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A VERSION OF THE HOFFMAN-WERMER
THEOREM

Abstract

It is obtained a generalization of the Hoffman-Wermer theorem for complex
continuous functions on a compact space.

1. Introduction

In the middle of 20-th century M. H. Stone [11] obtained a famous generalization
of Weierstrass Theorem that any closed algebra of real continuous functions on a
compact space X (or a bicompact space in the terminology of [1, 10]) which separates
points of X is equal to the algebra CR(X) of all real continuous functions on X or
coincides with its ideal id{x0}(CR(X)) of all functions vanishing at some point x0 ∈
X. The situation for subalgebras of the algebra CC(X) of all complex continuous
functions on X is more intricate, in particular there exist algebras of continuous
functions that separate points of X and contain constants, but are not equal to
CC(X) (for instance see [8]). Stone proved that a closed symmetric subalgebra of
CC(X) that separates points of X is equal to CC(X) or coincides with its ideal
id{x0}(CC(X)) of all functions vanishing at some point x0 ∈ X. In general, for non-
symmetric subalgebras, there is a remarkable theorem of Hoffman and Wermer [9]
which states that any closed subalgebra A ⊂ CC(X) that separates points of X and
contains constants is equal to CC(X) if and only if the space Re A of all real parts of
functions in A is closed in CR(X). A short proof of the Hoffman-Wermer Theorem
was given by Browder [6]. A generalization of the Hoffman-Wermer Theorem was
obtained by Bernard [2] for complete (in an other norm) subalgebras A ⊂ CC(X)
having the uniformly closed space Re A. In what follows by C(X) we denote CC(X)
or CR(X) in the dependence on the case of scalars considered.

B. Bilalov [3] obtained a modification of the Stone-Weierstrass Theorem for an
arbitrary subalgebra of CR(X), more precisely, he described the closure of an arbi-
trary subalgebra A ⊂ CR(X) in terms of subsets of X that are equalized by functions
in A or are common zeros of functions in A. For a point x ∈ X, let KA(x) be the
set of all y ∈ X such that f(y) = f(x) for all functions f ∈ A, refC(X)(A) the set
of all functions g in C(X) such that g(y) = g(x) for all x ∈ X and y ∈ KA(x),
and let idNA

(C(X)) be the set of all functions in C(X) that vanish on the set NA

of common zeros of functions in A. The Bilalov’s Theorem states that the closure
of a subalgebra A ⊂ CR(X) is equal to idNA

(CR(X)) ∩ refCR(X)(A). In particular
if all sets KA(x) are one-point (this means that A separates points of X), then the
algebra refCR(X)(A) is equal to CR(X) and the ideal idNA

(CR(X)) coincides with
C(X) if NA = ∅ or coincides with its ideal id{x0}(CR(X)) of all functions vanishing
at the point x0 ∈ X, the common zero of functions in A. Thus, Bilalov’s Theorem
implies the Stone-Weierstrass Theorem.
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Here a generalization of Bilalov’s Theorem to algebras of complex continuous
functions on a compact space satisfying the Hoffman-Wermer condition is obtained.

2. Preliminaries

We use the terminology of [5]. Let X be a compact space (with Hausdorff topology)
and let CC(X) (respectively, CR(X)) be the algebra of all complex (respectively,
real) continuous functions on X, with sup-norm

‖f‖ = sup
x∈X

|f(x)| .

As usual, by C(X) we denote CC(X) or CR(X) in the dependence on scalars con-
sidered. So, if scalars are not indicate, our talk relates for both of cases of real and
complex scalars. For a subset Y ⊂ X, let idY (C(X)) be the ideal of C(X) consisting
of all functions vanishing on Y .

Let S be a set of bounded functions on a set Y , and let S be the closure of S in
the algebra of all bounded functions on Y with sup-norm. Let us remind that this
closure is called uniform.

Now let S be a set of continuous functions in C(X). For any x ∈ X let KS(x)
be the set of all y ∈ X such that f(y) = f(x) for all functions f ∈ S. By refC(X)(S)
we denote the reflexive hull of S, i.e., the set of all functions g of algebra C(X) such
that g(y) = g(x) for all points x ∈ X and y ∈ KS(x).

Let RS be an equivalence relation on X given by condition (x, y) ∈ RS if and
only if y ∈ KS(x), and let φS be the canonic map X → X/RS . For an arbitrary
function f ∈ refC(X)(S) we define the function f/RS on X/RS by

(f/RS)(φS(x)) = f(x)

for every element φS(x) ∈ X/RS . It is obvious that the definition of f/RS is correct,
i.e., does not depend on a representative x in the equivalence class KS(x). Following
two lemmas in the other notation were proved in [7].

