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MARCHAUD’S TYPE INEQUALITIES FOR
CONVOLUTION OF TWO PERIODICAL
FUNCTIONS IN L,(T), I

Abstract

In the paper the upper estimations of smoothness L,-module wy, (h;?), of
order m of the convolution h = f*g of two 27 periodic functions f € L, (T) and
g € Ly (T) are obtained by means of the product expression w; (f;9), wk (g;6),
of smoothness modules of these functions, where m,l,k € N, p,q € [1,00], 1/r =
1/p+1/q—1 >0, T =(—m, x]. In particular, it is proved in the case p, ¢ € (1, 00)
that the obtained estimations are exact in the terms of order on classes of
convolutions with given majorants of smoothness modules of f and ¢ under
some regularity of the majorants in the case m < [ + k and under arbitrary
majorants in the case m > [+ k.

In what follows we use the following notation.

L,(T), 1 < p < oo, is the space of all measurable 27 periodic functions

1/
[+ R — C with finite Ly-norm || f||, = <(27r)_1 Jo |f ()P dz) " < .

C (T) = L (T) is the space of all continuous 27 periodic functions with uni-
form norm || f|| ., = max {|f (z)| : v € T}.

E, (f)p is the best approximation of a function f in the metric of L, (T) by
the trigonometric polynomials of order <n € Z,..

Sp (f;-) is the partial sum of order n € Z, of the Fourier-Lebesgue series of a
function f € Ly (T) : S, (f;x) = Z\ny|:0 ey (f) e, x €.

wi (f30),, is the smoothness module of order [ of a function f € L, (T) :
wi (f39), = sup{HAngp teR, |t < 5}, I €N, § >0, where Alf (z) =
S DD @), seR
My is the class of all sequences € = {e,}°°; such that 0 < e, | 0 (n T 00).
E el ={f € Ly(T) : Eo1(f)p < €n, n € N} for p € [1,00] and ¢ € M.

Q; (0, 7] = € is the class of all functions w () defined on (0, 7] and satisfying
the conditions: 0 < w (8) | 0 (6 | 0) and 67w (§) | (6 7).

Hllw] ={f € Lp(T) : wi(f;6), <w(8), &€ (0,7}

The convolution h = fxg of f € L1 (T) and g € Ly (T) is defined by the formula:
h(z)=(f*g)(x) = (1/27) [; f(x —y) g (y) dy; it is known (see f.e. [1], v.1, § 2.1,
pp.64-65, [2], v.1, § 3.1, pp.65-66) that the function h is defined almost everywhere,
27 periodic, measurable and ||h||; < [|f|l; [|lg]l; (whence it follows in particular that
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h = fxgé€ L1 (T)). The last statement is a particular case of the following result
known as the W.Young’s inequality (see, f.e. [1], v.1, Theorem (1.15), pp.67-68; [2],
v.2, Theorem 13.6.1, pp.176-177; [2], v.1, Theorem 3.1.4, p.70, Theorem 3.1.6, p.72).
Given p € (1,00),let p'=p/(p—1),p' =1 for p =00 and p’ = oo for p = 1.

Theorem A. Let p,q € [1,00|, f € L,(T) and g € Ly(T), h = f*g, 1/r =
1/p+1/q—1. Then

e If 1/r >0 then h belongs to L, (T) and Al < || f|l, [lgll,-

o If 1/r=0 then h belongs to C(T) = Leo (T) and |[hll, < ]I, 9]l -

Recall that the Fourier coefficients ¢, (h) of h = f % g of two arbitrary functions
f € Li(T) and g € Ly (T) are calculated by the formula (see [1], v.1, Theorem
(1.5), p.64; [2], v.1, p.66, formula (3.1.5)) ¢, (h) = ¢n (f*xg) = cn (f) - cn (g) for
every n € Z.

The upper estimation of the smoothness module wy, (1/);(5)1) of ¥ € L,(T) by
means of w; (¢; 5)p is called the Marchaud inequality (without derivatives) in L,(T),
where k,l € N, £k < [, 1 < p < oo. For the first time a similar estimation for
the case of the real functions ¢ continuous on [0,1] with uniform norm ||| =
max {|¢ (x)| : « € [0,1]} appeared in [3], Section 2.4.21, Inequality (20), p. 374 (see
also [4], Theorem 3.3.1, Inequality (15), p. 164; [5], Section 3.3.2, Inequalities (11)
and (12) , pp. 117 and 119; [6], Proposition 3.1, p. 291; [7], Theorem 2.8.1, Inequality
(8.2), p. 47).

1
on(wi6) < ket ([ et at ol ) se . @)
é
where wy, (¢;6) = max {|Afp(z)| :0<a <1 —kt,0<t <6},0<0<1/k.
Later, the other proof of (1)) (with constant 1/ instead of 1 for the upper bound
of the integral and for 0 < 1/2k) was given in [8], Section 4.1, Inequality (34), p.
741, by applying an result of approximation of ¢ € C'[0, 1] by piecewise polynomial
functions (splines). The example of a function that shows that (1) is an exact
estimation in the sense of order was given in [9], formula (5) and Example 5, pp.
195 and 198 (see also [4], Section 3.3, formula (21), p. 168, and Section 3.5, p. 191).
In the periodic case the estimation

27 1/0'
<%Wﬁ%s&%¢mﬁ<ﬁ rw“wﬂwwﬂQ Loe(0,7], (2

is an analogue of the Marchaud inequality, where 0 = o (p) = min{2,p} under
p € [1,00) and o (0c0) = 1 (see [10], Theorem 3, Inequalities (27), p. 130, case
[ = k+1; also [6], Section 3, Inequality (3.10), p. 293; [7], Theorem 2.8.4, Inequalities
(8.14) and (8.15), pp. 49 and 50).

Inequality [2] is a consequence of the estimation

wi (¥;7/n), < Ca(k,1,p)n~ " (Zn voFlye (w;ﬂ/y)p)l/a, n €N, (3)

v=1
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(see Remark 1). This estimation is received by applying the inequality
En (llj)p < C4(l)wl W, ﬂ-/n)p7 ne N, (4)

of the so called direct theorem ”without derivatives” of the approximation theory of
periodic functions in L,(T) in the inequality

ock—1 o 1/a
V:ly g lEV*l (w)p) NAS N7 (5)

wr (W m/n), < Cslkpn* (3"

of the so called inverse theorem ”without derivatives” of the approximation theory
of periodic functions in L,(T).

