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MARCHAUD’S TYPE INEQUALITIES FOR
CONVOLUTION OF TWO PERIODICAL

FUNCTIONS IN Lp(T), I

Abstract

In the paper the upper estimations of smoothness Lr-module ωm (h; δ)r of
order m of the convolution h = f ∗g of two 2π periodic functions f ∈ Lp (T) and
g ∈ Lq (T) are obtained by means of the product expression ωl (f ; δ)p ωk (g; δ)q

of smoothness modules of these functions, wherem, l, k ∈ N, p, q ∈ [1,∞], 1/r =
1/p+1/q−1 ≥ 0, T =(−π, π]. In particular, it is proved in the case p, q ∈ (1,∞)
that the obtained estimations are exact in the terms of order on classes of
convolutions with given majorants of smoothness modules of f and g under
some regularity of the majorants in the case m < l + k and under arbitrary
majorants in the case m ≥ l + k.

In what follows we use the following notation.

• Lp (T) , 1 ≤ p < ∞, is the space of all measurable 2π periodic functions

f : R → C with finite Lp-norm ‖f‖p =
(
(2π)−1 ∫

T |f (x)|p dx
)1/p

<∞.

• C (T) ≡ L∞ (T) is the space of all continuous 2π periodic functions with uni-
form norm ‖f‖∞ ≡ max {|f (x)| : x ∈ T}.

• En (f)p is the best approximation of a function f in the metric of Lp (T) by
the trigonometric polynomials of order ≤ n ∈ Z+.

• Sn (f ; ·) is the partial sum of order n ∈ Z+ of the Fourier-Lebesgue series of a
function f ∈ L1 (T) : Sn (f ;x) =

∑n
|ν|=0 cν (f) eiνx, x ∈ T.

• ωl (f ; δ)p is the smoothness module of order l of a function f ∈ Lp (T) :

ωl (f ; δ)p = sup
{∥∥∆l

tf
∥∥
p

: t ∈ R, |t| ≤ δ
}

, l ∈ N, δ ≥ 0, where ∆l
tf (x) =∑l

ν=0 (−1)l−ν
(
l
ν

)
f (x+ νt) , x ∈ R.

• M0 is the class of all sequences ε = {εn}∞n=1 such that 0 < εn ↓ 0 (n ↑ ∞).

• Ep[ε] = {f ∈ Lp(T) : En−1(f)p ≤ εn, n ∈ N} for p ∈ [1,∞] and ε ∈M0.

• Ωl (0, π] ≡ Ωl is the class of all functions ω (δ) defined on (0, π] and satisfying
the conditions: 0 < ω (δ) ↓ 0 (δ ↓ 0) and δ−lω (δ) ↓ (δ ↑).

• H l
p[ω] = {f ∈ Lp(T) : ωl(f ; δ)p ≤ ω(δ), δ ∈ (0, π]}.

The convolution h = f ∗g of f ∈ L1 (T) and g ∈ L1 (T) is defined by the formula:
h (x) = (f ∗ g) (x) = (1/2π)

∫
T f (x− y) g (y) dy; it is known (see f.e. [1], v.1, § 2.1,

pp.64-65, [2], v.1, § 3.1, pp.65-66) that the function h is defined almost everywhere,
2π periodic, measurable and ‖h‖1 ≤ ‖f‖1 ‖g‖1 (whence it follows in particular that
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h = f ∗ g ∈ L1 (T)). The last statement is a particular case of the following result
known as the W.Young’s inequality (see, f.e. [1], v.1, Theorem (1.15), pp.67-68; [2],
v.2, Theorem 13.6.1, pp.176-177; [2], v.1, Theorem 3.1.4, p.70, Theorem 3.1.6, p.72).
Given p ∈ (1,∞), let p′ = p/(p− 1), p′ = 1 for p = ∞ and p′ = ∞ for p = 1.

Theorem A. Let p, q ∈ [1,∞], f ∈ Lp (T) and g ∈ Lq (T), h = f ∗ g, 1/r =
1/p+ 1/q − 1. Then

• If 1/r > 0 then h belongs to Lr (T) and ‖h‖r ≤ ‖f‖p ‖g‖q.

• If 1/r = 0 then h belongs to C (T) ≡ L∞ (T) and ‖h‖∞ ≤ ‖f‖p ‖g‖p′.

Recall that the Fourier coefficients cn (h) of h = f ∗ g of two arbitrary functions
f ∈ L1 (T) and g ∈ L1 (T) are calculated by the formula (see [1], v.1, Theorem
(1.5), p.64; [2], v.1, p.66, formula (3.1.5)) cn (h) = cn (f ∗ g) = cn (f) · cn (g) for
every n ∈ Z.

The upper estimation of the smoothness module ωk (ψ; δ)p of ψ ∈ Lp(T) by
means of ωl (ψ; δ)p is called the Marchaud inequality (without derivatives) in Lp(T),
where k, l ∈ N, k < l, 1 ≤ p ≤ ∞. For the first time a similar estimation for
the case of the real functions ψ continuous on [0, 1] with uniform norm ‖ψ‖ =
max {|ψ (x)| : x ∈ [0, 1]} appeared in [3], Section 2.4.21, Inequality (20), p. 374 (see
also [4], Theorem 3.3.1, Inequality (15), p. 164; [5], Section 3.3.2, Inequalities (11)
and (12) , pp. 117 and 119; [6], Proposition 3.1, p. 291; [7], Theorem 2.8.1, Inequality
(8.2), p. 47).

ωk (ψ; δ) ≤ C1(k, l)δk
(∫ 1

δ
t−(k+1)ωl (ψ; t) dt+ ‖ψ‖

)
, δ ∈ (0, 1], (1)

where ωk (ψ; δ) = max
{∣∣∆k

tψ(x)
∣∣ : 0 ≤ x ≤ 1− kt, 0 ≤ t ≤ δ

}
, 0 < δ ≤ 1/k.

Later, the other proof of (1) (with constant 1/l instead of 1 for the upper bound
of the integral and for δ ≤ 1/2k) was given in [8], Section 4.1, Inequality (34), p.
741, by applying an result of approximation of ψ ∈ C [0, 1] by piecewise polynomial
functions (splines). The example of a function that shows that (1) is an exact
estimation in the sense of order was given in [9], formula (5) and Example 5, pp.
195 and 198 (see also [4], Section 3.3, formula (21), p. 168, and Section 3.5, p. 191).

In the periodic case the estimation

ωk (ψ; δ)p ≤ C2(k, l, p)δk
(∫ 2π

δ
t−(σk+1)ωσl (ψ; t)p dt

)1/σ

, δ ∈ (0, π], (2)

is an analogue of the Marchaud inequality, where σ = σ (p) = min {2, p} under
p ∈ [1,∞) and σ (∞) = 1 (see [10], Theorem 3, Inequalities (27), p. 130, case
l = k+1; also [6], Section 3, Inequality (3.10), p. 293; [7], Theorem 2.8.4, Inequalities
(8.14) and (8.15), pp. 49 and 50).

Inequality 2 is a consequence of the estimation

ωk (ψ;π/n)p ≤ C3(k, l, p)n−k
(∑n

ν=1
νσk−1ωσl (ψ;π/ν)p

)1/σ
, n ∈ N, (3)
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(see Remark 1). This estimation is received by applying the inequality

En−1 (ψ)p ≤ C4(l)ωl (ψ;π/n)p , n ∈ N, (4)

of the so called direct theorem ”without derivatives” of the approximation theory of
periodic functions in Lp(T) in the inequality

ωk (ψ;π/n)p ≤ C5(k, p)n−k
(∑n

ν=1
νσk−1Eσν−1 (ψ)p

)1/σ
, n ∈ N, (5)

of the so called inverse theorem ”without derivatives” of the approximation theory
of periodic functions in Lp(T).

The inequalities (4) and (5) are well known and given in many monographs on
the approximation theory (see for instance [4], Sections 4.2 and 5.4; [5], Sections
5.1, 5.11, and 6.1; [7], Sections 7.1-7.3, and their references). The historic review of
appearance of (4) and (5), and of their exactness in the sense of order on the classes
H l
p [ω] and Ep [ε], respectively, are given by the author in [11] and [12].

