
Transactions of NAS of Azerbaijan 101

Aygun R. LATIFOVA

ON EIGENVALUES AND EIGENFUNCTIONS OF
DIRAC OPERATOR WITH DISCONTINUITY

CONDITIONS INTERIOR TO INTERVAL

Abstract
In the paper we study properties of eigenvalues and eigenfunctions for the

Dirac operator with discontinuity conditions interior to interval.

Denote by L a boundary-value problem, generated by the canonic system of
Dirac differential equations

By′ + Ω(x)y = λy, y =
(

y1

y2

)
(1)

with boundary conditions
y1(0) = y1(π) = 0 (2)

and with discontinuity conditions at the interior point x = a of the interval (0, π)

y(a + 0) = My(a− 0) (3)

here

B =
(

0 1
−1 0

)
, Ω(x) =

(
p(x) q(x)

q(x) − p(x)

)
,

p(x), q(x) are real valued functions from the space L2(0, π), M is matrix of second
order, det M 6= 0, M 6= I (I is a unit matrix). We can show that, if the matrix M
satisfies the condition

M∗BM = B (4)

then the boundary-value problem L is selfadjoint.
In the sequel we will suppose that, the matrix M has the form

M =
(

α 0
β α−1

)
,

where α > 0, β ∈ R and condition (4) holds. In the given paper we find asymptotics
of eigenvalues and normalizing numbers.

In the case of classical Dirac operator the similar problem was sufficiently stud-
ied (see e.g. [1-3]).

Asymptotics of eigenvalues and normalizing numbers of the operator L

At first, we consider the case Ω(x) ≡ 0 and in this case we denote problem L
by L0. It is easy to show, that the solution of the equation Bs′

0 = λs0 with initial

condition s0(0, λ) =
(

0
−1

)
and conditions (3) has the form

s0(x, λ) =


(

sinλx

− cos λx

)
, 0 < x < a

M−
(

sinλx

− cos λx

)
+ M+

(
sinλ(2a− x)
− cos λ(2a− x)

)
, a < x < π

(6)
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where

M± =
(

α∓ ± β
2

β
2 ∓ α∓

)
.

Then the characteristic function of the problem L0 will have the form:

40(λ) = s01(π, λ) = α+ sinλπ +
β

2
cos λπ+

+α− sin λ(2a− π)− β

2
cos λ(2a− π). (7)

The roots of this function λ0
n are the eigenvalues of the problem L0 and let

... < λ0
−2 < λ0

−1 < λ0
0 = 0 < λ0

1 < λ0
2 < ...

Lemma 1. Eigenvalues
{
λ0

n

}
of the problem L0 are isolated, i.e.

inf
n6=m

∣∣λ0
n − λ0

m

∣∣ = γ > 0.

Proof. We suppose the contrary i.e. let γ = 0. Then we could select also the
sequence of the zeros λ̂0

nk
, λ0

nk
of the function 40(λ), that lim

k→∞

∣∣∣λ̂0

nk
− λ0

nk

∣∣∣ = 0,

λ̂0

nk
6= λ0

nk
, λ0

nk
→ ∞, λ̂0

nk
→ ∞ as k → ∞. It follows from the form of solution

s0(x, λ) that
π∫

0

〈
s0

(
x, λ0

nk

)
, s0

(
x, λ0

nk

)〉
dx ≥

a∫
0

〈
s0

(
x, λ0

nk

)
, s0

(
x, λ0

nk

)〉
dx =

=

a∫
0

{
sin2 λ0

nk
x + cos2 λ0

nk
x
}

dx = a.

Here and in the sequel by 〈., .〉 we denote scalar product in the eucledean space
R2, ‖·‖ =

√
〈., .〉. On the other hand, by virtue of selfadjointness of the operator L0

the eigenfunctions s0(x, λ0
nk

) and s0(x, λ̂0

nk
) are orthogonal in the space L2

(
0, π;R2

)
.