The inequalities and are well known and given in many monographs on
the approximation theory (see for instance [4], Sections 4.2 and 5.4; [5], Sections
5.1, 5.11, and 6.1; [7], Sections 7.1-7.3, and their references). The historic review of
appearance of and , and of their exactness in the sense of order on the classes
H! [w] and E, [¢], respectively, are given by the author in [11] and [12].

The estimation (2|) or the equivalent estimation (see Remark 1) is exact in the
sense of order on the class HIl) [w] for all p € [1, o], namely, for each p € [1, 00| and
w € § there is an individual function ¢ (;p;w) € Lp(T) with wy (¥g;9), < w (9),
d € (0, 7], such that

Wi Wo%ﬁ/n)p > Cg(k,1,p)n* (Zzzlyak_lw" (w/y))l/g, n € N. (6)

The examples of functions for which @ holds in the case p =1 and p = oo are
given in [13], Lemma 3, p. 176 (see also [14], Lemma 5, p. 75, case p = oo, and
[15], Theorem 14, p. 28, case p = 1). The corresponding example for 1 < p < co
(for p = 1 this example differs from the function in [13] and [15]) was given in [16],
Proposition 1, Lemmas 1 and 2, p. 209. Note that the assertion of the validity of
@ in the integral form for all p € [1, oo] and arbitrary w € ; was announced by the
author in [17], Lemma 3, p. 1303. The complete proof of this assertion was given in
[18], Lemma 3.8, p. 75. Examples of functions v (-; p;w) for @ are also given by
the author in [19-22].

In the present paper the upper estimations of w,,(f * g;d), are obtained by the
products wy(f;9)pwi(g;9)q, where m, I,k € N, p,q € [1,00] and r = pg/(p+q—pq) €
[1,00]. In the case p,q € (1,00) the exactness of obtained estimations in the sense of
order is proved for the classes of convolutions with given majorants of smoothness
modules of functions f and g under condition of some regularity of these majorants
in the case m < [ + k and for arbitrary majorants in the case m > [ + k.

The following statement is an analogue of the inverse theorem of the approxima-
tion theory for convolution of two periodic functions.

Theorem B ([ 12], Theorem 1). Let p,q € [1,00], 1/r =1/p+1/¢—1 > 0,
feLyT),ge Ly(T), h=f*g, meN. Then

(i) If 1/r > 0 then h € L,(T), r € [1,00), and, for 8 = 0(r) = min{2,r},

—m n m— 1/9
wm (B /m), < Cr (myr) ™™ (32" V" ED (1), By (9),) s meEN.

(i) If 1/r =0 then h € C(T) = Lo(T), ¢ = p' and

wm (hym/n)y < Cr(myr)n™™ toymip, (f)pEv-1(9),, n €N,

v=1
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where C7(m,r) is a positive constant depending only on m and r.
Theorem 1. Let p,q € [LOOL r o= pQ/(p+q _pQ) S [1700]; /€ LP(T);
g € Ly(T), h = fxg, kJiim € N, § = 0(r) = min{2,r} for r € [1,00) and
O(c0) = 1. Then h € Ly(T) and the following estimations hold (n € N):
(i) form<l+k

n

1/6
wm (hs7/n), < Cs (k,Lm,r)n™" (Z Pl (fim /), (g: w/mq) ;

=1
(i) for m >1+k
win (hym/n), < 245Cs (k,1,m, r)wi (fim/n),wr (g:7/n),;
(iii) for m = 1 + &
win (B3 m/n), < 2MCs (k, 1,m, ) wi (f37/n), wk (g;7/n), (In(en))"’,
wmt1 (hyw/n), < 2"Cs (k, L, m + Lr)w (fi7/n),wk (g;7/n), -

Proof. In virtue of inequalities (i) and (ii) of Theorem B and (), we have that

wm (B /), < Cr (m,r) ™ (3

v=1

1/0
LB (), B (9),) (7)
1/0

< Con ™ (30 I (Fimfv), o (gim/v),)

whence the estimation (i) follows with Cs = Cg(k,l,m,r) = C7 (m,r) C4(1)Cy(k).
Further, applying well known property of smoothness L,-module of order [ (see
for instance [5], p. 116, inequality (6))

55 wi(f;02)p < 2167 wi(f;61), for 0 < 61 < &2 (8)

we obtain that

n (3 P (i), (gim/v), )
=n (ZL (Ve (i /),)” (en @imv),)” ue[m—”*’“”*)

—m n m— o\ 1/0
< 2y (fym/n), wi (gim/m),nH R (S0 PRI

v=1

< 2k, (fim/n),wk (g;m/n), form >1+k,
2w (fym/n), wk (g;7/n), (In(en))?  for m =1+k.

1/6

1/6

Taking into account this estimation in , we have (ii) and the first estimation in
(iii).
At last, applying (8) we have by (7)) under m = I+k that for Cs = Cg (k,l,m + 1,7)

1/6
w1 (hym/n), < Cgn~(m+Y) (Z O (fi /v, (g;ﬂ/l/)q)

n 1/6
< 2l+k08n—(m+l)+l+kwl (f, 7r/n)p W (g; W/n)q <Z 1/9_1> /

r=1
<24 Cywy (fim/n), wi (g5 7/n),

n
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from that the second estimation in (iii) follows. Note that one can easily reach this
by (ii) since m+1>1+kif m=1+k.

Theorem 1 is proved.

Remark 1. The estimation (i) of Theorem 1 admits an equivalent formulation:

(i) If (i) of Theorem 1 holds for some constant Cg = Cs (k,l, m,r), then for every
d € (0,7]

2 1/6
win (h; ), < Cyd™ </ O NGE (F0),wh (951), dt) (9)
d

with constant Cy = Cy(k,l,m,r) < 2?mCsg.

(ii) If @D holds for some constant Cy = Cy (k,l, m,r), then for every n € N
m (N em1 0 1/0
wm (h;/n), < Cion (Zyzlv wy (fym/v),wy (g;ﬂ/u)q>

with Cig = Cuo(k,L,m, ) < 2"Cy {201 4 (20 — 1) 20040/ (gmarm) } /7.