The estimation (2) or the equivalent estimation (3) (see Remark 1) is exact in the
sense of order on the class H l

p [ω] for all p ∈ [1,∞], namely, for each p ∈ [1,∞] and
ω ∈ Ωl there is an individual function ψ0 (·; p;ω) ∈ Lp(T) with ωl (ψ0; δ)p ≤ ω (δ),
δ ∈ (0, π], such that

ωk (ψ0;π/n)p ≥ C6(k, l, p)n−k
(∑n

ν=1
νσk−1ωσ (π/ν)

)1/σ
, n ∈ N. (6)

The examples of functions for which (6) holds in the case p = 1 and p = ∞ are
given in [13], Lemma 3, p. 176 (see also [14], Lemma 5, p. 75, case p = ∞, and
[15], Theorem 14, p. 28, case p = 1). The corresponding example for 1 ≤ p < ∞
(for p = 1 this example differs from the function in [13] and [15]) was given in [16],
Proposition 1, Lemmas 1 and 2, p. 209. Note that the assertion of the validity of
(6) in the integral form for all p ∈ [1,∞] and arbitrary ω ∈ Ωl was announced by the
author in [17], Lemma 3, p. 1303. The complete proof of this assertion was given in
[18], Lemma 3.8, p. 75. Examples of functions ψ0 (·; p;ω) for (6) are also given by
the author in [19-22].

In the present paper the upper estimations of ωm(f ∗ g; δ)r are obtained by the
products ωl(f ; δ)pωk(g; δ)q, where m, l, k ∈ N, p, q ∈ [1,∞] and r = pq/(p+q−pq) ∈
[1,∞]. In the case p, q ∈ (1,∞) the exactness of obtained estimations in the sense of
order is proved for the classes of convolutions with given majorants of smoothness
modules of functions f and g under condition of some regularity of these majorants
in the case m < l + k and for arbitrary majorants in the case m ≥ l + k.

The following statement is an analogue of the inverse theorem of the approxima-
tion theory for convolution of two periodic functions.

Theorem B ([ 12], Theorem 1). Let p, q ∈ [1,∞], 1/r = 1/p + 1/q − 1 ≥ 0,
f ∈ Lp(T), g ∈ Lq(T), h = f ∗ g, m ∈ N. Then

(i) If 1/r > 0 then h ∈ Lr(T), r ∈ [1,∞), and, for θ = θ(r) = min{2, r},

ωm (h;π/n)r ≤ C7 (m, r)n−m
(∑n

ν=1
νθm−1Eθν−1 (f)pE

θ
ν−1 (g)q

)1/θ
, n ∈ N.

(ii) If 1/r = 0 then h ∈ C(T) ≡ L∞(T), q = p′ and

ωm (h;π/n)∞ ≤ C7 (m, r)n−m
∑n

ν=1
νm−1Eν−1 (f)pEν−1 (g)q , n ∈ N,
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where C7(m, r) is a positive constant depending only on m and r.
Theorem 1. Let p, q ∈ [1,∞], r = pq/(p + q − pq) ∈ [1,∞], f ∈ Lp(T),

g ∈ Lq(T), h = f ∗ g, k, l,m ∈ N, θ = θ(r) = min{2, r} for r ∈ [1,∞) and
θ(∞) = 1. Then h ∈ Lr(T) and the following estimations hold (n ∈ N):

(i) for m < l + k

ωm (h;π/n)r ≤ C8 (k, l,m, r)n−m
(

n∑
ν=1

νθm−1ωθl (f ;π/ν)p ω
θ
k (g;π/ν)q

)1/θ

;

(ii) for m > l + k

ωm (h;π/n)r ≤ 2l+kC8 (k, l,m, r)ωl (f ;π/n)p ωk (g;π/n)q ;

(iii) for m = l + k

ωm (h;π/n)r ≤ 2mC8 (k, l,m, r)ωl (f ;π/n)p ωk (g;π/n)q (ln(en))1/θ ,

ωm+1 (h;π/n)r ≤ 2mC8 (k, l,m+ 1, r)ωl (f ;π/n)p ωk (g;π/n)q .

Proof. In virtue of inequalities (i) and (ii) of Theorem B and (4), we have that

ωm (h;π/n)r ≤ C7 (m, r)n−m
(∑n

ν=1
νθm−1Eθν−1 (f)pE

θ
ν−1 (g)q

)1/θ
(7)

≤ C8n
−m
(∑n

ν=1
νθm−1ωθl (f ;π/ν)p ω

θ
k (g;π/ν)q

)1/θ
,

whence the estimation (i) follows with C8 = C8(k, l,m, r) = C7 (m, r)C4(l)C4(k).
Further, applying well known property of smoothness Lp-module of order l (see

for instance [5], p. 116, inequality (6))

δ−l2 ωl(f ; δ2)p ≤ 2lδ−l1 ωl(f ; δ1)p for 0 < δ1 < δ2 (8)

we obtain that

n−m
(∑n

ν=1
νθm−1ωθl (f ;π/ν)p ω

θ
k (g;π/ν)q

)1/θ

= n−m
(∑n

ν=1

(
νlωl (f ;π/ν)p

)θ (
νkωk (g;π/ν)q

)θ
νθ[m−(l+k)]−1

)1/θ

≤ 2l+kωl (f ;π/n)p ωk (g;π/n)q n
−m+l+k

(∑n

ν=1
νθ[m−(l+k)]−1

)1/θ

≤

{
2l+kωl (f ;π/n)p ωk (g;π/n)q for m > l + k,
2l+kωl (f ;π/n)p ωk (g;π/n)q (ln(en))1/θ for m = l + k.

Taking into account this estimation in (7), we have (ii) and the first estimation in
(iii).

At last, applying (8) we have by (7) underm = l+k that for C8 = C8 (k, l,m+ 1, r)

ωm+1 (h;π/n)r ≤ C8n
−(m+1)

(∑n

ν=1
νθ(m+1)−1ωθl (f ;π/ν)p ω

θ
k (g;π/ν)q

)1/θ

≤ 2l+kC8n
−(m+1)+l+kωl (f ;π/n)p ωk (g;π/n)q

(∑n

ν=1
νθ−1

)1/θ

≤ 2l+kC8ωl (f ;π/n)p ωk (g;π/n)q ,
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from that the second estimation in (iii) follows. Note that one can easily reach this
by (ii) since m+ 1 > l + k if m = l + k.

Theorem 1 is proved.
Remark 1. The estimation (i) of Theorem 1 admits an equivalent formulation:

(i) If (i) of Theorem 1 holds for some constant C8 = C8 (k, l,m, r), then for every
δ ∈ (0, π]

ωm (h; δ)r ≤ C9δ
m

(∫ 2π

δ
t−(θm+1)ωθl (f ; t)p ω

θ
k (g; t)q dt

)1/θ

(9)

with constant C9 = C9(k, l,m, r) < 22mC8.

(ii) If (9) holds for some constant C9 = C9 (k, l,m, r), then for every n ∈ N

ωm (h;π/n)r ≤ C10n
−m
(∑n

ν=1
νθm−1ωθl (f ;π/ν)p ω

θ
k (g;π/ν)q

)1/θ

with C10 = C10(k, l,m, r) < 2mC9

{
2θm−1 +

(
2θm − 1

)
2θ(l+k)/

(
θm2θm

)}1/θ
.

Proof. For every δ ∈ (0, π] there exists n ∈ N such that π/(n + 1) < δ ≤ π/n.
Put ψ(δ) = ωl (f ; δ)p ωk (g; δ)q, δ ∈ (0, π].

(i) Since ψ(δ) ↑ (δ ↑) then (for ψn = ψ(π/n))∫ π
δ t

−(θm+1)ψθ(t)dt ≥
∫ π
π/n t

−(θm+1)ψθ(t)dt =
∑n−1

ν=1

∫ π/ν
π/(ν+1) t

−(θm+1)ψθ(t)dt

≥ (θmπθm)−1
∑n−1

ν=1

(
(ν + 1)θm − νθm

)
ψθν+1 ≥ π−θm

∑n−1
ν=1 ν

θm−1ψθν+1

= π−θm
∑n

ν=2(ν − 1)θm−1ψθν ≥ π−θm2−(θm−1)
∑n

ν=2 ν
θm−1ψθν ,

and∫ 2π

π
t−(θm+1)ψθ(t)dt ≥ ψθ(π)

∫ 2π

π
t−(θm+1)dt = (θmπθm2θm)−1(2θm − 1)ψθ1.