Therefore

0 =

π∫
0

〈
s0

(
x, λ0

nk

)
, s0

(
x, λ̂0

nk

)〉
dx =

π∫
0

〈
s0

(
x, λ0

nk

)
, s0

(
x, λ0

nk

)〉
dx+

+

π∫
0

〈
s0

(
x, λ0

nk

)
, s0

(
x, λ̂0

nk

)
− s0

(
x, λ0

nk

)〉
dx ≥ (8)

≥ a +

π∫
0

〈
s0

(
x, λ0

nk

)
, s0

(
x, λ̂0

nk

)
− s0

(
x, λ0

nk

)〉
dx.

From the form of solution s0(x, λ) it follows that∣∣∣∣∣∣
π∫

0

〈
s0

(
x, λ0

nk

)
, s0

(
x, λ̂0

nk

)
− s0

(
x, λ0

nk

)〉
dx

∣∣∣∣∣∣ ≤
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≤ C max
0≤x≤π

∥∥∥s0

(
x, λ̂0

nk

)
− s0

(
x, λ0

nk

)∥∥∥ → 0, k →∞

Thus, passing to limit as k →∞ in the inequality (8) we have 0 ≥ a. Therefore,
the maid assumption is not true, γ > 0 and the roots of the function 40(λ) are
isolated.

The lemma is proved.
Denote by 4(λ) and {λn} characteristic function and sequence eigenvalues of

the problem L, respectively. Let s(x, λ) =
(

s1(x, λ)
s2(x, λ)

)
be a solution of equation (1)

satisfying initial condition s(0, λ) =
(

0
−1

)
and conditions (3). As is known ([4]),

the fundamental solution Y (x, λ) of Dirac matrix equation exists (for all λ ∈ C) and
can be represented in the form

Y (x, λ) = Y0(x, λ) +

x∫
−x

K(x, t)e−λBtdt, (9)

where

Y0(x, λ) =
{

e−λBx, 0 < x < a,

M−e−λBx + M+e−λB(2a−x), a < x < π.

Elements Kij(x, ·) of the matrix function K(x, ·) belong to the space L2(−x, x).

Since s(x, λ) = Y (x, λ)
(

0
−1

)
, then for the solution s(x, λ) we have the following

formula

s(x, λ) = s0(x, λ) +

x∫
−x

K(x, t)
(

sinλt

− cos λt

)
dt.

Consequently, for the characteristic function 4(λ) = s1(π, λ) we obtain the
following representation

4(λ) = 40(λ) +

π∫
−π

K11(π, t) sinλtdt−
π∫

−π

K12(π, t) cos λtdt. (10)

Lemma 2. The eigenvalues of the problem L are simple, i.e.
·
4(λn) =

d

dλ
4(λ)

∣∣∣
λ=λn

6= 0.

Proof. Since
Bs

′
(x, λ) + Ω(x)s(x, λ) = λs(x, λ),

Bs
′
(x, λn) + Ω(x)s(x, λn) = λns(x, λn),

then
d

dx
〈Bs(x, λ), s(x, λn)〉 = (λ− λn) 〈s(x, λ), s(x, λn)〉 ,

and consequently allowing for (2), (3), (4) we have

(λ− λn)

π∫
0

〈s(x, λ), s(x, λn)〉 dx = 〈Bs(a− 0, λ), s(a− 0, λn)〉+
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+ 〈Bs(π, λ), s(π, λn)〉 − 〈Bs(a + 0, λ), s(a + 0, λn)〉 =

= −s1(π, λ)s2(π, λn) = −4(λ)s2(π, λn).

As λ → λn this gives

π∫
0

〈s(x, λn), s(x, λn)〉 dx = −
·
4(λn)s2(π, λn)

or
αn = −

·
4(λn)s2(π, λn). (11)

Hence, it follows that,
·
4(λn) 6= 0.