Proof. For every § € (0, 7] there exists n € N such that 7/(n +1) < § < 7/n.
Put 0(8) = wi (f:5), wi (9: ), 3 € (0,7].
(i) Since ¥(8) T (6 T) then (for ¥,, = (w/n))

fgr t_(0m+1)1/10 dt > f —(6m+1) 1/}0( ) _ anl ;T//(l;+1) t—(9m+1)¢6( )dt

> (9m7T ) 1 E: % ((1/ + 1)9m _ 9m) w@ > 7T—0m Zu ! yem 1¢V+1
_ W—@mz ( )0m 11/}0 > 0m2 (Gm 1)2 2V9m 1¢
and

27 2m
/ =m0 ()t > o () / t= O dt = (mr®m 2™ T (20 — Dt

™

In virtue of estimations obtained we have that

O[3 st > () (n+ 1) { [T, et + [ gt |
> (4n) " {20, 0 /) + (0m) 120 — 1))}
> (4n) " {0y v /v) + 0 ()} = (4n) O S I ),

whence

n

o (10), < o (i /m), < skl )= (37 910 ()

v=1
2 1/6
< Cy(k,1,m,r)6™ (/ t—<9m+1>¢9(t)dt> , 6€ (0,7
0
(ii) Taking into account that

fgr t—(9m+1)¢)9 dt < f i) t— (9m+1)¢ ( )dt Z 77r1-//(1;+1)t (0m+1)1/10(t)dt
< (Oma?™) I (v + 1) =00l < 9m29m Ly pmeyf
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and

27 2
/ t7(9m+1)w9(t)dt < 1/}9(27_‘_)/ t7(0m+1)dt _ (Hmﬂ0m29m)71(29m _ 1)¢9(27T)

™

< (emwﬁmQGm)—l(QGm o 1)20(l+k),¢?’
we have that

™ m a0 0 ™
50m f2 t%m+1 dt < (ﬂ-/n)e {fﬂ/(n_i'_l) tqé)m(-ﬁt—)l dt + f2 t%m+1 dt}
< n—fm {29m 1 2221 ngil'lﬂg + (0m29m) (29m _ )20(l+k w?}
< {20m=1 4 (Gm2dm) =1 (20m — 1)29(l+k)} n=0m S Iyl (),

whence

wm (h;7/n), < wm (h; 21/ (n+ 1)), < wn (h;260), < 2wy, (h;9),

27 1/0
< 2™Cy (k,1,m,r) o™ < / =M+ (1) dt)
6

n

< Cyo (ky1,myr)n™™ (Z pIm=Lyf (71'/1/))1/0 .

v=1

The proof is complete.
Corollary 1. Let w;(f;0), = O(6%), a € (0,1], and wi (g;6), = 0(8P), B €
(0,k], 6 € (0,7, in the conditions of Theorem 1 for m <1+ k. Then

O (57) (a+ 3 <m),
(i) wm(h;0), =40 (5m(ln(7re/5))1/9) (a4 B =m),
O (6™) (a4 B >m).

(ii) wm+1(h; 5)r = O<5m) if o+ /8 =m.

Proof of Corollary 1 is similar to the proof of upper [12], Theorem 2, pp. 27-28.

The following assertion shows that the logarithm multiplier is needless in the
first estimation in (iii) of Theorem 1.

Theorem 2. Let p,q € [1,00], 7 = pg/(p+q —pq) € [1,00], f € Ly(T),
g € Ly(T), k,l € N. Then fxg € L.(T) and the following estimation holds:

wl+k(f * g, 6)7" S Cll(l7 k)”l(f; 5)pwk(g; 6)!]7 d € (07 77]' (10)

Proof. Put m = [ + k. For every § € (0,7 there is n € N such that
w/(n+1) <é <m/n. Let Tp,,, (f) and T}, 4 (g) be the best approximation polyno-
mials of f and g in Ly(T) and Lg(T), respectively. Hence [|f — T (), = En (f),
and [|g — Ty q (9)ll, = En (9),- Since the smothness module is semi-additive, we have
that

win(f*9;0)r S wm(fxg—Tonp (f) * Tng (9);0)r +win(Tnp (f) * Tng (9)50)r
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Let 01 = wi(f * g — Thp (f) * Tng(g);9)r. Since the convolution is commutative
and distributive, we have that

fxg—Thyp (f) * Thq (9)=(f - Thp (f) * (g — Thq (9))
+ Tap (f)*(g— Thg (9)) + Thq (9) * (f — Thyp (f),

whence

01 < wm ((f = Top (f) * (9 — Thg (9)) ;5)7«
+ Wm (Tn,p (f) * (g - Tn,q (9)) ;6)7« + Wm (Tn,q (g) * (f - Tn,p (f)) ;6)7«
=011+012+013.

By Young’s inequality (see Theorem A), we have that

o11 = Wi ((f = Top (f)) * (9 — Thg (9));9),
<2™||(f - Trnp () *(g— Tnyq (g))Hr
< 2" f = Top (Nl lg = Trg (9N, = 2" En (f), En (9), -

Applying Young’s inequality and taking into account that
Wm (Tn,p (f) ; 5)p < wp (Tn,p (f) - f; 5)p + wm (f7 6)p
<27 |f = Top (N, + wim (f:0), = 2" En (f),, + wim (f36),,,

we obtain that

012 = win (T (F) * (9 — Tug (9)):8), < wm (T ():0), llg — Tug (9,
< {27 B (1), +wm (:0),} B (9), = 2" En (1), Bn () + @ (£:0), En (9),
Similarly, we have that
015 = win (Thq (9) % (f = T (1)) 39), < 2™ (9), En (), + win (93 8), B (), -
By the estimations obtained for 011, 012 and o3, we have that
01 < 23y (9), En (£), + @i (£:0), Bn (9), + wm (9:0), En (), (11)

Now we estimate o9 = Wy (T p (f) * Thg(g);0)r. We need the well known
result of S. B. Stechkin (see [23], Inequality (3), p. 1511, case p = oo; also [4],
Theorem 5.2.1’, p. 217; [5], Section 4.4.8, pp. 228-230, case p € [1,00]): for every
trigonometric polynomial T,, of order n € N, and for every l € N,