Lemma 1. Let S be a set of continuous functions on a compact space X. For an
arbitrary function f ∈ refC(X)(S) the function f/RS is continuous on the quotient
X/RS.

For a sake of completeness we give a simple proof of the following corollary.

Corollary 2. Let S be a set of continuous functions on a compact space X. Then
the quotient X/RS is a compact space.

Proof. We remind that X/RS is a quasi-compact space (see [5]). So we only
need to show that X/RS is a Hausdorff space. Let x and y in X be arbitrary with
φS(x) 6= φS(y). Then there exists a continuous function f ∈ S such that

f(x) 6= f(y).

It is obvious that f ∈ refC(X)(S). By Lemma 1, f/RS is a continuous function on
X/RS and

(f/RS)(φS(x)) = f(x) 6= f(y) = (f/RS)(φS(y)).
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Take disjoint open neighbourhoods Ux and Uy of points f(x) and f(y). Then
(f/RS)−1(Ux) and (f/RS)−1(Uy) are disjoint neighbourhoods of points φS(x) and
φS(y). So X/RS is a Hausdorff space.

For a set M of functions in refC(X)(S), let M/RS be the set of all functions
f/RS on X/RS , where f runs over M . Is is obvious that if S is an algebra then so
is S/RS . Let τS : refC(X)(S) → refC(X)(S)/RS be the map defined by

τS(f) = f/RS

for every function f ∈ refC(X)(S). It is obvious that τS is a homomorphism of
algebras. We have the following assertion.

Lemma 3. Let S be a set of continuous functions on compact space X. Then τS

is an isometric homomorphism of algebras refC(X)(S) and refC(X)(S)/RS.

As a result, we state the following simple proposition.

Theorem 4. Let S be a set of continuous functions on a compact space X, and let
A be the uniformly closed algebra generated by functions in S. Then refC(X)(S)/RS

and A/RS are uniformly closed algebras of continuous functions on the compact space
X/RS that separate points of X/RS. Besides, refC(X)(S)/RS contains constants.

Proof. Since refC(X)(S) is a uniformly closed algebra, so is the algebra
refC(X)(S)/RS by Lemma 3. The same is clearly true for A/RS . The separation of
points of X/RS is realized by functions in S/RS , so both of the algebras separate
points of X/RS . The existence of constants in refC(X)(S)/RS is obvious. The other
assertions follow from Lemma 1 and Corollary 2.

3. Characterization of algebras of continuous functions
satisfying the Hoffman-Wermer condition

In this section we obtain a generalization of Bilalov’s Theorem to algebras of complex
continuous functions on a compact space satisfying the Hoffman-Wermer condition.
To include algebras without constants into consideration we begin with preliminary
lemmas.

Let X be a set, and let A be a vector space of functions on X. The function
e defined by e(x) = 1 for all x ∈ X is called unit. We say that A does not contain
constants (or scalars), if A does not contain the unit function. Let B be a set of all
functions g on X represented as g = λe + f , where f ∈ A and λ is a scalar. It is
obvious that B is a vector space of functions. We called B the space obtained from
A by adjoining the unit function.

The following lemma belongs to the mathematical folklore and holds for real and
complex functions.

Lemma 5. Let A be a uniformly closed space of bounded functions on a set X,
without constants, and let B be the space obtained from A by adjoining the unit
function. Then B is uniformly closed.
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Proof. Let a sequence (gn = λne + fn)n of elements of B tend by sup-norm to
the function g, where all fn belong to A. If there exists a subsequence of scalars
(λnk

) such that |λnk
| → ∞ then∥∥e + λ−1

nk
fnk

∥∥ =
∥∥λ−1

nk
gnk

∥∥ = |λnk
|−1 ‖gnk

‖ → 0

under k →∞. Since −λ−1
nk

fnk
∈ A and A is closed, the unit function belongs to A,

a contradiction.
So the sequence (λn) is bounded and thus has a convergent subsequence. Taking

a subsequence, assume that λne+fn → g and (λn) tends to a scalar λ under n →∞.
Then

fn → g − λe

in the sup-norm topology, under n →∞. We obtain that

g − λe ∈ A.

Thus
g = λe + (g − λe) ∈ B.