In virtue of estimations obtained we have that

δθm
∫ 2π
δ

ψθ(t)
tθm+1dt > (π/(n+ 1))θm

{∫ π
π/n

ψθ(t)
tθm+1dt+

∫ 2π
π

ψθ(t)
tθm+1dt

}
≥ (4n)−θm

{
2
∑n

ν=2 ν
θm−1ψθ(π/ν) + (θm)−1(2θm − 1)ψθ(π)

}
> (4n)−θm

{∑n
ν=2 ν

θm−1ψθ(π/ν) + ψθ(π)
}

= (4n)−θm
∑n

ν=1 ν
θm−1ψθ(π/ν),

whence

ωm (h; δ)r ≤ ωm (h;π/n)r ≤ C8(k, l,m, r)n−m
(∑n

ν=1
νθm−1ψθ(π/ν)

)1/θ

≤ C9(k, l,m, r)δm
(∫ 2π

δ
t−(θm+1)ψθ(t)dt

)1/θ

, δ ∈ (0, π].

(ii) Taking into account that∫ π
δ t

−(θm+1)ψθ(t)dt <
∫ π
π/(n+1) t

−(θm+1)ψθ(t)dt =
∑n

ν=1

∫ π/ν
π/(ν+1) t

−(θm+1)ψθ(t)dt

≤ (θmπθm)−1
∑n

ν=1

(
(ν + 1)θm − νθm

)
ψθν ≤ π−θm2θm−1

∑n
ν=1 ν

θm−1ψθν
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and∫ 2π

π
t−(θm+1)ψθ(t)dt ≤ ψθ(2π)

∫ 2π

π
t−(θm+1)dt = (θmπθm2θm)−1(2θm − 1)ψθ(2π)

≤ (θmπθm2θm)−1(2θm − 1)2θ(l+k)ψθ1,

we have that

δθm
∫ 2π
δ

ψθ(t)
tθm+1dt < (π/n)θm

{∫ π
π/(n+1)

ψθ(t)
tθm+1dt+

∫ 2π
π

ψθ(t)
tθm+1dt

}
≤ n−θm

{
2θm−1

∑n
ν=1 ν

θm−1ψθν + (θm2θm)−1(2θm − 1)2θ(l+k)ψθ1
}

≤
{
2θm−1 + (θm2θm)−1(2θm − 1)2θ(l+k)

}
n−θm

∑n
ν=1 ν

θm−1ψθ(π/ν),

whence

ωm (h;π/n)r ≤ ωm (h; 2π/ (n+ 1))r ≤ ωm (h; 2δ)r ≤ 2mωm (h; δ)r

≤ 2mC9 (k, l,m, r) δm
(∫ 2π

δ
t−(θm+1)ψθ (t) dt

)1/θ

≤ C10 (k, l,m, r)n−m
(∑n

ν=1
νθm−1ψθ (π/ν)

)1/θ
.

The proof is complete.
Corollary 1. Let ωl (f ; δ)p = O(δα), α ∈ (0, l], and ωk (g; δ)q = O(δβ), β ∈

(0, k], δ ∈ (0, π], in the conditions of Theorem 1 for m < l + k. Then

(i) ωm(h; δ)r =


O
(
δα+β

)
(α+ β < m),

O
(
δm(ln(πe/δ))1/θ

)
(α+ β = m),

O (δm) (α+ β > m).

(ii) ωm+1(h; δ)r = O(δm) if α+ β = m.

Proof of Corollary 1 is similar to the proof of upper [12], Theorem 2, pp. 27-28.
The following assertion shows that the logarithm multiplier is needless in the

first estimation in (iii) of Theorem 1.
Theorem 2. Let p, q ∈ [1,∞], r = pq/(p + q − pq) ∈ [1,∞], f ∈ Lp(T),

g ∈ Lq(T), k, l ∈ N. Then f ∗ g ∈ Lr(T) and the following estimation holds:

ωl+k(f ∗ g; δ)r ≤ C11(l, k)ωl(f ; δ)pωk(g; δ)q, δ ∈ (0, π]. (10)

Proof. Put m = l + k. For every δ ∈ (0, π] there is n ∈ N such that
π/ (n+ 1) < δ ≤ π/n. Let Tn,p (f) and Tn,q (g) be the best approximation polyno-
mials of f and g in Lp(T) and Lq(T), respectively. Hence ‖f − Tn,p (f)‖p = En (f)p
and ‖g − Tn,q (g)‖q = En (g)q. Since the smothness module is semi-additive, we have
that

ωm(f ∗ g; δ)r ≤ ωm(f ∗ g − Tn,p (f) ∗ Tn,q (g) ; δ)r + ωm(Tn,p (f) ∗ Tn,q (g) ; δ)r.
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Let σ1 = ωm(f ∗ g − Tn,p (f) ∗ Tn,q (g) ; δ)r. Since the convolution is commutative
and distributive, we have that

f ∗ g − Tn,p (f) ∗ Tn,q (g) = (f − Tn,p (f)) ∗ (g − Tn,q (g))
+ Tn,p (f) ∗ (g − Tn,q (g)) + Tn,q (g) ∗ (f − Tn,p (f)) ,

whence

σ1 ≤ ωm ((f − Tn,p (f)) ∗ (g − Tn,q (g)) ; δ)r
+ ωm (Tn,p (f) ∗ (g − Tn,q (g)) ; δ)r + ωm (Tn,q (g) ∗ (f − Tn,p (f)) ; δ)r
= σ11 + σ12 + σ13.

By Young’s inequality (see Theorem A), we have that

σ11 = ωm ((f − Tn,p (f)) ∗ (g − Tn,q (g)) ; δ)r
≤ 2m ‖(f − Tn,p (f)) ∗ (g − Tn,q (g))‖r
≤ 2m ‖f − Tn,p (f)‖p ‖g − Tn,q (g)‖q = 2mEn (f)pEn (g)q .

Applying Young’s inequality and taking into account that

ωm (Tn,p (f) ; δ)p ≤ ωm (Tn,p (f)− f ; δ)p + ωm (f ; δ)p
≤ 2m ‖f − Tn,p (f)‖p + ωm (f ; δ)p = 2mEn (f)p + ωm (f ; δ)p ,

we obtain that

σ12 = ωm (Tn,p (f) ∗ (g − Tn,q (g)) ; δ)r ≤ ωm (Tn,p (f) ; δ)p ‖g − Tn,q (g)‖q
≤
{

2mEn (f)p + ωm (f ; δ)p
}
En (g)q = 2mEn (f)pEn (g)q + ωm (f ; δ)pEn (g)q .

Similarly, we have that

σ13 = ωm (Tn,q (g) ∗ (f − Tn,p (f)) ; δ)r ≤ 2mEn (g)q En (f)p + ωm (g; δ)q En (f)p .

By the estimations obtained for σ11, σ12 and σ13, we have that

σ1 ≤ 2m3En (g)q En (f)p + ωm (f ; δ)pEn (g)q + ωm (g; δ)q En (f)p . (11)

Now we estimate σ2 = ωm(Tn,p (f) ∗ Tn,q (g) ; δ)r. We need the well known
result of S. B. Stechkin (see [23], Inequality (3), p. 1511, case p = ∞; also [4],
Theorem 5.2.1′, p. 217; [5], Section 4.4.8, pp. 228-230, case p ∈ [1,∞]): for every
trigonometric polynomial Tn of order n ∈ N, and for every l ∈ N,∥∥∥T (l)

n

∥∥∥
p
≤ nl (2 sin (nη/2))−l

∥∥∥∆l
ηTn

∥∥∥
p
, η ∈ (0, 2π/n) . (12)

Setting Tn = Tn,p(f) and η = π/n in (12), we obtain that∥∥∥T (l)
n,p(f)

∥∥∥
p
≤ 2−lnl

∥∥∥∆l
π/nTn,p(f)

∥∥∥
p
≤ 2−lnlωl (Tn,p(f);π/n)p

≤ 2−lnl
{

2lEn (f)p + ωl (f ;π/n)p
}
≤ nl

{
En (f)p + ωl (f ;π/ (n+ 1))p

}
,
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whence (for π/(n+ 1) < δ ≤ π/n)∥∥∥T (l)
n,p(f)

∥∥∥
p
≤ nl

{
En (f)p + ωl (f ; δ)p

}
. (13)

Similarly, we have that∥∥∥T (k)
n,q (g)

∥∥∥
q
≤ nk

{
En (g)q + ωk (g; δ)q

}
. (14)

Applying Young’s inequality and taking into account (13) and (14), we obtain (for
m = l + k) that

σ2 ≤ δm
∥∥∥(Tn,p (f) ∗ Tn,q (g))(m)

