Ali A. HUSEYNLI

BASIS PROPERTIES OF SOME SYSTEMS IN BANACH SPACES

Abstract

Let $\hat{u}_n = (u_n, a_n)$, n = 1, 2, ... be some complete and minimal system of vectors in $\mathcal{X} = \mathcal{X}_0 \oplus C^m$ and let $\hat{\vartheta}_n = (\vartheta_n, b_n)$, n = 1, 2, ... be corresponding biorthogonal system. N is a set of natural numbers, $J = \{n_1, ..., n_m\} \subset N$ is some set of different and natural numbers, $n_0 = N \setminus J$, $b_n = (\beta_{n_1}, ..., \beta_{n_m})$, $\delta = \det \|\beta_{n_k j}\|_{k,j=1}^m$. In the present paper it is shown that in case of $\delta = 0$ statement on non-minimality of the system $\{u_n\}_{n \in N_0}$ in the space \mathcal{X}_0 , in generally, is not true, and sufficient conditions are cited when this statement becomes true.

Many spectral problems for ordinary differential operators containing a spectral parameter both in the equation and in the boundary conditions by linearization way are reduced to a linear operator acting in the spaces of type $\mathcal{X} = \mathcal{X}_0 \oplus C^m$, where \mathcal{X}_0 is some Banach space, and C^m is a m copy of a set of complex numbers C [1-3]. Then we study basis properties of linearization operator in the space \mathcal{X} . In applications it is necessary to know basis properties of root vectors of the initial spectral problem not only in the space \mathcal{X} , but also in the space \mathcal{X}_0 [4,5].

Let $\{\hat{u}_n\}_{n=1}^{\infty}$, where $\hat{u}_n = (u_n, a_n)$, $a_n = (\alpha_{n1}, ..., \alpha_{nm})$ be some complete and minimal system of vectors in $\mathcal{X} = \mathcal{X}_0 \oplus C^m$ and let $\{\hat{\vartheta}_n\}_{n=1}^{\infty}$, where $\hat{\vartheta}_n = (\vartheta_n, b_n)$, $b_n = (\beta_{n1}, ..., \beta_{nm})$ is corresponding biorthogonal system, i.e.

$$\hat{\vartheta}_i(\hat{u}_j) = \left\langle \hat{\vartheta}_i, \hat{u}_j \right\rangle = \delta_{ij}.$$

N is a set of natural numbers, $J = \{n_1, ..., n_m\} \subset N$ is a set of different m natural numbers, $N_0 = N \setminus J$, $\delta = \det \left\| \beta_{n_k j} \right\|_{k,j=1}^m$.

In the paper [6] it is proved that if $\delta \neq 0$, the system $\{u_n\}_{n \in N_0}$ is minimal in the space \mathcal{X}_0 . But if $\delta = 0$, then the system $\{u_n\}_{n \in N_0}$ is not complete in \mathcal{X}_0 .

space \mathcal{X}_0 . But if $\delta = 0$, then the system $\{u_n\}_{n \in N_0}$ is not complete in \mathcal{X}_0 . When $\delta = 0$ there is nothing on minimality of the system $\{u_n\}_{n \in N_0}$ in the space \mathcal{X}_0 .

In the given paper, it is shown that statement on non-minimality of the system $\{u_n\}_{n\in\mathbb{N}_0}$ in the space \mathcal{X}_0 , in generally, is not true and sufficient conditions are cited, when this statement becomes true.

1. Let's consider a case when \mathcal{X}_0 is a Hilbert space and m=1. Let the system $\{u_n\}_{n=1}^{\infty}$ be any orthonormal basis of the space \mathcal{X}_0 and assume

$$\hat{u}_n = \begin{pmatrix} u_n \\ 1 \end{pmatrix} \in \mathcal{X}, \quad n = 1, 2, \dots$$

where $\mathcal{X} = \mathcal{X}_0 \oplus C^1$.

Theorem 1. The system $\{\hat{u}_n\}_{n=1}^{\infty}$ is complete and minimal in the space \mathcal{X} . For any $n \in \mathbb{N}$, $\delta = 0$. The system $\{u_n\}_{n \in \mathbb{N}_0}$ is not complete, but is minimal in the space \mathcal{X}_0 , where $\mathbb{N}_0 = \mathbb{N} \setminus \{n_1\}$.

space \mathcal{X}_0 , where $N_0 = N \setminus \{n_1\}$. **Proof.** Since the system $\{u_n\}_{n=1}^{\infty}$ is minimal in \mathcal{X}_0 , the system $\{\hat{u}_n\}_{n=1}^{\infty}$ will be minimal in \mathcal{X} , and the system

$$\hat{\vartheta}_n = \begin{pmatrix} u_n \\ 0 \end{pmatrix} \in \mathcal{X}, \quad n = 1, 2, \dots$$

is biorthogonal to $\{\hat{u}_n\}_{n=1}^{\infty}$. For any $n \in N$ the determinant δ consists of one element and $\delta = 0$.

Non-completeness of the system $\{u_n\}_{n\in\mathbb{N}_0}$ is obtained from the basicity of the system $\{u_n\}_{n=1}^{\infty}$.

Now, let's prove its completeness. Really, let $\hat{f} = \begin{pmatrix} f \\ g \end{pmatrix} \in \mathcal{X}$ be orthogonal to all the vectors \hat{u}_n , n = 1, 2, ...:

$$(\hat{f}, \hat{u}_n) = 0, \ n = 1, 2, \dots$$

Write this relation in coordinates:

$$(f, u_n) + g = 0, \ n = 1, 2, \dots$$

Now, let's pass to the limit as $n \to \infty$. Since the system $\{u_n\}_{n=1}^{\infty}$ is an orthonormal basis of the space \mathcal{X}_0 , we get g = 0. Then f = 0 as well, i.e. $\hat{f} = 0$.