HT,WHP < n! (2sin (nn/2)) " HAng

, ne€(0,2r/n). (12)
P
Setting T3, = Thp(f) and n = m/n in ([12)), we obtain that

|| <2t [l Tup(n)]| <2l (T F1im/m),
< 27 Ipt {21En (f), +wi (f;ﬂ/n)p} <n! {En (), +wi(fim/(n+ 1))p} ;
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whence (for 7/(n+1) < § < 7/n)

|

Similarly, we have that

T <nt {En (1), +w1(f50),}. (13)
|r9@], <ot {£a @), +wr @:0),} (14)

Applying Young’s inequality and taking into account and , we obtain (for
m =1+ k) that

02 0" (T () Tog ()|
=" |70, ()« T ()| <o |1 (f)Hp |z (g)Hq

< 6"t L By (1), 4w (f50), } { Bn (9)g + @i (9:0), }

whence (for 7/(n+1) < § < 7/n)
o2 <7 { B (), + w1 (£:0),} { En (9), + w1 (9:0), } - (15)
By and , we have that

wm (f *9:6), < (2"34+7™) By (£), B (9)g + (277 4+ 7™ ) wi (£:8), B (),

(2775 ) wi (9:8)g B (F), + w1 (f56), w1 (956),
whence applying we obtain that

o ([ #.938), < (2734 77) Calt)en (S5 7/ (n -+ 1), Calklon (g 7/ (m+ 1),
+ (2" + 7™ wi (f;0), Ca(k)wr (g;7/ (n + 1)),
+ (2l + 7rm) w (g; 5)q Ca(Dwy (f;7/ (n+ 1))p + 7wy (f; 5)p w (g; 5)q
< Cull, k)wi (f;6),wk (9:6),,

where 011 = (2m3 + 7Tm) C4(Z)C4(k) + 2k04(k‘) + 2104(l) + 7 (C4(k) + C4(l) + 1).
The proof of the theorem is complete.

Remark 2. The estimation (ii) of Theorem 1 immediately follows from (10)).
Indeed, for h = f % g and m > [ + k we have that

wm (hym/n), < 270w (hs /), < 27~ ERCy (1 k)w (Fi7/n), we (g3 7/n), -

Remark 3. In the case p,q € (1,00) there is the other proof of which is
based on well known inequalities of M. Riesz (see [1], v. 1, Theorem 7.6.4, p. 423,;
[2], v. 2, Theorem 12.10.1, p. 120; [24], Theorems 8.20.1 and 8.20.2, pp. 593-594;
[5], Section 3.12, Inequality (20), p. 183, and Section 5.11, Inequality (6), p. 339).
They are

150 (D)1, < Cr2(p) 91l and [l = Sn (¥)]l, < Cr3(p) En(v)p (16)
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for 1 < p < oo, ¢ € Ly(T), n € Zy, where Ci3(p) = 1 + Ci2(p). Note that the right
inequality of is a simple consequence of the left one:

19 = Sn (D), = 1v = Top(¥) + Sn (Trp(¥)) = Sn (V)]
<Y = Tap(@D)ll, + 150 (Tnp(¥) = ), < Cr3(p) En(¥)p-

Now we present the other proof of . Let m =14+ k, h = fx*xg, and let
n € N be such that 7/ (n +1) < § < w/n, where 6 € (0,7]. In virtue of well known
properties of smoothness modules we have that

Wi (h;0)r < wm(h — Sp(h);0)r + Wi (Sn(h);6),
<27 ||h = Sp(M)l,

h)” =03+ 04.

Estimate 3. In virtue of S,,(f)*g = f*Sn(g9) = Sn(f*g) = Sn(f) *Sn(g), we have
that

h—Su(h) = fxg—Sn(f*g)=(f—Su(f))*(g—5nlg)),
whence, by Young’s inequality and the right inequality of , we obtain that
1= Su(W)l, = [[(f = Su(f)) * (g = Su(9))]l,
< If = Sn(Hll, llg = Sn(9)lly < Cr3(p)En (£), Cr3(0) En (9) -
Therefore

o3 =2"[h = Sp(h)|, <2"C13(p)C13(9) En (f), En (9), -

Now estimate 0. Since m = I + k and Sy (h) = SR (f*xg) = S}ll)(f *
ST(Lk) (g9), applying Young’s inequality, for n = m/n and the left inequality of |D
sequentially, we have that

s, - st

< [swl, s,

ot wu% N, Jatuso],

S (A5uf) | |5 (4%09)]),

< 27"n™Cia(p)Cra(q) HA A% /g

=2""n

L

< 27" Cra(p)Cra(Q)wi (fsm/n),wi (g5 /1),

w/n

whence (6 < 7/n)

o4 =26" HST(Lm)(h) ; < 277" Chra(p)Cra(Qwi (fs7/n), wi (g5 7/n), -

Taking into account the estimations for o3 and o4 and applying , we obtain
that (7/(n+1) < 9)
wm, (h;6),
< 2"Ci3(p)C13(Q) En (f), En (9), + 27" 7" Cra(p)Cr2(q)wi (fi /1), wk (g: /1),
< 2"C13(p)Cr3(q)Ca(l)Ca(k)wy (f3 7/ (n+ 1)), wi (g5 7/ (n + 1)),
+ 277" Cha(p)Cra(@)2 wr (fim/ (n+ 1)), wi (g 7/ (n + 1)),
< A{2"C13(p)C13(q) Cu(l)Cu(k) + 7" Cr2(p) Cr2(q) } wi (f36), wk (95 6) 4 »
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whence
wik (f *9:6), < Cralp, ¢, 1, k)wi (f;6),wi (9:6),, 0 € (0,7,
where C14(p, q,1, k) = 27K C13(p)C13(q)C4 (1) Cy (k) + 7+ C12(p)Cr2(q). The proof is

complete.
Given numbers o € [1,00) and [ € N, we put

D) = {)\ ={M}r, € My: ZZOZI n~IN < oo} ,

B _ {A =o€ Mo: (Y0

v=n+1

- B n _ 1/o

y—ug) —O0(\), ne N} :

Given a € (0,00), let My(«) be the set of all sequences A € My such that n*\,, |
(n1). If A € Mp(«) then in virtue of estimations

(300 ) 7 = (300, (n ) Tnmoe ) e
< (Zp2an )Y <0 (14 (00) )7,
(ZSO:nH V—l)\g) 1o _ (Zgin+1(ya)\y)ay—aa—1)1/a
< (4 D)t (X521 777 )Y < (04 1) Nnga (00) Yone
< 2%(ca) Yo A1 < 2%(ca) YN, neN,

one has the inclusions My(a) € D) and My(a) € B for every o € [1,00).
Besides, it is obvious that B(?) ¢ D(?), ¢ € [1,00).

