ|2 ,

∀x ∈ Ω, ∀ξ ∈ En, γ ∈ (0, 1)− const,

(1.3)

ess sup
x∈Ω

n∑
i,j=1

a2
ij (x)

[
n∑

i=1

aii (x)

]2 ≤
1

n− 1
. (1.4)

The condition (1.4) is called Cordes condition.It is fulfilled to within non-singular
linear transformation,i.e. we can cover the domain Ω with finite number Ωi of the
subdomains Ωi so in every there exists coefficients of the equation satisfies condition
(1.4) in the image of subdomains Ωi.

Denote
·

W 2
p (Ω) , p > 1 by the closure of functions u ∈ C∞ (Ω)∩C

(
Ω
)
, u|∂Ω = 0

of class by norm

‖u‖W 2
p (Ω) =

∫
Ω

|u|p +
n∑

i=1

|ui|p +
n∑

i,j=1

|uij |p
 dx

1/p

.
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Here for ui, uij denote by the derivative uxi , uxixj respectively i, j = 1, ...n. Denote

p′ by a conjugate number ,i.e. 1 < p < ∞,
1
p′

+
1
p

= 1.

The notation Ci.j(...) means that the positive constant Ci.j depends only on the
content of brackets,but Ci.j(Ω) means that it depends only on smoothness Ω.

The function u (x) ∈
·

W 2
p (Ω) is called a strong solution (a.e.) of the problem

(1.1), (1.2), if it satisfies the equation (1.1) a.e. in Ω.
We observe that in the case of linear equations the questions of the strong solv-

ability of elliptic and parabolic equations with discontinuous coefficients satisfying
Cordes condition,is studied in [1-3]. Obtaining of the estimation∫

Ω

(∆u)2 dx ≤ C1.1 (n, γ, δ)
∫
Ω

Lu ·∆udx. (1.5)

playes the main role in study of linear equations.
It is clear by example (see [4, p. 48], that if coefficients of the operator L are

discontinuous and the Cordes condition is not valid,then equation Lu = f is non-

solvable in
·

W 2
p (Ω) for any p > 1.

As to the strong solvability for linear elliptic equations with continuous coeffi-

cients in
·

W 2
p (Ω) (for arbitrary p > 1) we refer to papers [4,5]. For this kind of

equations with coefficients from V MO class the questions of the strong solvability

in the
·

W 2
p (Ω) spaces for arbitrary p > 1 is considered in [6-8].

Note that,study of semilinear equations (1.1) with small non-linearity (0 < q < 1)
doesn’t require the restriction on norm of right-hand side [9].

In the case ,when the solution of problem (1.1),(1.2) (for Ω = Rn) can be written
as a non-linear integral equation

u (x) =
∫
Ω

G (x, y) |u (x)|q dy + f (x) , (1.6)

where G (x, y) = |x− y|α−n (0 < α < n) is Riesz kernel ,the most general criterion
of solvability of non-linear integral equations (1.6) in terms of non-linear capacity
are considered in works [10-12]. If the operator L has not sufficient smooth co-
efficients,then the cited results cannot be applied to the problem (1.1), (1.2) for
non-linear integral equations. Conserning it we note that on the case of semilin-
ear equation with discontinuous coefficients and with linear elliptic operator in the
principal part has not been studied.

The aim of the present article is to prove the following :

1) the strong solvability of the Dirichlet problem (1.1),(1.2) in the
·

W 2
2 (Ω) spaces,

when the coefficients are discontinuous and satisfy the Cordes condition, and certain
conditions are imposed on f (x) ∈ L2 (Ω) and q.

2) the strong solvability of the Dirichlet problem (1.1),(1.2) in the
·

W 2
p (Ω),

1 < p < ∞ spaces in the case when coefficients are continuous and f (x) ∈ Lp (Ω)
satisfies certain conditions.