∥∥∥
r

= δm
∥∥∥T (l)

n,p (f) ∗ T (k)
n,q (g)

∥∥∥
r
≤ δm

∥∥∥T (l)
n,p (f)

∥∥∥
p

∥∥∥T (k)
n,q (g)

∥∥∥
q

≤ δmnl+k
{
En (f)p + ωl (f ; δ)p

}{
En (g)q + ωk (g; δ)q

}
,

whence (for π/(n+ 1) < δ ≤ π/n)

σ2 ≤ πm
{
En (f)p + ωl (f ; δ)p

}{
En (g)q + ωk (g; δ)q

}
. (15)

By (11) and (15), we have that

ωm (f ∗ g; δ)r ≤ (2m3 + πm)En (f)pEn (g)q +
(
2m−l + πm

)
ωl (f ; δ)pEn (g)q

+
(
2m−k + πm

)
ωk (g; δ)q En (f)p + πmωl (f ; δ)p ωk (g; δ)q ,

whence applying (4) we obtain that

ωm (f ∗ g; δ)r ≤ (2m3 + πm)C4(l)ωl (f ;π/ (n+ 1))pC4(k)ωk (g;π/ (n+ 1))q
+
(
2k + πm

)
ωl (f ; δ)pC4(k)ωk (g;π/ (n+ 1))q

+
(
2l + πm

)
ωk (g; δ)q C4(l)ωl (f ;π/ (n+ 1))p + πmωl (f ; δ)p ωk (g; δ)q

≤ C11(l, k)ωl (f ; δ)p ωk (g; δ)q ,

where C11 = (2m3 + πm)C4(l)C4(k) + 2kC4(k) + 2lC4(l) + πm (C4(k) + C4(l) + 1).
The proof of the theorem is complete.

Remark 2. The estimation (ii) of Theorem 1 immediately follows from (10).
Indeed, for h = f ∗ g and m > l + k we have that

ωm (h;π/n)r ≤ 2m−(l+k)ωl+k (h;π/n)r ≤ 2m−(l+k)C11(l, k)ωl (f ;π/n)p ωk (g;π/n)q .

Remark 3. In the case p, q ∈ (1,∞) there is the other proof of (10) which is
based on well known inequalities of M. Riesz (see [1], v. 1, Theorem 7.6.4, p. 423;
[2], v. 2, Theorem 12.10.1, p. 120; [24], Theorems 8.20.1 and 8.20.2, pp. 593-594;
[5], Section 3.12, Inequality (20), p. 183, and Section 5.11, Inequality (6), p. 339).
They are

‖Sn (ψ)‖p ≤ C12(p) ‖ψ‖p and ‖ψ − Sn (ψ)‖p ≤ C13(p)En(ψ)p (16)
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for 1 < p <∞, ψ ∈ Lp(T), n ∈ Z+, where C13(p) = 1 + C12(p). Note that the right
inequality of (16) is a simple consequence of the left one:

‖ψ − Sn (ψ)‖p = ‖ψ − Tn,p(ψ) + Sn (Tn,p(ψ))− Sn (ψ)‖p
≤ ‖ψ − Tn,p(ψ)‖p + ‖Sn (Tn,p(ψ)− ψ)‖p ≤ C13(p)En(ψ)p.

Now we present the other proof of (10). Let m = l + k, h = f ∗ g, and let
n ∈ N be such that π/ (n+ 1) < δ ≤ π/n, where δ ∈ (0, π]. In virtue of well known
properties of smoothness modules we have that

ωm(h; δ)r ≤ ωm(h− Sn(h); δ)r + ωm(Sn(h); δ)r

≤ 2m ‖h− Sn(h)‖r + δm
∥∥∥S(m)

n (h)
∥∥∥
r

= σ3 + σ4.

Estimate σ3. In virtue of Sn(f) ∗ g = f ∗Sn(g) = Sn(f ∗ g) = Sn(f) ∗Sn(g), we have
that

h− Sn(h) = f ∗ g − Sn(f ∗ g) = (f − Sn(f)) ∗ (g − Sn(g)) ,

whence, by Young’s inequality and the right inequality of (16), we obtain that

‖h− Sn(h)‖r = ‖(f − Sn(f)) ∗ (g − Sn(g))‖r
≤ ‖f − Sn(f)‖p ‖g − Sn(g)‖q ≤ C13(p)En (f)pC13(q)En (g)q .

Therefore

σ3 = 2m ‖h− Sn(h)‖r ≤ 2mC13(p)C13(q)En (f)pEn (g)q .

Now estimate σ4. Since m = l + k and S
(m)
n (h) = S

(l+k)
n (f ∗ g) = S

(l)
n (f) ∗

S
(k)
n (g), applying Young’s inequality, (12) for η = π/n and the left inequality of (16)

sequentially, we have that∥∥∥S(m)
n (h)

∥∥∥
r

=
∥∥∥S(l)

n (f) ∗ S(k)
n (g)

∥∥∥
r
≤
∥∥∥S(l)

n (f)
∥∥∥
p

∥∥∥S(k)
n (g)

∥∥∥
q

≤ 2−(l+k)nl+k
∥∥∥∆l

π/nSn(f)
∥∥∥
p

∥∥∥∆k
π/nSn(g)

∥∥∥
q

= 2−mnm
∥∥∥Sn (∆l

π/nf
)∥∥∥

p

∥∥∥Sn (∆k
π/ng

)∥∥∥
q

≤ 2−mnmC12(p)C12(q)
∥∥∥∆l

π/nf
∥∥∥
p

∥∥∥∆k
π/ng

∥∥∥
q

≤ 2−mnmC12(p)C12(q)ωl (f ;π/n)p ωk (g;π/n)q ,

whence (δ ≤ π/n)

σ4 = δm
∥∥∥S(m)

n (h)
∥∥∥
r
≤ 2−mπmC12(p)C12(q)ωl (f ;π/n)p ωk (g;π/n)q .

Taking into account the estimations for σ3 and σ4 and applying (4), we obtain
that (π/ (n+ 1) < δ)

ωm (h; δ)r
≤ 2mC13(p)C13(q)En (f)pEn (g)q + 2−mπmC12(p)C12(q)ωl (f ;π/n)p ωk (g;π/n)q
≤ 2mC13(p)C13(q)C4(l)C4(k)ωl (f ;π/ (n+ 1))p ωk (g;π/ (n+ 1))q
+ 2−mπmC12(p)C12(q)2l+kωl (f ;π/ (n+ 1))p ωk (g;π/ (n+ 1))q
≤ {2mC13(p)C13(q)C4(l)C4(k) + πmC12(p)C12(q)}ωl (f ; δ)p ωk (g; δ)q ,
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whence

ωl+k (f ∗ g; δ)r ≤ C14(p, q, l, k)ωl (f ; δ)p ωk (g; δ)q , δ ∈ (0, π],

where C14(p, q, l, k) = 2l+kC13(p)C13(q)C4(l)C4(k)+πl+kC12(p)C12(q). The proof is
complete.

Given numbers σ ∈ [1,∞) and l ∈ N, we put

D(σ) =
{
λ = {λn}∞n=1 ∈M0 :

∑∞

n=1
n−1λσn <∞

}
,

B(σ) =
{
λ = {λn}∞n=1 ∈M0 :

(∑∞

ν=n+1
ν−1λσν

)1/σ
= O (λn) , n ∈ N

}
,

B
(σ)
l =

{
λ = {λn}∞n=1 ∈M0 : n−l

(∑n

ν=1
νσl−1λσν

)1/σ
= O (λn) , n ∈ N

}
.

Given α ∈ (0,∞), let M0(α) be the set of all sequences λ ∈M0 such that nαλn ↓
(n ↑). If λ ∈M0(α) then in virtue of estimations(∑∞

n=1 n
−1λσn

)1/σ =
(∑∞

n=1(n
αλn)σn−σα−1

)1/σ
≤ λ1

(∑∞
n=1 n

−σα−1
)1/σ ≤ λ1

(
1 + (σα)−1

)1/σ
,(∑∞

ν=n+1 ν
−1λσν

)1/σ =
(∑∞

ν=n+1(ν
αλν)σν−σα−1

)1/σ
≤ (n+ 1)αλn+1

(∑∞
ν=n+1 ν

−σα−1
)1/σ ≤ (n+ 1)αλn+1(σα)−1/σn−α

≤ 2α(σα)−1/σλn+1 ≤ 2α(σα)−1/σλn, n ∈ N,

one has the inclusions M0(α) ⊂ D(σ) and M0(α) ⊂ B(σ) for every σ ∈ [1,∞).
Besides, it is obvious that B(σ) ⊂ D(σ), σ ∈ [1,∞).