Lemma C ([11], Lemma 2). Let p € (1,00), p' = p/(p—1),1 € N and
A = {\} € My. Then the function fo(z;p;\) = 300, n~ VP \,e™ for x € T,
satisfies the following conditions:

(i) fo € L, (T) for A € D).
(11) En (f())p =0 (ATL)7 ne N7 f07" A€ B(p)

(iil) wi (fo;m/n), =0 (M), n €N, for A € Bl(g) N B® and o = min {2, p}.

Note that in (iii) of Lemma C one can put o = 1 since Bl(l) C Bl(a).

In what follows we need the following statements [12].

Lemma D ([12], Lemma 2). Let r € (1,2], ¢ € L,.(T) with Fourier series
V(@) ~ > ez en(¥)e™ and m € N. Then

n~™m (Zn LIt —2 ]cy(i/f)y‘) 1/r < Ci5(m, T)wm(qp;ﬂ/n)r, n € N.

v=1

Lemma E ([12], Lemma 3). Let v € Lo(T) have the Fourier series (x) ~
S oen(¥)e™ and m € N. Then

n <Zn vE, (‘p)z)m < Cig(m)wm(Y;m/n)2, n €N.

v=1
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Lemma F ([12], Lemma 4). Let 1 € C(T) have the Fourier series (x) ~
S0 en(¥)e™ with ¢, (¢) > 0 for every n € N, and let m € N. Then
(1) wm(Y;7/n)o0 > wm(Re; m/N)oe > Crz(m)n=> 30 v*c,(¢), n € N, where
m if m is even,
m+1 o m is odd.
(i) wim (Y; T/N)oe > wm(Im);7/n)se > Cig(m)n= > 0 v* e, (¥), n € N, where

m-+1 if m is even,

=m+(1—(=1)™)/2 =

w=m+ (1+(-1)")/2 = m if m is odd.

Lemma 1. Let p,q € (1,00), 7 =pq/(p+q—pq) € (1,00], 8 = 0(r) = min{2,r}
for r € (1,00) and 0(c0) =1, m € N, A = {\,}2 IGMO( ) and € = {ex}02; €
My(B) for some a, € (0,00). Then there are functions fo(-;p;A) € Ly(T) and
go(-;q;€) € Ly(T) such that

(i) En-1(fo)p < Cr9(p, ) An, En-1(g0)q < Cr9(q; B)en, n € N.

1/6
(ii) wim(fo * go; /1)y = Coo(m, ) <Zy9m Y 9) ,n€N.
Proof. First we consider the case 1 < r < 2. For p,q € (1,00) (p/ =p/(p—1),
¢ =q/(qg—1)), let
. o o0 —-1/p’ inx Lo o o0 —-1/q inx
folwspA) =)~ n VPN golwige) = g™, e

Since A € My(a) € BP) ¢ DP) and € € My(B) ¢ B ¢ D, in virtue of (i) and
(ii) of Lemma C we have fo € Ly(T), En—1(fo)p < Cio(p,a)\, and go € Ly(T),
En-1(90)q < Ci9(q, B)en, n € N. By Theorem A, the convolution

ho(x) = (fo * go)(z) = Z:;l n~ PR\ o™z e T,
belongs to L, (T) for » = pq/(p+ ¢ — pq). Since r — 1 —r(1/p' +1/¢") = 0,
Cus(m, P (hosm/m)y = n = (S, ™2 e, (o))"
/ / 1/r r
—pm (Zn ) Vrm+r—2—1”(1/P +1/q ))\1:5;) —nm (Zn ) VTm_l)‘;:eZ)l/ ’

V= V=

by Lemma D, whence the estimation (ii) follows in the case 1 <r < 2.
Consider now the case 2 < r < co. Let

o0 ‘U o0 U
folws )=~ e go(ase) =) " ewe® we
Taking into account that A\ € My(«) and € € My(3), we have that

Do M =D @ P S AT o = MR (22 1) < oo,

9 o0 262 2 52 262 2 -1
Yo = D@ e 2 < YT = (1) <oe

In virtue of [1], v. 1, Theorem 8.20, p. 345, lacuna trigonometric series consid-
ered converge almost everywhere and are Fourier series of their sums fy and g,
respectively, and, for every p,q € (1, 00),

I fo( )‘)Hp < 021(17)(2210 AQ”)I/Q < Co1(p)2° (22a - 1)_1/2 AL,

—1/2
lgo(s2)l, < Cor(@) (> 32 < Cn(@)2” (22 =1) e,
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Hence fy € L,(T) and gy € Ly(T). Since for every n € N there exists s € Z such
that 2° < n < 2571 (= 2% < n + 1 < 2°F1), we have by [1], v. 1, Theorem 8.20, p.
345, that

B B <10 =500, = [
< Ca1(p) (Zisﬂ /\%V)l/z _ Cno) (ZLH(QW AQV)QQ_QW)W

< Cor(p)28H) ¥ Ngein (Zim 2_2m) -

= Cu(p)2” (2** - 1)_1/2 Agsr1 < Cor(p)2* (22 — 1)~

1/2
/ )‘n—&-l,
whence E,(fo)p < Coi(p)2* (22> — 1)_1/2 An41 for every n € N. Since Ey(fo), <

foll, < Cor(p)2* (22* — 1) "% A1, we obtain that E,_1(fo)p < Cio(p, @)X, for
every n € N. Similarly, E,,—1(g0)q < Ci9(q, 5)en for every n € N. By the formula
above for Fourier coefficients of convolution,

ho) = (fox go)(w) = > Awwewe?, zeT.