Lemma 6. Let A be a vector space of bounded functions on a set X, without con-
stants, and let B be the space obtained from A by adjoining the unit function. Then
B is the space obtained from A by adjoining the unit function.

Proof. Let g ∈ B be the limit in the sup-norm topology of a sequence (λne+fn),
where all fn belong to A. As it was shown in the proof of lemma 5, it may be
assumed that the sequence (λn) of scalars tends to a scalar λ and in the same time
the sequence (fn) tends to some function f in the sup-norm topology. Hence f ∈ A
and g = λe+f . Thus, B is the space obtained from A by adjoining the unit function.

It is obvious that if A is an algebra of functions on a set X then the space B
obtained from A by adjoining the unit function is an algebra itself.

Lemma 7. Let A be an algebra of functions on a set X, without constants, and
let B be the algebra obtained from A by adjoining the unit function. Then A is a
maximal ideal of B.

Proof. The unit function on X is a unit element of algebra B, so, for every
functions f, g ∈ A and a scalar λ, we have that

(λe + f)g = λg + fg ∈ A.

Thus, A is an ideal of the algebra B.
Now let I be a proper ideal of B and A ⊂ I. Then I does not contain constants

because if (λe + f) ∈ I for f ∈ A then λ = 0. Thus I = A. This means that A is a
maximal ideal of B.

As a corollary, we have the following proposition.

Corollary 8. Let A be an algebra of complex continuous functions on a compact
space X, without constants, and let B be the algebra obtained from A by adjoining
the unit function. If B = C(X) then there exists a point x0 such that

A = id{x0}(C(X)).



Transactions of NAS of Azerbaijan
[A version of the Hoffman-Wermer theorem]

97

Proof. By Lemma 7, A is a maximal ideal of C(X). At the same time (see
[12, Assertion 4.6.10(b)]) every maximal ideal of C(X) coincides with set of all
continuous functions on X vanishing at a point of X.

Let us remind that if A is a complex space of functions on a set X then Re A
means the set of real parts of functions in A. It is obvious that Re A is a space of
real functions on X.

Definition 1. Let X be a topological space. We say that a vector space A of bounded
continuous functions on X satisfies the Hoffman-Wermer condition if Re A is a
uniformly closed subspace of algebra of all bounded continuous real functions on X.

In the case of real functions on a set X we have the equality A = Re A. So
vector spaces of real bounded continuous functions on a topological space X satisfy
the Hoffman-Wermer condition.

We need the following lemma.

Lemma 9. Let a vector space A of bounded continuous functions on a topological
space X satisfy the Hoffman-Wermer condition, and let B be the space obtained from
A by adjoining the unit function. Then B satisfies the Hoffman-Wermer condition.

Proof. By lemma 6, B obtained from A by adjoining the unit function. Then
Re B obtained from Re A by adjoining the unit function. By condition of the lemma,
Re A is closed. Then, by Lemma 5, Re B is also closed, i.e., B satisfies the Hoffman-
Wermer condition.

Now we can formulate the main result of this section that generalizes Stone-
Weierstrass, Bilalov’s and Hoffman-Wermer Theorems.

Theorem 10. Let A be an algebra of continuous functions on a compact space X
satisfying the Hoffman-Wermer condition. Then

A = idNA
(C(X)) ∩ refC(X)(A).

Proof. The result for real functions is proved in [3]. So we assume that A
consists of complex functions.

Let us assume that A contains constants. Then A/RA is an algebra of continuous
functions on a compact space X/RA that separates points of X/RA by Theorem 4
and contains constants (since τA(e) is the unit function on X/RA). In addition,
A/RA satisfies the Hoffman-Wermer condition because τA is isometric by lemma 3
and maps Re A onto Re A/RA. By the Hoffman-Wermer Theorem, we obtain that

A/RA = C(X/RA).

Since A ⊂ refC(X)(A), we have that

refC(X)(A)/RA = C(X/RA).

So
A = τ−1

A (C(X/RA)) = refC(X)(A).
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Now assume that A does not contain constants. Let the algebra B be obtained
from A by adjoining the unit function. Then B satisfies the Hoffman-Wermer con-
dition by Lemma 9. It is obvious that RB = RA, so τB = τA and φB = φA. As it
was shown, we obtain that

B/RA = C(X/RA).

Since B is obtained from A by adjoining the unit function by Lemma 6, B/RA is also
obtained from A/RA by adjoining the unit function. By Corollary 8, there exists a
point φA(x0) ∈ X/RA such that

A/RA = id{φA(x0)}(C(X/RA)).