2. Equations with discontinuous coefficients
Theorem 2.1. Let n > 4, 1 < q <

n

n− 4
and relative to the coefficients of

the operator L the conditions (1.3), (1.4) be satisfied, ∂Ω ∈ C2. Then for any
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f (x) ∈ L2 (Ω) satisfying the condition

‖f‖L2(Ω) ≤ C2.1 (n, γ, q, δ, Ω) (mesnΩ)
−n+(n−4)q

2n(q−1) .

the Dirichlet problem (1.1), (1.2) has at least one solution from
·

W 2
2 (Ω).

Proof. We apply the Shauder method on continuous map of convex and compact
set into itself in Banach spaces (see. [5, p. 257]).

As the Banach spaces we take L2q (Ω). In this space we define the set of functions

V2 = {u ∈
·

W 2
2 (Ω)

∣∣∣∣ ‖u‖W 2
2 (Ω) ≤ K}, where number K will be choosen later. For

each u (x) ∈ L2q (Ω) , f (x) ∈ L2 (Ω) denote v (x) ∈
·

W 2
2 (Ω) by the solution of the

following problem
Lυ + |u|q−1 u = f (x) , x ∈ Ω, (2.1)

u|∂Ω = 0. (2.2)

The problem(2.1),(2.2) is solvable in the
·

W 2
2 (Ω) spaces for arbitrary u (x) ∈ V2 ,

f (x) ∈ L2 (Ω), such that at this conditions we come to the Dirichlet problem for
equation

Lυ = F (x) , x ∈ Ω, (2.3)

where F = f (x)− |u|q−1 u ∈ L2 (Ω) (see[13]).
Indeed

‖F‖L2(Ω) ≤ ‖f‖L2(Ω) +
∥∥∥|u|q−1 u

∥∥∥
L2(Ω)

= ‖f‖L2(Ω) + ‖u‖q
L2q(Ω) .

‖u‖L2q(Ω) is finite by virtue of that the space
·

W 2
2 (Ω) continuously embeds to L2q (Ω)

when 1 ≤ q <
n

n− 4
, consequently F ∈ L2 (Ω) (see[5,p.154]).

Denote by A on operator which throws u to υ :

Au = υ.

Show continuity of the operator A in L2q (Ω).
Let un → u0 in L2q (Ω) in n → ∞, where un, u0 ∈ L2q (Ω) and υn = Aun;

υ0 = Au0. Then
Lυn = − |un|q−1 un + f

Lυ0 = − |u0|q−1 u0 + f
(2.4)

Show that υn → υ0 in norm of the L2q (Ω) space. We have:

L (υn − υ0) = −
(
|un|q−1 un − |u0|q−1 u0

)
. (2.5)

Multiply by ∆ (υn − υ0) both sides of the equality (2.5), we obtain

L (υn − υ0) ∆ (υn − υ0) = −
(
|un|q−1 un − |u0|q−1 u0

)
∆ (υn − υ0) .

Hence, by virtue of estimate (1.5) and Hölder inequality,we obtain∫
Ω

[∆ (υn − υ0)]
2 dx ≤
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≤ C2.2 (n, γ, δ)

∫
Ω

[∆ (υn − υ0)]
2 dx

1/2 ∥∥∥|un|q−1 un − |u0|q−1 u0

∥∥∥
L2(Ω)

. (2.6)

Let ‘s estimate the second multiplier of the right-hand of the inequality (2.6) from
above. We have:∣∣∣|un|q−1 un − |u0|q−1 u0

∣∣∣ ≤ q
(
|un|q−1 − |u0|q−1

)
|un − u0| .