Lemma C ([11], Lemma 2). Let p ∈ (1,∞), p′ = p/ (p− 1), l ∈ N and
λ = {λn} ∈ M0. Then the function f0 (x; p;λ) =

∑∞
n=1 n

−1/p′λne
inx for x ∈ T,

satisfies the following conditions:

(i) f0 ∈ Lp (T) for λ ∈ D(p).

(ii) En−1 (f0)p = O (λn) , n ∈ N, for λ ∈ B(p).

(iii) ωl (f0;π/n)p = O (λn) , n ∈ N, for λ ∈ B(σ)
l ∩B(p) and σ = min {2, p}.

Note that in (iii) of Lemma C one can put σ = 1 since B(1)
l ⊂ B

(σ)
l .

In what follows we need the following statements [12].
Lemma D ([12], Lemma 2). Let r ∈ (1, 2], ψ ∈ Lr(T) with Fourier series

ψ(x) ∼
∑

n∈Z cn(ψ)einx and m ∈ N. Then

n−m
(∑n

ν=1
νrm+r−2 |cν(ψ)|r

)1/r
≤ C15(m, r)ωm(ψ;π/n)r, n ∈ N.

Lemma E ([12], Lemma 3). Let ψ ∈ L2(T) have the Fourier series ψ(x) ∼∑∞
n=0 cn(ψ)einx and m ∈ N. Then

n−m
(∑n

ν=1
ν2m−1E2

ν−1 (ψ)2
)1/2

≤ C16(m)ωm(ψ;π/n)2, n ∈ N.
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Lemma F ([12], Lemma 4). Let ψ ∈ C(T) have the Fourier series ψ(x) ∼∑∞
n=1 cn(ψ)einx with cn(ψ) ≥ 0 for every n ∈ N, and let m ∈ N. Then
(i) ωm(ψ;π/n)∞ ≥ ωm(Reψ;π/n)∞ ≥ C17(m)n−κ∑n

ν=1 ν
κcν(ψ), n ∈ N, where

κ = m+ (1− (−1)m)/2 =

{
m if m is even,
m+ 1 if m is odd.

(ii) ωm(ψ;π/n)∞ ≥ ωm(Imψ;π/n)∞ ≥ C18(m)n−κ∑n
ν=1 ν

κcν(ψ), n ∈ N, where

κ = m+ (1 + (−1)m)/2 =

{
m+ 1 if m is even,
m if m is odd.

Lemma 1. Let p, q ∈ (1,∞), r = pq/(p+q−pq) ∈ (1,∞], θ = θ(r) = min{2, r}
for r ∈ (1,∞) and θ(∞) = 1, m ∈ N, λ = {λn}∞n=1 ∈ M0(α) and ε = {εn}∞n=1 ∈
M0(β) for some α, β ∈ (0,∞). Then there are functions f0(·; p;λ) ∈ Lp(T) and
g0(·; q; ε) ∈ Lq(T) such that

(i) En−1(f0)p ≤ C19(p, α)λn, En−1(g0)q ≤ C19(q, β)εn, n ∈ N.

(ii) ωm(f0 ∗ g0;π/n)r ≥ C20(m, r)n−m
(

n∑
ν=1

νθm−1λθνε
θ
ν

)1/θ

, n ∈ N.

Proof. First we consider the case 1 < r ≤ 2. For p, q ∈ (1,∞) (p′ = p/(p − 1),
q′ = q/(q − 1)), let

f0(x; p;λ) =
∑∞

n=1
n−1/p′λne

inx, g0(x; q; ε) =
∑∞

n=1
n−1/q′εne

inx, x ∈ T.

Since λ ∈ M0(α) ⊂ B(p) ⊂ D(p) and ε ∈ M0(β) ⊂ B(q) ⊂ D(q), in virtue of (i) and
(ii) of Lemma C we have f0 ∈ Lp(T), En−1(f0)p ≤ C19(p, α)λn and g0 ∈ Lq(T),
En−1(g0)q ≤ C19(q, β)εn, n ∈ N. By Theorem A, the convolution

h0(x) = (f0 ∗ g0)(x) =
∑∞

n=1
n−(1/p′+1/q′)λnεne

inx, x ∈ T,

belongs to Lr(T) for r = pq/(p+ q − pq). Since r − 1− r(1/p′ + 1/q′) = 0,

C15(m, r)ωm(h0;π/n)r ≥ n−m
(∑n

ν=1 ν
rm+r−2 |cν(h0)|r

)1/r
= n−m

(∑n
ν=1 ν

rm+r−2−r(1/p′+1/q′)λrνε
r
ν

)1/r
= n−m

(∑n
ν=1 ν

rm−1λrνε
r
ν

)1/r
,

by Lemma D, whence the estimation (ii) follows in the case 1 < r ≤ 2.
Consider now the case 2 < r <∞. Let

f0(x;λ) =
∑∞

ν=0
λ2νei2

νx, g0(x; ε) =
∑∞

ν=0
ε2νei2

νx, x ∈ T.

Taking into account that λ ∈M0(α) and ε ∈M0(β), we have that∑∞

ν=0
λ2

2ν =
∑∞

ν=0
(2ναλ2ν )22−2να ≤ λ2

1

∑∞

ν=0
2−2να = λ2

12
2α
(
22α − 1

)−1
<∞,∑∞

ν=0
ε22ν =

∑∞

ν=0
(2νβε2ν )22−2νβ ≤ ε21

∑∞

ν=0
2−2νβ = ε212

2β
(
22β − 1

)−1
<∞.

In virtue of [1], v. 1, Theorem 8.20, p. 345, lacuna trigonometric series consid-
ered converge almost everywhere and are Fourier series of their sums f0 and g0,
respectively, and, for every p, q ∈ (1,∞),

‖f0(·;λ)‖p ≤ C21(p)(
∑∞

ν=0
λ2

2ν )1/2 ≤ C21(p)2α
(
22α − 1

)−1/2
λ1,

‖g0(·; ε)‖q ≤ C21(q)(
∑∞

ν=0
ε22ν )1/2 ≤ C21(q)2β

(
22β − 1

)−1/2
ε1.
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Hence f0 ∈ Lp(T) and g0 ∈ Lq(T). Since for every n ∈ N there exists s ∈ Z+ such
that 2s ≤ n < 2s+1 (⇒ 2s < n + 1 ≤ 2s+1), we have by [1], v. 1, Theorem 8.20, p.
345, that

En(f0)p ≤ E2s(f0)p ≤ ‖f0(·)− S2s(f0; ·)‖p =
∥∥∥∑∞

ν=s+1
λ2νei2

νx
∥∥∥
p

≤ C21(p)
(∑∞

ν=s+1
λ2

2ν

)1/2
= C21(p)

(∑∞

ν=s+1
(2ναλ2ν )22−2να

)1/2

≤ C21(p)2(s+1)αλ2s+1

(∑∞

ν=s+1
2−2να

)1/2

= C21(p)2α
(
22α − 1

)−1/2
λ2s+1 ≤ C21(p)2α

(
22α − 1

)−1/2
λn+1,

whence En(f0)p ≤ C21(p)2α
(
22α − 1

)−1/2
λn+1 for every n ∈ N. Since E0(f0)p ≤

‖f0‖p ≤ C21(p)2α
(
22α − 1

)−1/2
λ1, we obtain that En−1(f0)p ≤ C19(p, α)λn for

every n ∈ N. Similarly, En−1(g0)q ≤ C19(q, β)εn for every n ∈ N. By the formula
above for Fourier coefficients of convolution,

h0(x) = (f0 ∗ g0)(x) =
∑∞

ν=0
λ2νε2νei2

νx, x ∈ T.