Thus we have
A = τ−1

A (τA(A)) = τ−1
A (id{φ(x0)}(C(X/RA))).

We will show that the equality

τ−1
A (id{φ(x0)}(C(X/RA))) = idKA(x0)(C(X)) ∩ refC(X)(A)), (1)

is valid. It is easy to see that KA(x0) = NA. Let us remind that, for any function g
on X/RA, the function τ−1

A (g) is defined by

(τ−1
A (g))(x) = g(φA(x))

for every x ∈ X (i.e., as the composition g ◦ φA of g and the continuous function
φA) , so τ−1

A (g) is continuous if so is g. Thus τ−1
A (id{φA(x0)}(C(X/RA))) consists of

continuous functions that are constant on every set

φ−1
A (x) = KA(x)

and thus belong to refC(X)(A). Besides, these functions vanish on the set KA(x0).
So the following inclusion

τ−1
A (id{φA(x0)}(C(X/RA))) ⊂ idKA(x0)(C(X)) ∩ refC(X)(A))

is valid.
We show now that the opposite inclusion is also valid. For this we have to prove

that
τA(idKA(x0)(C(X)) ∩ refC(X)(A)) ⊂ id{φA(x0)}(C(X/RA)).

The left part of this inclusion determines continuous functions on X/RA that vanish
at the point φA(x0) and thus belong to the right part. So we obtain that the equality
(1) is valid.

Thus, for all cases, the theorem is true.

Corollary 11. Let A and B be algebras of (simultaneously complex or real) con-
tinuous functions on compact space X satisfying the Hoffman-Wermer condition.
Then A ⊃ B if and only if NA ⊂ NB and KA(x) ⊂ KB(x) for all x ∈ X.
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Proof. First let us note that all sets KA(x) are closed (as intersections of
corresponding closed sets). Hence NA = NA and KA(x) = KA(x) for all x ∈ X.
Thus it is obvious that if A ⊃ B, then NA ⊂ NB and KA(x) ⊂ KB(x) for all x ∈ X.

Now let NA ⊂ NB and KA(x) ⊂ KB(x) for all x ∈ X. Then

idNA
(C(X)) ∩ refC(X)(A) ⊃ idNB

(C(X)) ∩ refC(X)(B)).

By Theorem 10, we have that
A ⊃ B.

Corollary 12. Let A and B are algebras of (simultaneously complex or real) con-
tinuous functions on compact space X satisfying the Hoffman-Wermer condition.
Then A = B if and only if NA = NB and KA(x) = KB(x) for all x ∈ X.

Proof. Follows from Corollary 11.

Lemma 13. Let R be an equivalence relation on a compact space X such that the
quotient X/R is a Hausdorff space (and hence a compact space). Then there exists
a closed algebra A of continuous functions on X satisfying the Hoffman-Wermer
condition such that R = RA and NA is equal to one of the following sets: ∅, KA(x)
for an arbitrary element x ∈ X.

Proof. Let φ : X → X/R be the canonic map (that is continuous in the quotient
topology). We define map υ : C(X/R) → C(X) by

(υg)(x) = g(φ(x))

for all x ∈ X. The map υ is an isometric homomorphism and in particular maps
real subspaces of C(X/R) into real subspaces of C(X). Thus

• The algebra A = υ(C(X/R)) is closed and satifies the Hoffman-Wermer con-
dition with NA = ∅.

• The algebra A = υ(C(X/R) ∩ id{φ(x)}(C(X/R))) is closed and satisfies the
Hoffman-Wermer condition with NA = KA(x).

In all cases we have that R = RA.

Theorem 14. Let X be a compact space and C(X) = CC(X). Then

(i) There exists a one-to-one map from the set of all closed subalgebras A ⊂ C(X)
satisfying the Hoffman-Wermer condition with NA = ∅ onto the family of all
equivalence relations R = RA such that X/R is Hausdorff.

(ii) There exists a one-to-one map from the set of all closed subalgebras A ⊂ C(X)
satisfying the Hoffman-Wermer condition with a nonempty set NA of common
zeros of functions in A onto the family of all pairs (R,NA), where R = RA is
an equivalence relation such that X/R is Hausdorff, and NA = KA(x) for a
point x ∈ NA.
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Proof. Follows from Theorem 10, Corollary 12 and Lemma 13.
Note that the corresponding proposition is also true for algebras of real contin-

uous functions on a compact space.
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