It’ s obvious ∥∥∥|un|q−1 un − |u0|q−1 u0

∥∥∥
L2(Ω)

≤

≤ q
∥∥∥(un − u0) |un|q−1

∥∥∥
L2(Ω)

+ q
∥∥∥(un − u0) |u0|q−1

∥∥∥
L2(Ω)

. (2.7)

Applying the Hölders inequality to inequality (2.7), we have∥∥∥|un|q−1 un−|u0|q−1 u0

∥∥∥
L2(Ω)

≤ q ‖un−u0‖L2q(Ω)

(
‖un‖q−1

L2q(Ω) + ‖u0‖q−1
L2q(Ω)

)
. (2.8)

By virtue of un → u0 in L2q (Ω) follows sup ‖un‖L2q(Ω) < ∞, therefore from (2.8)
and (2.6) we obtain:

‖∆ (υn − υ0)‖L2(Ω) → 0 (n →∞) .

Applying the estimate

‖υn − υ0‖W 2
2 (Ω) ≤ C22 ‖∆ (υn − υ0)‖L2(Ω) ,

we have
‖υn − υ0‖W 2

2 (Ω) → 0 (n →∞) . (2.9)

By virtue of the embedding theorem W 2
2 (Ω) → L2q (Ω) , we have

‖υn − υ0‖L2q(Ω) → 0 for n →∞.

The continuity of the operator A is proved.
Show that the set V2 is convex and compact in L2q (Ω) and the operator A throws

it into itself.
For u1, u2 ∈ V2 and υ = tu1 + (1− t) u2, t ∈ [0, 1] we have

‖υ‖W 2
2 (Ω) = ‖tu1 + (1− t) u2‖W 2

2 (Ω) ≤

≤ t ‖u1‖W 2
2 (Ω) + (1− t) ‖u2‖W 2

2 (Ω) ≤ tK + (1− t) K = K, (2.10)

that means convexity V2.
By virtue of the compact embedding theorem

W 2
2 ↪→ L2q for 1 < q <

n

n− 4
the set V2 ⊂ L2q (Ω) (2.11)

is compact.
Show that for certain choose K the operator A throws V2 into itself.
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For solution of the Dirichlet problem of equation (2.3) we have

‖υ‖W 2
2 (Ω) ≤ C2.3 (δ, γ, n) ‖F‖L2(Ω) ≤ C2.3

[∥∥∥|u|q−1 u
∥∥∥

L2(Ω)
+ ‖f‖L2(Ω)

]
. (2.12)

Further

∥∥∥|u|q−1 u
∥∥∥

L2(Ω)
=

∫
Ω

|u|2q dx

1/2

≤ (mesnΩ)1/2−n−4
2n

q

∫
Ω

u
2n

n−4 dx

n−4
2n

q

≤

≤ (mesnΩ)1/2(1−n−4
n

q) C2.4 (n, Ω, q) ‖u‖q
W 2

2 (Ω)
(2.13)

Here we use the above mentioned embedding theorem (2.11).
Allowing the estimate (2.13) in (2.12), we obtain:

‖υ‖W 2
2 (Ω) ≤ C2.5

[
(mesnΩ)1/2(1−n−4

n
q) ‖u‖q

W 2
2 (Ω)

+ ‖f‖L2(Ω)

]
≤

≤ C2.5

[
Kq (mesnΩ)1/2(1−n−4

n
q) + ‖f‖L2(Ω)

]
, (2.14)

where C2.5 = C2.5 (n, δ, γ, q, Ω) .
Let ‘s require that K satisfies the following estimation:

C2.5

[
Kq (mesnΩ)1/2(1−n−4

n
q) + ‖f‖L2(Ω)

]
≤ K. (2.15)

For existence this number K, ‖f‖L2(Ω) ≤ C2.6 (mesnΩ)−
�

n−(n−4)q
2n(q−1)

�
is sufficient, where

C2.6 = C2.6 (n, δ, γ, q, Ω) .
Indeed,let’ s introduced the following notation:

a = (mesnΩ)1/2(1−n−4
n

q) , b = ‖f‖L2(Ω) .