Since p, q ∈ (1,∞), h0 ∈ Lr(T) for r = pq/(p + q − pq) ∈ (1,∞] and, since r > 2,
h0 ∈ L2(T). Let as above s ∈ Z+ be such that 2s ≤ n < 2s+1 (⇒ n ≤ 2s+1 − 1).
Clearly we have that

E2
0(h0)2 =

∑∞

ν=0
λ2

2νε22ν ≥ λ2
1ε

2
1, E2

2s(h0)2 =
∑∞

ν=s+1
λ2

2νε22ν ≥ λ2
2s+1ε

2
2s+1

for s ∈ Z+. Taking into account these estimations, we obtain that

n∑
ν=1

ν2m−1λ2
νε

2
ν ≤

s∑
µ=0

2µ+1−1∑
ν=2µ

ν2m−1λ2
νε

2
ν ≤

s∑
µ=0

λ2
2µε22µ

2µ+1−1∑
ν=2µ

ν2m−1

≤ 2−1
s∑

µ=0

22m(µ+1)λ2
2µε22µ = 2−1

22mλ2
1ε

2
1 + 24mλ2

2ε
2
2 +

s∑
µ=2

22m(µ+1)λ2
2µε22µ


= 22m−1

λ2
1ε

2
1 + 22mλ2

2ε
2
2 +

s−1∑
µ=1

22m(µ+1)λ2
2µ+1ε

2
2µ+1


≤ 22m−1

E2
0(h0)2 + 22mE2

1(h0)2 +
s−1∑
µ=1

22m(µ+1)E2
2µ(h0)2


≤ 22m−1

E2
0(h0)2 + 22mE2

1(h0)2 +
m24m+1

22m − 1

s−1∑
µ=1

2µ∑
ν=2µ−1+1

ν2m−1E2
ν(h0)2


= 22m−1

E2
0(h0)2 + 22mE2

1(h0)2 +
m24m+1

22m − 1

2s−1∑
ν=2

ν2m−1E2
ν(h0)2


≤ C22(m)

2s∑
ν=1

ν2m−1E2
ν−1(h0)2 ≤ C22(m)

n∑
ν=1

ν2m−1E2
ν−1(h0)2,

whence we obtain by Lemma E that for r ∈ (2,∞)
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n−m
(∑n

ν=1 ν
2m−1λ2

νε
2
ν

)1/2 ≤ (C22(m))1/2n−m
(∑n

ν=1 ν
2m−1E2

ν−1(h0)2
)1/2

≤ (C22(m))1/2C16(m)ωm(h0;π/n)2 ≤ (C20(m, 2))−1ωm(h0;π/n)r.

It follows from this estimation that (ii) holds for r ∈ (2,∞).
At last we consider the case r = ∞. In this case 1/p + 1/q = 1, that is q = p′,

and therefore 1/p′ + 1/q′ = 1. Let f0(·; p;λ) and g0(·; q; ε) be functions such as in
the case 1 < r ≤ 2, and h0 = f0 ∗ g0. By (i) of Lemma F for even m and (ii) of
Lemma F for odd m, we have that

C23(m)ωm(h0;π/n)∞ ≥ n−m
∑n

ν=1
νmcν(h0)

= n−m
∑n

ν=1
νm−(1/p′+1/q′)λνεν = n−m

∑n

ν=1
νm−1λνεν ,

whence the estimation (ii) follows with constant C20(m,∞) = (C23(m))−1 in the
case r = ∞. Lemma 1 is proved.

Given p, q ∈ [1,∞] and λ, ε ∈M0, put

Ep[λ] ∗ Eq[ε] = {h = f ∗ g : f ∈ Ep[λ], g ∈ Eq[ε]}.

The following theorem shows that estimations (i) and (ii) of Theorem B are exact
in the sense of order on classes Ep[λ]∗Eq[ε] in the case p, q ∈ (1,∞) under condition
that λ ∈M0(α) and ε ∈M0(β) for some α, β ∈ (0,∞).

Theorem 3. Let p, q ∈ (1,∞), r = pq/(p+q−pq) ∈ (1,∞], θ = θ(r) = min{2, r}
for r ∈ (1,∞) and θ(∞) = 1, m ∈ N, λ = {λn} ∈M0(α), ε = {εn} ∈M0(β), where
α, β ∈ (0,∞). Then

sup{ωm(h;π/n)r : h ∈ Ep[λ] ∗ Eq[ε]} � n−m
(∑n

ν=1
νθm−1λθνε

θ
ν

)1/θ
, n ∈ N.

Proof. Indeed, the upper estimation for every p, q ∈ [1,∞] and λ, ε ∈ M0

immediately follows by inequalites (i) and (ii) of Theorem B. The lower estimation
is realized by function

h0(·; p, q;λ, ε) = (C19(p, α))−1f0(·; p;λ) ∗ (C19(q, β))−1g0(·; q; ε) ∈ Ep[λ] ∗ Eq[ε]

in virtue of (ii) of Lemma 1.
Note that Theorem 3 in the case of scale of power majorants of sequences of the

best approximations of functions forming the convolution was proved by author in
[12], Theorem 2.

One says that a function ω ∈ Ωl satisfies (S)-condition with parameter γ (we
write ω ∈ S(γ)) if there is a number γ ∈ (0, l) such that δ−γω(δ) ↑ (δ ↑) and satisfies
(Sl)-condition with parameter η (we write ω ∈ Sl(η)) if there is a number η ∈ (0, l)
such that δ−(l−η)ω(δ) ↓ (δ ↑). Put ωn = ω(π/n), n ∈ N. Then conditions (S) and
(Sl) admit equivalent formulations:

• ω ∈ S(γ) ⇐⇒ nγωn ↓ (n ↑) ⇐⇒ nγ2ωn2 ≤ nγ1ωn1 for every n1 < n2.

• ω ∈ Sl(η) ⇐⇒ nl−ηωn ↑ (n ↑) ⇐⇒ nl−η1 ωn1 ≤ nl−η2 ωn2 for every n1 < n2.
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Note that if ω ∈ Ωl then {ωn}∞n=1 ∈M0 and nlωn ↑ (n ↑). Besides, it is obvious
that ω ∈ S(γ) =⇒ {ωn} ∈M0(γ) for some γ ∈ (0, l).

The conditions (B(1)) and (B(1)
l ) (the conditions of N. K. Bari), (S) and (Sl)

(conditions of S. B. Stechkin) appeared in [25], Section 2, (in the same place the
series of equivalent conditions discussed).

The following implications are valid: ω ∈ S(γ) =⇒ {ωn} ∈ B(σ), ω ∈ Sl(η)
=⇒ {ωn} ∈ B

(σ)
l for every σ ∈ [1,∞). Indeed, the first implication follows by

S(γ) ⊂ M0(γ) ⊂ B(σ), γ ∈ (0, l), and the second one follows from the following
estimation (η ∈ (0, l))(∑n

ν=1
νσl−1ωσν

)1/σ
=
(∑n

ν=1

(
νl−ηων

)σ
νση−1

)1/σ

≤ nl−ηωn

(∑n

ν=1
νση−1

)1/σ
≤ C24(η, σ)nlωn, n ∈ N.

Lemma 2. Let l, k,m ∈ N, p, q ∈ (1,∞), r = pq/(p + q − pq) ∈ (1,∞],
θ = θ(r) = min{2, r} for r ∈ (1,∞) and θ(∞) = 1, ω ∈ S(γ1) ∩ Sl (η1) ⊂ Ωl, ϕ ∈
S (γ2) ∩ Sk (η2) ⊂ Ωk. Then there are functions f0(·; p;ω) ∈ Lp(T) and g0(·; q;ϕ) ∈
Lq(T) such that

(i) ωl(f0; δ)p ≤ C25(l, p, γ1, η1)ω(δ) and ωk(g0, δ)q ≤ C25(k, q, γ2, η2)ϕ(δ) for δ ∈
(0, π].

(ii) ωm(f0 ∗ g0;π/n)r ≥ C26(m, r)n−m
(

n∑
ν=1

νθm−1ωθ(π/ν)ϕθ(π/ν)
)1/θ

, n ∈ N.

Proof. Put f0(·; p;ω) = f0(·; p;λ) and g0(·; q;ϕ) = g0(·; q; ε), where λ = {ωn},
ε = {ϕn}, ωn = ω(π/n), ϕn = ϕ(π/n), n ∈ N, and f0(·; p;λ), g0(·; q; ε) are functions
considered in Lemma 1. Since ω ∈ S(γ1) =⇒ {ωn} ∈ M0(γ1) and ϕ ∈ S (γ2)
=⇒ {ϕn} ∈ M0(γ2), we have by Lemma 1 that f0(·; p;ω) ∈ Lp(T), En−1(f0)p ≤
C19(p, γ1)ωn, n ∈ N, and g0(·; q;ϕ) ∈ Lq(T), En−1(g0)q ≤ C19(q, γ2)ϕn, n ∈ N.
Taking into account that ω ∈ Sl(η1) ⇐⇒ nl−η1ωn ↑ (n ↑) and in virtue of (5) we
obtain that (σ = σ(p) = min {2, p})

ωl(f0;π/n)p ≤ C5(l, p)n−l
(∑n

ν=1 ν
σl−1Eσν−1(f0)p

)1/σ
≤ C5(l, p)C19(p, γ1)n−l

(∑n
ν=1 ν

σl−1ωσν
)1/σ ≤ C5(l, p)C19(p, γ1)C24(η1, σ)ωn,

whence ωl(f0;π/n)p ≤ C27(l, p, γ1, η1)ωn, n ∈ N, and therefore

ωl(f0; δ)p ≤ 2lC27(l, p, γ1, η1)ω(δ), δ ∈ (0, π].