We to find asymptotics of eigenvalues of the problem L, i.e. asymptotics of the
roots of the function 4(λ). Denote by Γn counter of a rectangle formed by the
segments of the lines

Re z = λ0
n +

γ

2
, Re z = λ0

−n −
γ

2
, Im z = λ0

n, Im z = −λ0
n,

where n is sufficiently large natural number, γ is the number from Lemma 1 and
Gδ =

{
λ :

∣∣λ− λ0
n

∣∣ ≥ δ, n = 0,±1,±2, ...
}
, where δ is a sufficiently small positive

number. From representation 4(λ) and Lemma 1 it follows that, 40(λ) is a function
of type “sinus”. Therefore, for each λ ∈ Gδ is hold the inequality (see [5], pp.118-119)

|40(λ)| > Cδe
|Im λ|π,

∣∣∣∣ ·40(λ
0
n)

∣∣∣∣ ≥ γ0 > 0

is fulfilled.
On the other hand, by virtue of Lemma 1 [6] and from formula (10) we have

lim
|λ|→∞

e−|Im λ|π (4 (λ)−40 (λ)) =

= lim
|λ|→∞

e−|Im λ|π
π∫

0

K̃11(π, t) sinλtdt + e−|Im λ|π
π∫

0

K̃12(π, t) cos λtdt

 = 0.

Consequently, for sufficiently large n for λ ∈ Γn the inequality

|4 (λ)−40 (λ)| < Cδ

2
e|Im λ|π

is fulfilled.
Hence, for λ ∈ Γn, where n is a sufficiently large natural number, we have

|40 (λ)| > Cδe
|Im λ|π > |4 (λ)−40 (λ)| .

Now by using Rouche theorem we have that, interior to Γn for sufficiently large
n the functions 4 (λ) and 40 (λ) have the same number of zeros, i.e. 2n + 1 ze-
ros. We denote the zeros of function 4 (λ) interior Γn by λ−n, ..., λ1, λ0, λ1, ..., λn.
Analogously, using the Rouche theorem, we can prove, that for sufficiently large
n in every circle

∣∣λ0
n − λ

∣∣ < δ, where δ is an any sufficiently small number, there is
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only one zero of the function 4 (λ). Therefore, we can write λn = λ0
n + εn, where

lim
n→∞

εn = 0. Consequently,

4 (λn) = 40

(
λ0

n + εn

)
+

π∫
−π

K11(π, t) sin
(
λ0

n + εn

)
tdt−

−
π∫

−π

K12(π, t) cos
((

λ0
n + εn

))
tdt = 0. (12)

From the results of the papers [7], [8] it follows that λ0
n = n+hn, where sup

n
|hn| <

∞. Therefore (see [6], pp.67)

{kn}def =


π∫

−π

K11(π, t) sin
(
λ0

n + εn

)
tdt−

π∫
−π

K12(π, t) cos
((

λ0
n + εn

))
tdt

 ∈ l2.

Further, it is obvious that

40

(
λ0

n + εn

)
=

·
40(λ

0
n) [1 + 0(1)] εn.

Consequently, equality (12) can be written in the form

εn

·
40(λ

0
n) [1 + 0(1)] + kn = 0,

and hence we obtain that, {εn} ∈ l2. Thus, it holds
Lemma 3. Let p (·) , q (·) ∈ L2(0, π). Then for the eigenvalues {λn} and nor-

malizing {αn} numbers of the problem L the asymptotic equalities

λn = λ0
n + εn, (13)

αn = α0
n +

k̃n

n
(14)

are valid, where {εn} ∈ l2,
{

k̃n

}
∈ l2.

Suppose that, p(·) ∈ W 1
2 [0, π] , q(·) ∈ W 1

2 [0, π]. Then we can revise asymptotic
formula for eigenvalues.

Lemma 4. Let p(·) ∈ W 1
2 [0, π] , q(·) ∈ W 1

2 [0, π]. Then for eigenvalues λn of
the problem L it holds the following asymptotic formula

λn = λ0
n +

h1 cos λ0
nπ + h2 sinλ0

nπ + h3 cos λ0
n (2a− π) + h4 sinλ0

n (2a− π)
λ0

n

+

+
ε̃n

n
,

(15)
where {ε̃n} ∈ l2,

h1 =
1
2

(
α+q(0) +

β

2
p(0)

)
− 1

2
α+q(π) +

β

4
p(π)− α−q(a)+
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+
β

2
p(a)− 1

2

(
α+ − β2

4

) a∫
0

{
p2 (s) + q2 (s)