Then the inequality (2.15) has a view:

aKq + b ≤ K, i.e. aKq −K + b ≤ 0, K > 0. (2.16)

The function F (K) = aKq − K, K ≥ 0, attain the minimally value when K0 =(
1
qa

) 1
q−1

. Indeed, f ′ (K) = aqKq−1 − 1 , then for Kq−1
0 =

1
qa

we have f ′ (K0) = 0,

f ′′ (K0) > 0. Consequently, for b ≤ f (K0) the inequality (2.16) is solvable relative
to the K.

The theorem 2.1 is proved.
In the case 1 ≤ n ≤ 4 the following is valid:
Theorem 2.2. Let relative to the coefficients of the operator L the conditions

(1.3) and (1.4) be satisfied and 1 ≤ n < 4 (n = 4) , 1 < q < ∞, ∂Ω ∈ C2. Then for
any f (x) ∈ L2 (Ω) satisfying condition

‖f‖L2(Ω) ≤ C2.7 (n, γ, δ, q, Ω) (mesnΩ)−
n+q(n−4)
2n(q−1)

(
‖f‖L2(Ω) ≤ C2.8 (n, γ, δ, q, Ω) (mesnΩ)−

1
2(q−1)

)
.
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the Dirichlet problem (1.1),(1.2) has at least one solution from
·

W 2
2 (Ω).

In proof of this theorem for the Banach space is taken the space C
(
Ω
)

(L2q (Ω))
and applies the compact embedding theorem

W 2
2 (Ω) → C

(
Ω
) (

W 2
2 (Ω) → L2q (Ω)

)
.

3. Equations with continuous coefficients
In this punct we consider the Dirichlet problem for semilinear elliptic equations

(1.1) with continuous coefficients.
Otherwise,we consider the Dirichlet problem in Ω

n∑
i,j=1

aij (x) uij + |u|q−1 u = f (x) , x ∈ Ω, (3.1)

u|∂Ω = 0. (3.2)

when the coefficients aij (x), i, j = 1, 2, ..., n of operator L =
n∑

i,j=1

aij (x)
∂2

∂xi∂xj
is a

bounded measurable functions satisfying the conditions (1.3) and

aij (x) ∈ C
(
Ω
)
, i, j = 1, 2, ..., n. (3.3)

Note that in the previous punct we are satisfied the case 1 ≤ q <
n

n− 4
, n > 4 in

equation (1.1). It is connected with application of exictence aprior estimation (1.5)
to equation with discontinuous coefficients.In the case equation with continuous
coefficients we apply aprior estimation in W 2

p (Ω) (5, lemma 9.17). This estimation
allows to consider an arbitrary exponent of nonlinearity of the equation (1.1).

The following is valid:
Theorem 3.1. Let relative to the coefficients of the operator L the conditions

(1.3),(3.3) be satisfied and 1 < q < ∞, p >
n

2p′
, ∂Ω ∈ C2. Then for any f (x) ∈

Lp (Ω) satisfying condition

‖f‖Lp(Ω) ≤ C3.1 (γ, n, q, δ, Ω) (mesnΩ)−
n+(n−2p)q

pn(q−1) (3.4)

the Dirichlet problem (3.1), (3.2) has at least one solution from
·

W 2
p (Ω).

Proof. Let Vp = {u ∈
·

W 2
p (Ω)

∣∣∣∣ ‖u‖W 2
p (Ω) ≤ K}.

Denote by the υ (x) ∈
·

W 2
p (Ω) the solution of problem

Lυ + |u|q−1 u = f (x) , x ∈ Ω, (3.5)

v|∂Ω = 0. (3.6)

where u (x) ∈ Lpq (Ω) is arbitrary function.