Similarly, taking into account that ϕ ∈ Sk (η2) ⇐⇒ nk−η2ϕn ↑ (n ↑), we obtain
that

ωk(g0; δ)q ≤ 2kC27(k, q, γ2, η2)ϕ(δ), δ ∈ (0, π].

At last, we have by (ii) of Lemma 1 that (C26(m, r) = C20(m, r))

ωm(f0 ∗ g0;π/n)r ≥ C26(m, r)n−m
(∑n

ν=1
νθm−1ωθνϕ

θ
ν

)1/θ
, n ∈ N.
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Lemma 2 is proved.
Given p,q ∈ [1,∞], l, k ∈ N, and ω ∈ Ωl, ϕ ∈ Ωk, we denote

H l
p[ω] ∗Hk

q [ϕ] =
{
h = f ∗ g : f ∈ H l

p[ω], g ∈ Hk
q [ϕ]

}
.

Theorem 4. Let p, q ∈ [1,∞], r = pq/(p+q−pq) ∈ [1,∞], θ = θ(r) = min {2, r}
for r ∈ [1,∞) and θ(∞) = 1, l, k,m ∈ N, ω ∈ Ωl, ϕ ∈ Ωk. Then (n ∈ N)

(i) For arbitrary h ∈ H l
p[ω] ∗ Hk

q [ϕ] under constants C28 = C8(k, l,m, r) in the
case m < l+ k, C29 = C11(l, k) in the case m = l+ k, C29 = 2l+kC8(k, l,m, r)
or C29 = 2m−(l+k)C11(l, k) in the case m > l + k, there are the estimations:

• ωm(h;π/n)r ≤ C28n
−m

(
n∑
ν=1

νθm−1ωθ(π/ν)ϕθ(π/ν)

)1/θ

if m < l + k;

• ωm(h;π/n)r ≤ C29ω(π/n)ϕ(π/n) if m ≥ l + k.

(ii) If p, q ∈ (1,∞) and ω ∈ S(γ1) ∩ Sl(η1) ⊂ Ωl, ϕ ∈ S(γ2) ∩ Sk(η2) ⊂ Ωk then
there is an individual function h0 ∈ H l

p[ω] ∗Hk
q [ϕ] such that under constants

C30 = C30(k, l,m, r, p, q, γ1, η1, γ2, η2) and C31 = (θm)−1C30

• ωm(h0;π/n)r ≥ C30n
−m

(
n∑
ν=1

νθm−1ωθ(π/ν)ϕθ(π/ν)

)1/θ

if m < l + k;

• ωm(h0;π/n)r ≥ C31ω(π/n)ϕ(π/n) if m ≥ l + k.

Proof. The first estimation in (i) follows from (i) of Theorem 1, the second one
in (i) follows from (10) in the case m = l+k and from (ii) of Theorem 1 and Remark
2 in the case m > l + k. The first estimation in (ii) holds for

h0(·; p, q;ω, ϕ) = (C25(l, p, γ1, η1))
−1f0(·; p, ω) ∗ (C25(k, q, γ2, η2))

−1g0(·; q, ϕ)

by (ii) of Lemma 2. The second estimation in (ii) for the same h0 follows by (ii) of
Lemma 2 in virtue of monotonicity of ω ∈ Ωl and ϕ ∈ Ωk. Indeed,

ωm(h0;π/n)r ≥ C30n
−m (∑n

ν=1 ν
θm−1ωθ(π/ν)ϕθ(π/ν)

)1/θ
≥ C30n

−mω(π/n)ϕ(π/n)
(∑n

ν=1 ν
θm−1

)1/θ ≥ (θm)−1C30ω(π/n)ϕ(π/n),

where C30 = C25(l, p, γ1, η1)C25(k, q, γ2, η2)C26(m, r).
Corollary 2. Let p, q ∈ (1,∞), r = pq/(p + q − pq) ∈ (1,∞], θ = θ(r) =

min {2, r} for r ∈ (1,∞) and θ(∞) = 1, l, k,m ∈ N, m < l+k, α ∈ (0, l), β ∈ (0, k).
Then for δ ∈ (0, π]

(i) sup
{
ωm(h; δ)r : h ∈ H l

p[δ
α] ∗Hk

q [δβ]
}
�


δα+β (α+ β < m),
δm(ln(πe/δ))1/θ (α+ β = m),
δm (α+ β > m).

(ii) sup
{
ωm+1(h; δ)r : h ∈ H l

p[δ
α] ∗Hk

q [δβ]
}
� δm if α+ β = m.
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Proof. The upper estimations in (i) and (ii) immediately follow from (i) of
Theorem 4 (see also Corollary 1). The lower estimations in (i) and (ii) are realized
by an individual function h0 ∈ H l

p[δ
α] ∗Hk

q [δβ] in virtue of (ii) of Theorem 4 since
ω(δ) = δα ∈ S ∩Sl for α ∈ (0, l) and ϕ(δ) = δβ ∈ S ∩Sk for β ∈ (0, k) (see the proof
of lower estimations in Theorem 2 of [12], p. 28).

Remark 4. Theorem 4 shows in fact that inequalities (i) and (ii) of Theorem
1 and (10) are exact in the sense of order on classes H l

p[ω] ∗ Hk
q [ϕ] in the case

p, q ∈ (1,∞) under condition that ω ∈ S ∩ Sl and ϕ ∈ S ∩ Sk. The last condition
guarantees existence of individual functions (C25(l, p, γ1, η1))−1f0(·; p, ω) ∈ H l

p[ω]
and (C25(k, q, γ2, η2))−1g0(·; q, ϕ) ∈ Hk

q [ϕ] convolution of which gives the extremal
function h0(·; p, q;ω, ϕ) ∈ H l

p[ω] ∗Hk
q [ϕ].

Remark 5. In the case m ≥ l + k we have by Theorem 4 that

sup
{
ωm(h; δ)r : h ∈ H l

p[ω] ∗Hk
q [ϕ]

}
� ω(δ)ϕ(δ), δ ∈ (0, π], (17)

under the condition that ω ∈ S ∩ Sl ⊂ Ωl and ϕ ∈ S ∩ Sk ⊂ Ωk for every k, l ∈ N,
p, q ∈ (1,∞) and r = pq/ (p+ q − pq) ∈ (1,∞]. In this case (17) takes place for
arbitrary functions ω ∈ Ωl and ϕ ∈ Ωk without condition that ω ∈ S ∩ Sl and
ϕ ∈ S ∩ Sk, but the lower estimation is realized by sequence {hn(·; p, q;ω, ϕ)}∞n=1 ⊂
H l
p[ω] ∗Hk

q [ϕ]. Indeed, the upper estimation in (17) immediately follows by (ii) of
Theorem 1 for m > l+ k (see also Remark 2), and by (10) for m = l+ k. The lower
estimation in (17) is realized by sequence (see [11], Lemma 1) of functions

hn(·; p, q;ω, ϕ) = (C32(l, p))−1fn(·; p, ω) ∗ (C32(k, q))−1gn(·; q, ϕ), n ∈ N,

in virtue of (4) and (ii) of Lemma 1 [11], namely

C4(m)ωm(hn;π/n)r ≥ En−1(hn)r ≥ C33(r)(C32(l, p)C32(k, q))−1ω(π/n)ϕ(π/n),

where fn(x; p, ω) = n1/p−1ω(π/n)d4n(x), gn(x; q, ϕ) = n1/q−1ϕ(π/n)d4n(x), d4n(x) =∑4n
ν=1 e

iνx, n ∈ N. Note that {fn(·; p, ω)} ⊂ Lp(T), {gn(·; q, ϕ)} ⊂ Lq(T) and
ωl(fn; δ)p ≤ C32(l, p)ω(δ), ωk(gn; δ)q ≤ C32(k, q)ϕ(δ), δ ∈ (0, π].