}
ds−

−1
2
α+

a∫
a

{
p2 (s) + q2 (s)

}
ds,

h2 = −1
2

(
β

2
q(0)− α−p(0)

)
+

β

4
q(π) +

1
2
α+p(π) +

1
2
α+β×

×
a∫

0

{
p2 (s) + q2 (s)

}
ds +

β

2

π∫
a

{
p2 (s) + q2 (s)

}
ds,

h3 =
1
2
α−q(π)− β

4
p(π)− β

2
p(a) +

1
2
α−

π∫
a

{
p2 (s) + q2 (s)

}
ds,

h4 =
1
2

(
α−p(π)− β

2
q(π)

)
− α+p(a) +

β−

4

π∫
a

{
p2 (s) + q2 (s)

}
ds

Proof. Provided p(·) ∈ W 1
2 [0, π] , q(·) ∈ W 1

2 [0, π] from integral equation [4]
for the kernel of the representation (9) it follows that, the elements of the matrix-

function
∂

∂t
K(x, .) belong to L2(−x, x). Therefore, integrating by part, from (10)

we have

4(λ) = 40(λ) + h1
cos λπ

λ
+ h2

sinλπ

λ
+ h3

cos λ (2a− π)
λ

+

+h4
sinλ (2a− π)

λ
+ +

1
λ

π∫
−π

∂K11(π, t)
∂t

cos λtdt +
1
λ

π∫
−π

∂K12(π, t)
∂t

sinλtdt,

where

h1 = K11(π,−π)−K11(π, π), h2 = −K12(π,−π)−K12(π, π),

h3 = K11(π, 2a− π + 0)−K11(π, 2a− π − 0),

h4 = K12(π, 2a− π + 0)−K12(π, 2a− π − 0).

Since 4
(
λ0

n + εn

)
= 0, the acting as in the proof of Lemma 2 and using the

formula

K11(π, π) =
1
2
α−q(π)− β

4
p(π) + α−q(a)− β

2
p(a) +

1
2

(
α+2 − β2

4

)
×

×
a∫

0

{
p2 (s) + q2 (s)

}
ds +

1
2
α+

π∫
a

{
p2 (s) + q2 (s)

}
ds;
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K12(π, π) = −β

4
q(π)− 1

2
α+p(π)− 1

2
α+β

a∫
0

{
p2 (s) + q2 (s)

}
ds−

−β

4

π∫
a

{
p2 (s) + q2 (s)

}
ds;

K11(π,−π) =
1
2

(
α+q(0) +

β

2
p(0)

)
, K12(π,−π) =

1
2

(
β

2
q(0) + α+p(0)

)
,

K11(x, 2a− x + 0)−K11(x, 2a− x− 0) =

=
1
2
α−q(x)− β

4
p(x)− β

2
p(a) +

1
2
α−

x∫
a

{
p2 (s) + q2 (s)

}
ds;

K12(x, 2a− x + 0)−K12(x, 2a− x− 0) =

=
1
2
α−p(x) +

β

4
q(x)− α+p(a) +

β

4

x∫
a

{
p2 (s) + q2 (s)

}
ds.

We obtain asymptotic formula (14) for λn.
Lemma 5. Let p(·) ∈ W 1

2 [0, π] , q(·) ∈ W 1
2 [0, π]. Then the normalizing numbers

have the form

αn = α0
n +

d̃n

λ0
n

+
k̃n

n
,

{
k̃n

}
∈ l2 (16)

here α0
n are the normalizing numbers of the problem L for Ω(x) ≡ 0 and they are of

the form

α0
n = −

(
πα+ cos λ0

nπ − πβ

2
sinλ0

nπ + (2a− π)α− cos λ0
n(2a− π)+

+
β

2
(2a− π) sinλ0

n(2a− π)
)
×

×
(

β

2
sinλ0

nπ +
β

2
sinλ0

n(2a− π)− α+ cos λ0
nπ + α− cos λ0

n(2a− π)
)

.
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