The problem (3.5)-(3.6) is solvable in the
·

W 2
p (Ω) space for arbitrary u (x) ∈ Vp,

f ∈ Lp (Ω), such that at this conditions we have a deal with solvability of the
Dirichlet problem (2.3), where F = f (x) − |u|q−1 u ∈ Lp (Ω) (on solvability of the
Dirichlet problem see. [5, theorem 9.15]).
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By virtue of embedding W 2
2 (Ω) → L2q (Ω) we have

‖F‖Lp(Ω) ≤ ‖f‖Lp(Ω) +
∥∥∥|u|q−1 u

∥∥∥
Lp(Ω)

= ‖f‖Lp(Ω) + ‖u‖q
Lpq(Ω) ,

consequently F ∈ Lp (Ω) .
Denote by A on operator which throws u to υ. Show continuity of the operator

A. Let un → u0 in Lpq (Ω) at n → ∞, un, u0 ∈ Lpq (Ω) and υn, υ0 is the solution

of problem (2.4) from
·

W 2
p (Ω) space. Then for υn − υ0 we have equality (2.5). By

virtue of aprior estimation

‖υ‖W 2
p (Ω) ≤ C3.2 (n, γ,Ω, p) ‖Lυ‖Lp(Ω) , υ ∈

·
W 2

p (Ω) , (3.7)

we have

‖υn − υ0‖W 2
p (Ω) ≤ C3.2

∥∥∥|un|q−1 un − |u0|q−1 u0

∥∥∥
Lp(Ω)

≤ q
∥∥∥(un − u0) |un|q−1

∥∥∥
Lp(Ω)

+

+q
∥∥∥(un − u0) |u0|q−1

∥∥∥
Lp(Ω)

≤ q ‖un − u0‖Lpq(Ω)

(
‖un‖q−1

Lpq(Ω) + ‖u0‖q−1
Lpq(Ω)

)
. (3.8)

Such that from un → u0 in Lpq (Ω) follows sup ‖un‖Lpq(Ω) < ∞, so we obtain

‖υn − υ0‖W 2
p (Ω) → 0 (n →∞) .

Hence
‖υn − υ0‖Lpq(Ω) → 0 for n →∞.

The compactness Vp follows from compact embedding theorem W 2
p (Ω) in Lpq (Ω),

but convexity is obvious.
Show that for certain choose K the operator A throws Vp into itself.
For solution of the Dirichlet problem of the equation (3.1) we obtain

‖υ‖W 2
p (Ω) ≤ C3.3 (γ, n) ‖Lυ‖Lp(Ω) ≤ C3.3

[∥∥∥|u|q−1 u
∥∥∥

Lp(Ω)
+ ‖f‖Lp(Ω)

]
≤

≤ C3.4

[
(mesnΩ)1/p(1−n−2p

n
q) ‖un‖q

W 2
p (Ω)

+ ‖f‖Lp(Ω)

]
≤

≤ C3.4

[
(mesnΩ)1/p(1−n−2p

n
q) Kq + ‖f‖Lp(Ω)

]
,

where C3.4 = C3.4 (γ, n,Ω, p, q) .
If f ∈ Lp (Ω) to choose from condition

‖f‖Lp(Ω) ≤ C3.5 (mesnΩ)−
n+(n−2p)q

pn(q−1) ,

where C3.5 = C3.5 (γ, n,Ω, p, q) , then inequality

C3.4

[
Kq (mesnΩ)1/2(1−n−2p

n
q) + ‖f‖Lp(Ω)

]
≤ K

is solvable relative to the K > 0, i.e. the operator A throws Vp into itself.
The theorem 3.1 is proved.
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Remark 3.1. All theorems of present article are valid also for equation

Lu− |u|q−1 u = f (x) , x ∈ Ω.

Remark 3.2. The affirmation of theorem 3.1 also is valid for nonlinear equation
n∑

i,j=1

aij (x, u, ux) uxixj + |u|q−1 u = f (x)

with condition of Cordes type

ess sup
x∈Ω

n∑
i,j=1

a2
ij (x, ξ, η)(

n∑
i=1

aii (x, ξ, η)

)2 ≤
1

n− 1
; ξ ∈ E1, η ∈ En.
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