Remark 6. (i) For existence of an individual function h0 = f0 ∗ g0 ∈ H l
p[ω] ∗

Hk
q [ϕ] which realizes the estimation En−1(h0)r ≥ C34(r, l, k, p, q)ω(π/n)ϕ(π/n), n ∈

N, for r ∈ (1,∞), and for arbitrary ω ∈ Ωl and ϕ ∈ Ωk (whence ωϕ ∈ Ωl+k), it is
necessary that ωϕ ∈ Sl+k(η) for some η ∈ (0, l + k). Indeed, if such function exists,
in virtue of the following inequality [26]

n−(l+k)
(∑n

ν=1
νρ(l+k)−1Eρν−1 (ψ)r

)1/ρ
≤ C35(l + k, r)ωl+k(ψ;π/n)r (18)

(where r ∈ (1,∞) and ρ = max {2, r}, ψ ∈ Lr(T)) and (10), we have that

C34n
−(l+k)

(∑n

ν=1
νρ(l+k)−1ωρ(π/ν)ϕρ(π/ν)

)1/ρ

≤ n−(l+k)
(∑n

ν=1
νρ(l+k)−1Eρν−1 (h0)r

)1/ρ
≤ C35ωl+k(h0;π/n)r

≤ C35C11ωl(f0;π/n)pωk(g0;π/n)q ≤ C35C11ω(π/n)ϕ(π/n), n ∈ N,
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whence (n ∈ N)

n−(l+k)
(∑n

ν=1
νρ(l+k)−1ωρ(π/ν)ϕρ(π/ν)

)1/ρ
≤ C36(r, l, k, p, q)ω(π/n)ϕ(π/n).

Therefore ωϕ ∈ B(ρ)
l+k, and this is equivalent to ωϕ ∈ Sl+k(η) for some η ∈ (0, l + k).

Indeed, if ωϕ ∈ Sl+k(η) for some η ∈ (0, l + k) then clearly ωϕ ∈ B
(ρ)
l+k for every

ρ ∈ [1,∞) (see the argument before Lemma 2). On the other hand, if ωϕ ∈ B
(ρ)
l+k

for some ρ ∈ [1,∞) (in particular, for ρ = max {2, r}), then (ωϕ)ρ ∈ B
(1)
ρ(l+k) is

equivalent to (ωϕ)ρ ∈ Sρ(l+k)(ξ) for some ξ ∈ (0, ρ (l + k)) (see [25], Lemma 2.3,
case ρ (l + k) ∈ N; the argument holds if ρ (l + k) /∈ N). It follows that ωϕ ∈ Sl+k(η)
for η = ξ/ρ ∈ (0, l + k).

Note that if ω ∈ Sl(η1) ⊂ Ωl and ϕ ∈ Sk(η2) ⊂ Ωk then ωϕ ∈ Sl+k(η1 + η2) ⊂
Ωl+k; the converse does not hold in general.

(ii) For existence of an individual function h0 = f0 ∗ g0 ∈ H l
p[ω] ∗Hk

q [ϕ] which
realizes the estimation ωm(h0; δ)r ≥ C37(m, r, l, k, p, q)ω(δ)ϕ(δ), δ ∈ (0, π], for r ∈
(1,∞) and m > l + k, and for arbitrary ω ∈ Ωl and ϕ ∈ Ωk (whence ωϕ ∈ Ωl+k), it
is necessary that ωϕ ∈ Sl+k(η) for some η ∈ (0, l + k).

The proof of this assertion is similar to the proof of (i). We only use instead of
(18) the following estimation (m > l + k)

n−(l+k)
(∑n

ν=1
νρ(l+k)−1ωρm (ψ;π/ν)r

)1/ρ
≤ C38(m, l + k, r)ωl+k(ψ;π/n)r. (19)

For (19), it is necessary to take into account (5) for k = m, p = r, σ = θ = min {2, r},
to apply Hardy’s inequality (see [27], Theorem 346, p. 308) for r 6= 2 (whence
ρ/θ > 1, ρ (m− (l + k)) + 1 > 1) and to change the summation order for r = 2
(whence ρ/θ = 1), and to apply (18).

Remark 7. One can get the upper estimation ωl+k(f ∗ g; δ)r by means
ωl(f ; δ)pωk(g; δ)q in Theorem 2 for p, q ∈ [1,∞], r = pq/(p+ q− pq) ∈ [1,∞] imme-
diately by applying Young’s inequality (see Theorem A). Indeed, if f ∈ Lp(T) and
g ∈ Lq(T) then in virtue of

∥∥∆l
tf
∥∥
p
≤ 2l+1 ‖f‖p and

∥∥∆k
t g
∥∥
q
≤ 2k+1 ‖g‖q, we have

that ∆l
tf ∈ Lp(T) and ∆k

t g ∈ Lq(T) for every t ∈ R. Since ∆l
t(e

iνx) =
(
eiνt − 1

)l
eiνx

and ∆k
t (e

iνx) =
(
eiνt − 1

)k
eiνx, then (x ∈ T, t ∈ R)

∆l
tf(x) ∼

∑
ν∈Z\{0}

cν(f)
(
eiνt − 1

)l
eiνx and ∆k

t g(x) ∼
∑

ν∈Z\{0}

cν(g)
(
eiνt − 1

)k
eiνx.

Taking into account that the formula for calculating the Fourier coefficients of the
convolution (see after Theorem A), we obtain that(

∆l
tf ∗∆k

t g
)

(x) ∼
∑

ν∈Z\{0}
cν(f)cν(g)

(
eiνt − 1

)l+k
eiνx ∼ ∆l+k

t (f ∗ g) (x),

whence it follows that ∆l+k
t (f ∗ g) = ∆l

tf ∗ ∆k
t g a.e. on T. Applying Young’s

inequality (taking into account that f ∗ g ∈ Lr(T) and, therefore, ∆l+k
t (f ∗ g) ∈

Lr(T)), we have that for |t| ≤ δ∥∥∥∆l+k
t (f ∗ g)

∥∥∥
r
≤
∥∥∥∆l

tf
∥∥∥
p

∥∥∥∆k
t g
∥∥∥
q
≤ ωl(f ; δ)pωk(g; δ)q,
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whence
ωl+k(f ∗ g; δ)r ≤ ωl(f ; δ)pωk(g; δ)q, δ ∈ [0,∞). (20)

It is natural to call (20) the Young inequality for smoothness modules.
Remark 8. The proof of the upper estimation of ωl+k(f ∗ g; δ)r by means of

ωl(f ; δ)pωk(g; δ)q given in Theorem 2 has the aim to determine an amount of charac-
teristics En (f)p and En (g)q in the expression of the estimation (see the estimation
after (15)). The proof of this estimation given in Remark 7 (see (20)) doesn’t provide
such an information.

It should be noted that one can receive the estimation of σ2 (see (15)) without
(12) if apply (20) (see the proof of Theorem 2) in the following way:

σ2 = ωl+k(Tn,p (f) ∗ Tn,q (g) ; δ)r ≤ ωl(Tn,p (f) ; δ)pωk(Tn,q (g) ; δ)q

≤
(
2lEn (f)p + ωl(f ; δ)p

)(
2kEn (g)q + ωk(g; δ)q

)
≤
(
2lC4 (l) + 1

)(
2kC4 (k) + 1

)
ωl(f ; δ)pωk(g; δ)q.

Note also that application of (20) allows us to receive immediately the following
estimation (compare with the estimation σ4 in Remark 3):

ωm (Sn (h) ; δ)r = ωl+k (Sn (f ∗ g) ; δ)r = ωl+k (Sn (f) ∗ Sn (g) ; δ)r

≤ ωl (Sn (f) ; δ)p ωk (Sn (g) ; δ)q ≤ C12 (p)C12 (q)ωl(f ; δ)pωk(g; δ)q.
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[27] Hardy G.H., Littlewood J.E., Pólya G. Inequalities. M.: IL, 1948. (in
Russian)



66
[N.A.Ilyasov]

Transactions of NAS of Azerbaijan

Niyazi A. Ilyasov
Institute of Mathematics and Mechanics of NAS Azerbaijan.
9, F. Agayev str., AZ1141, Baku, Azerbaijan.
Tel.: (99412) 439 92 74 (off.)

E-mail: nilyasov@yahoo.com
Received February 05, 2006; Revised April 29, 2007.