Since p,q € (1,00), ho € L,(T) for r = pq/(p + q¢ — pq) € (1,00] and, since r > 2,
ho € La(T). Let as above s € Z; be such that 2° < n < 25t (= n < 251 —1).
Clearly we have that

2 > 2 & 2
EO (hO)Q - Zz/:() )\ u€2u > )\151, E2s(h0)2 == Zy:s )\21/521/ > )\ é+1€25+1
for s € Z. Taking into account these estimations, we obtain that
s 2ortl g 2ntl

f:yzm_l)\zszgz Z A N22 <Z>‘2‘“€2“ Z v?
v=1

p=0 v=2# v=2H

S S
<271y "?mtNG g8, = 271 {2PMATe] 4 20mASeS ) "2t NG F
p=0 =2
s—1
oL AR PYERE LV R o S PERE
pn=1
s—1
Eg(ho)2 + 2 Ef (ho)2 + > 22UV ES, (ho)2
pn=1

22m
uzl 1/:2H_1+1

231

Z 2m— 1E2 hO

m24m+1

— 227’71—1

B modm+1s-l 28 B
< 92m-1 {Eg(ho)Q + 2B (ho)y + oo . Y VPTEN(ho)
{ (ho)g + 22mE1 (ho

< 022 ZVQm 1E ho 2 < 022 ZV2m IE ho)

whence we obtain by Lemma E that for r € (2, 00)
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e (S0 P IN2e2) YR < (O (m) P (S v ER (ho)2)
< (Coa(m))/2Cr6(m)wpm (ho; 7/n)2 < (Cao(m, 2))~ wm(ho,ﬂ/n)

It follows from this estimation that (ii) holds for r € (2, 00).

At last we consider the case r = oco. In this case 1/p + 1/q = 1, that is ¢ = p/,
and therefore 1/p’ +1/¢' = 1. Let fo(-;p; A) and go(; ¢;€) be functions such as in
the case 1 < r < 2, and hy = fo * go. By (i) of Lemma F for even m and (ii) of
Lemma F for odd m, we have that

Coz(m)wm (ho; /1) o _mz v"™ey,(ho)

=n " g 1V /P )\ e, =n™ g 1Vm ey,
V= V=

whence the estimation (ii) follows with constant Cag(m,o0) = (C23(m))~! in the
case r = co. Lemma 1 is proved.
Given p,q € [1,00] and A\, e € M), put

Ep[Al * Eyle] ={h = fxg: f € By, g € Ee]}.

The following theorem shows that estimations (i) and (ii) of Theorem B are exact
in the sense of order on classes Ej,[A]* Ey[e] in the case p,q € (1, 00) under condition
that A € My(«) and € € My(3) for some «, 3 € (0, 00).

Theorem 3. Let p,q € (1,00), 7 = pq/(p+q—pq) € (1,00], 8 = 0(r) = min{2,r}
for r € (1,00) and 6(c0) =1, me N, A ={\,} € Mp(«), € = {en} € Mo(5), where
a, € (0,00). Then

n 1/6
sup{wm(h;/n)r : h € E [N« Egle]} <n™™ (Z,,;l uem*1A§5§> ,n e N.

Proof. Indeed, the upper estimation for every p,q € [1,00] and \,e € M
immediately follows by inequalites (i) and (ii) of Theorem B. The lower estimation
is realized by function

ho(:;p,q; A €) = (Cro(p, @) fo (05 A) * (Cro(q, B)) " go(+1 g5 €) € Ep[A] % Eyle]

in virtue of (ii) of Lemma 1.

Note that Theorem 3 in the case of scale of power majorants of sequences of the
best approximations of functions forming the convolution was proved by author in
[12], Theorem 2.

One says that a function w € §; satisfies (5)-condition with parameter ~ (we
write w € S(7)) if there is a number v € (0,) such that 6 "w(d) T (0 1) and satisfies
(S1)-condition with parameter n (we write w € Sj(n)) if there is a number n € (0,1)
such that 6~ ¢"w(8) | (6 1). Put w, = w(r/n), n € N. Then conditions (S) and
(S7) admit equivalent formulations:

e weS(y) <= nlw, | (n1) < niwn, <njwy,, for every n1 < na.

eweSMn) = 1w, T (n]) = nll_"wm < né_"wm for every ny < ns.
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Note that if w €  then {w,}3%, € My and n'w, T (n 1). Besides, it is obvious
that w € S(y) = {wn} € My(y) for some v € (0,1).

The conditions (B™M) and (Bl(l)) (the conditions of N. K. Bari), (5) and (5;)
(conditions of S. B. Stechkin) appeared in [25], Section 2, (in the same place the
series of equivalent conditions discussed).

The following implications are valid: w € S(y) = {wn} € B9, w € Si(n)
= {wn} € Bl(a) for every o € [1,00). Indeed, the first implication follows by
S(y) € My(y) € B, v € (0,1), and the second one follows from the following
estimation (n € (0,1))

(S0 ren) = (5, () )

_ n on— 1/0'
< nt My, (Zuzl o 1) < Cay(n, a)nlwn, n € N.

Lemma 2. Let I,k;m € N, p,q € (1,00), 7 = pq/(p + ¢ — pq) € (1,00],
0 = 0(r) = min{2,r} for r € (1,00) and 0(c0) =1, w € S(v1) NS (ny) T, ¢ €
S (v9) N Sk (n3) C Qk. Then there are functions fo(-;p;w) € Ly(T) and go(-;q;¢) €
Ly(T) such that

(i) wi(fo:0)p < Cos(l,p,v1,m1)w(9) and wi(go,d)q < Cas(k,q,v2,1m2)p(0) for 6 €
(0, 7].

" 1/6
(i) wm(fo* go;m/n)r > Cog(m,r)n=™ (szjl Vemlwe(ﬂ/y)goe(ﬂ/y)> ,neN.

Proof. Put fo(;p;w) = fo(:;p; A) and go(+;¢;¢) = go(+;q;€), where A = {wn},
e={p,}, wn =w(m/n), ¢, = ¢(r/n), n € N, and fo(-;p; ), go(-; ¢; ) are functions
considered in Lemma 1. Since w € S(v;) = {wn} € Moy(7;) and ¢ € S (v,)
= {¢,} € My(7,), we have by Lemma 1 that fo(:;p;w) € Ly(T), En—1(fo)p <

Clg(p7’)/1)wn7 n € N7 and gO<7Q7SO) € LQ(T)a En—l(g())q S Clg((L’YZ)SOna n € N.
Taking into account that w € Sy(n;) <= n'"Mw, 1 (n 1) and in virtue of (5)) we
obtain that (o0 = o(p) = min {2, p})

il form/m)y < Cs(Lp)n ™ (S0, v ES_ (fo)p) 7
< 05(l,p)019(p,’71)n_l (22:1 Vgl_lwg)l/g < C5(l,p)C19(p, 71)024(7717 J)wna

whence wi(fo;m/n)p < Cor(l,p, 1,11 )wn, n €N, and therefore

wl(f0§5)p < 21027(57]77%7771)‘*)(5)7 § € (0,7].

Similarly, taking into account that ¢ € Si (ny) <= nF"2p, T (n 1), we obtain
that

wi(90;6)g < 2°Car(k, 472, m2)9(0), 6 € (0,7
At last, we have by (ii) of Lemma 1 that (Cas(m,r) = Coo(m, 1))

n 1/0
wm(fo * go;m/n), > Cos(m,r)n™ ™ (Z Vem*lwﬂcpg) , neN.

v=1
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Lemma 2 is proved.
Given p,q € [1,00], [,k € N, and w € €, p € Q, we denote

Hifw] « Hilgl = {h=f g f € Hiwl,g € H 4]}

Theorem 4. Let p,q € [1,00], 7 = pq/(p+q—pq) € [1,00], 0 = 6(r) = min {2, r}
for r€[l,00) and 6(o0) =1, l,k,m e N, w € Q, ¢ € Qk. Then (n € N)

(i) For arbitrary h € HJw] * H¥[p] under constants Cos = Cs(k,l,m,r) in the
case m < 14k, Cog = C11(1, k) in the case m = 1+ k, Cag = 24K Cs(k, 1, m, 1)
or Cog = 2m_(l+k)011(l, k) in the case m > 1+ k, there are the estimations:

. 1/6
o wy(hym/n), < Cogn™™ (Zuem_lwe(w/y)wg(ﬂ'/y)> if m<l+k;
v=1

o wilhim/n), < Cogu(m/n)p(n/n) if m>1+k.

(ii) If p,q € (1,00) and w € S(v1) N Si(m) C L, ¢ € S(v2) N Sk(nz) C Qu then
there is an individual function hg € H:f)[w] * Hg[w] such that under constants

C30 = C3O(k7l7m7r7p7Q77177717727772) and C31 = (gm)_l 030

. 1/6
® wm(ho;m/n)y = Cyon™™ (Zlﬁmlwe(ﬂ/’/)@e(ﬂ/”)> if m<l+Fk;
v=1

® wm(ho;m/n)r 2 Caiw(m/n)p(m/n) if m =1+ k.

Proof. The first estimation in (i) follows from (i) of Theorem 1, the second one
in (i) follows from in the case m = [+ k and from (ii) of Theorem 1 and Remark
2 in the case m > [ + k. The first estimation in (ii) holds for

ho(';p,q;W,gO) = (025(l,p,’)/1,771)>_1f0(';p,W) * (025(k7q7727n2))_1g(](';Q7 90)

by (ii) of Lemma 2. The second estimation in (ii) for the same hg follows by (ii) of
Lemma 2 in virtue of monotonicity of w € ; and ¢ € . Indeed,

wm(ho3 7/n)y > Coon™™ (Sy o1 (m/v) g (m /v)) /*
> Cyon™"w(m /n)p(m/n) (g v 1) = (9m) = Coow(r/n)p(m /),

where Cso = Ca5(1, p, 71, 11)Cas (K, ¢ 725 12) C26(m, 7).

Corollary 2. Let p,q € (1,00), r = pg/(p+q—pq) € (1,00], 0 = O(r) =
min {2, 7} for r € (1,00) and 0(c0) =1, L,k,m e N,m <Il+k,a € (0,1), 8 € (0,k).
Then for 6 € (0, 7]

5otp (a+ B <m),
(i) sup {wm(h;8), : h € HL[6°] « HE[6P]} < { 6™ (In(re/0)) /0 (a+ B =m),
o (a4 B >m).

(i) sup {wm1 (h:0),  h € HY[5%) « HE[67)} = 6™ if o+ 5 =m.
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Proof. The upper estimations in (i) and (ii) immediately follow from (i) of
Theorem 4 (see also Corollary 1). The lower estimations in (i) and (ii) are realized
by an individual function hy € HJ[6] « H} [6°] in virtue of (ii) of Theorem 4 since
w(d) = 6% € SNS; for a € (0,1) and ¢(6) = 6° € SN Sy, for B € (0,k) (see the proof
of lower estimations in Theorem 2 of [12], p. 28).

Remark 4. Theorem 4 shows in fact that inequalities (i) and (ii) of Theorem
1 and are exact in the sense of order on classes HIl)[w] * Hé“ [¢] in the case
p,q € (1,00) under condition that w € SN S; and ¢ € SN Sg. The last condition
guarantees existence of individual functions (Cas(l,p,v1,m1))  fo(;p,w) € Hzl,[w]
and (Cas(k, q,7v2,1m2)) 1g0(; ¢, ) € Hé“ [¢] convolution of which gives the extremal
function ho(;p, q;w, @) € H}D[w] * Hg“'[go].

Remark 5. In the case m > [ + k we have by Theorem 4 that

sup {wm(h; §)r i h € Hw] = Hg;[go]} = w(d)p(d), &€ (0], (17)

under the condition that w € SN S; C ; and ¢ € SN S, C Q for every k,1 € N;
p,q € (1,00) and v = pqg/ (p+ q—pq) € (1,00]. In this case takes place for
arbitrary functions w € ; and ¢ € Q without condition that w € SN .S; and
© € SN Sk, but the lower estimation is realized by sequence {h,(:;p, ¢;w, )}, C
Hé,[w] * H, 5[4,0]. Indeed, the upper estimation in immediately follows by (ii) of
Theorem 1 for m > [+ k (see also Remark 2), and by for m =1+ k. The lower
estimation in is realized by sequence (see [11], Lemma 1) of functions

b (30, s w, ) = (Ca2(1,p)) " fu (50, w) * (Csa(k, @) ' gn(50,0), n €N,

in virtue of (4) and (ii) of Lemma 1 [11], namely
Ca(m)wpm (hn; m/n)r > By 1(hn)r > C33(1)(C32(l, p)C32(k, Q))_lw(ﬂ-/n)@(ﬂ-/n)?

where f,(z;p,w) = 0P w(n/n)din(x), gn(z; 4, ) = 0"/ (1 /n)din (@), din (@) =
>t ¢ n € N. Note that {fn( pw)} C Ly(T > {9n(:0:¢)} C Lg(T) and
wl(fn;(s)p < CSQ(Zap)w(5)¢ wk’(gn; 5) 032(k C]) ( ) (0777]

Remark 6. (i) For existence of an individual function hy = fy * go € H}D[w] *
Hg: [¢] which realizes the estimation E,,_1(ho)r > Csa(r, 1, k,p, ¢)w(mw/n)p(7/n), n €
N, for r € (1,00), and for arbitrary w € ; and ¢ € Q (whence wp € Q1), it is
necessary that wy € Sp1(n) for some n € (0,1 + k). Indeed, if such function exists,
in virtue of the following inequality [26]

n 1/
G0 (S g (),) 7 < G+ b rena(gs/n), (1)

v=1

(where 7 € (1,00) and p = max {2,r}, ¢ € L,(T)) and (10)), we have that

n 1
Coan™ 9 (Y2 () ))

v=1

n 1/p
< (k) (Zy:1yp(l+k)71El€*1 (ho)r) < Csswiyk(ho;m/n),

< C35Cniwi(fo; m/n)pwi(go; m/n)q < C3sCriw(m/n)e(n/n), n €N,
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whence (n € N)

n—(+k) <Zn Vp(l+k)—1wﬁ(7r/y)<pp(7r/y)>1/p < Cs6(r, 1, k,p, q)w(m/n)p(m/n).

v=1
l(i)k, and this is equivalent to wy € Siyk(n) for some n € (0,1 + k).
Indeed, if wp € Siyr(n) for some n € (0,1 + k) then clearly wy € Bl(fr)k for every

(p)
I+k

)is

Therefore wp € B

p € [1,00) (see the argument before Lemma 2). On the other hand, if wp € B

for some p € [1,00) (in particular, for p = max{2,7}), then (wp)” € Bg&_k
equivalent to (wp)” € Sypk)(§) for some & € (0,p (14 k)) (see [25], Lemma 2.3,
case p (I + k) € N; the argument holds if p (I + k) ¢ N). It follows that we € S;1x(n)
forn=¢/p e (0,14 k).

Note that if w € S;(n;) C Q; and ¢ € Sk(ny) C Q then wy € Siyr(n, +1ny) C
Qi1k; the converse does not hold in general.

(i) For existence of an individual function ho = fo * go € H}[w] * HF[p] which
realizes the estimation wy,(ho;d), > Cs7(m, 7,1, k,p,q)w(d)p(d), § € (0,7], for r €
(1,00) and m >l + k, and for arbitrary w € €; and ¢ € Q (whence wp € Q1 k), it
is necessary that wy € Sj1x(n) for some n € (0,1 + k).

The proof of this assertion is similar to the proof of (i). We only use instead of
the following estimation (m > [+ k)

n 1
(k) (Z PR =10 (1/};7T/y)r) /p < Ozg(m, 1+ k,m)wipr(¥;7/n)e. (19)

v=1

For , it is necessary to take into account fork=m,p=r,0=60=min{2,r},
to apply Hardy’s inequality (see [27], Theorem 346, p. 308) for r # 2 (whence
p/0 > 1, p(m—(l+k))+1 > 1) and to change the summation order for r = 2

(whence p/6 = 1), and to apply (18).

Remark 7. One can get the upper estimation w;ir(f * ¢;9), by means
wi(f;0)pwi(g;0)q in Theorem 2 for p,q € [1,00], 7 = pg/(p+q — pq) € [1, 00| imme-
diately by applying Young’s inequality (see Theorem A). Indeed, if f € L,(T) and
g € Ly(T) then in virtue of HAipr < 21| f||,, and HAngq < 2K g, we have
that Alf € L,(T) and Afg € Ly(T) for every t € R. Since Al(e™*) = (e — 1)l e
and Af(e™?) = (et — 1)k e then (v € T, t € R)

Alf(z) ~ Z e(f) (ei”t - l)l e® and AFg(z) ~ Z cv(9) (e“’75 - l)k e,
veZ\{0} veZ\{0}

Taking into account that the formula for calculating the Fourier coefficients of the
convolution (see after Theorem A), we obtain that

l k N vt _ \Fk e ALtk
(Alf #afg) @)~ D2 elfelo) (4 = 1) e A (1 g) (2),
whence it follows that Affk (f*g) = ALf x AFg a.e. on T. Applying Young’s

inequality (taking into account that f * g € L,(T) and, therefore, A* (fxg) €
L,(T)), we have that for [t| < ¢

|af (£ g)

<], Jata], < cssomntsian
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whence

Witk (f *9;0)r < wi(f;0)pwi(g;0)g, 0 € [0,00). (20)

It is natural to call the Young inequality for smoothness modules.

Remark 8. The proof of the upper estimation of w;,x(f * g;9), by means of
wi(f;0)pwr(g;0)q given in Theorem 2 has the aim to determine an amount of charac-
teristics Ey, (f), and E, (g), in the expression of the estimation (see the estimation
after ) The proof of this estimation given in Remark 7 (see ) doesn’t provide
such an information.

It should be noted that one can receive the estimation of og (see ) without
if apply (see the proof of Theorem 2) in the following way:

02 = wl+k(Tn,p (f) * Tn,q (g) ;5)7" < Wl(Tn,p (f) ;5)pwk(Tn7q (g) ;(5)11
< (2B (D) + w130 ) (2°En (9), + wi(9:9)4)

< (2Ca ) +1) (2Ca (k) + 1) w3 6)pn(g: 0)g-

Note also that application of allows us to receive immediately the following
estimation (compare with the estimation o4 in Remark 3):

win (Sn (1) ;0), = Wik (Sn (f +9)50), = Wik (Sn (f) * S (9):9),

< wi (Sn (f)30),wk (Sn(g):6), < Crz(p) Cr2 (@) wilf;0)pwi(g; 6)q-
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