The theorem is proved.

Now, assume that B_1 and B_2 are some Banach spaces (in generally, infinite dimensional), $B = B_1 \oplus B_2$, Let the system $\hat{z}_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ be complete and minimal in the Banach space B.

We'll prove that even in this case the system $\{x_n\}_{n=1}^{\infty}$ may be minimal in the

Let $B_1 = B_2 = H$ be Hilbert spaces. Let $\{x_n\}_{n=1}^{\infty}$ be a fixed orthonormal basis of the Hilbert space H. Construct the new sequence $\{g_n\}_{n=1}^{\infty}$ in the following way:

$$\begin{pmatrix} x_1 \longrightarrow & x_2 & x_3 \longrightarrow & x_4 \dots \\ \swarrow & & \swarrow & & \swarrow \\ x_1 & x_2 & x_3 & \dots \\ \downarrow \nearrow & & \swarrow & \\ x_1 & x_2 & x_3 & \dots \\ \vdots & & & \ddots & & \\ x_1 & & x_2 & & x_3 & \dots \end{pmatrix}$$

Now, let's consider the sequence $\hat{z}_n = \begin{pmatrix} x_n \\ g_n \end{pmatrix} \in B, n = 1, 2,$

Theorem 2. The system $\{\hat{z}_n\}_{n=1}^{\infty}$ is complete and minimal in the space B. **Proof.** The minimality of the system $\{\hat{z}_n\}_1^{\infty}$ is obvious. Let's prove its completeness. Really, let the vector $\hat{f} = \begin{pmatrix} f \\ g \end{pmatrix} \in B$ be orthogonal to all the vectors \hat{z}_n , n = 1, 2, ...:

$$(\hat{f}, \hat{z}_n) = 0, \ n = 1, 2, \dots$$

Write this relation in coordinates

$$(g, x_k) + (f, x_{n_m(k)}) = 0, \quad k = 1, 2, ...,$$
 (1)

where $\{n_m(k)\}\$ is some subsequence of a sequence of natural numbers for each fixed k. Let's pass to limit in (1) as $m \to \infty$. Since the system $\{x_n\}_{n=1}^{\infty}$ is an orthonormal basis of the space H, we get $(g, x_k) = 0$ for each natural k. So, g = 0. Then f = 0as well, i.e. $\hat{f} = 0$.

The completeness of the considered system $\{\hat{z}_n\}_{n=1}^{\infty}$ is proved.

The theorem is proved.

It is easy to notice that the first coordinates of the system $\{\hat{z}_n\}_{n=1}^{\infty}$, i.e. the sequence $\{x_n\}_{n=1}^{\infty}$ is minimal (even is a basis) in H.

2. Now, let's find sufficient conditions wherein the system $\{u_n\}_{n\in\mathbb{N}_0}$ is neither complete, nor minimal in the space \mathcal{X}_0 , when $\delta = 0$. To this end we prove the following simple lemma that we'll need in future.

Lemma. Let B be some Banach space, $\{f_n\}_{n=1}^{\infty}$ be a complete and minimal system in this space, $\{g_n\}_{n=1}^{\infty}$ be a system biorthogonal to this system. Then for the system $\{h_n\}_{n\in\mathbb{N}_0}$ to be biorthogonal to the system $\{f_n\}_{n\in\mathbb{N}_0}\in B$, it is necessary and sufficient to be represented in the form

$$h_n = g_n + \sum_{k=1}^{m} c_{n_k} g_{n_k}, \quad n \in N_0,$$

where c_{n_k} are some complex numbers.

Proof. Sufficiency immediately follows from relations $h_i(f_i) = \delta_{ij}$.

Now, let the system $\{h_n\}_{n\in N_0}\subset B^*$ be biorthogonal to the system $\{f_n\}_{n\in N_0}$. Construct the vectors $z_n\in B^*$, $n\in N_0$ in the following way:

$$z_n = h_n - g_n - \sum_{k=1}^{\infty} h_n \left(f_{n_k} \right) g_{n_k}, \quad n \in \mathbb{N}_0$$

It is easily verified that

$$\forall n \in N_0 \land \forall k \in N : z_n(f_k) = 0.$$

Since the system $\{f_n\}_{n=1}^{\infty}$ is complete, hence we get $\forall n \in N_0 : z_n = 0$. Thus, the lemma is proved.

Using this lemma, we prove the following theorem.

Theorem 3. Let $\{\hat{u}_n\}_{n=1}^{\infty}$, $\hat{u}_n = (u_n, a_n)$, $u_n \in \mathcal{X}_0$, $a_n = (\alpha_{n1}, ..., \alpha_{nm}) \in C^m$ be a complete and minimal system in the space $\mathcal{X} = \mathcal{X}_0 \oplus C^m$, and $\left\{\hat{\vartheta}_n\right\}_{n=1}^{\infty}$, $\hat{\vartheta}_n = 0$ $(\vartheta_n, b_n), \ \vartheta_n \in \mathcal{X}_0^*, \ b_n = (\beta_{n1}, ..., \beta_{nm}) \in C^m \ be \ biorthogonal \ to \ this \ system.$ If the system $\{b_n\}_{n=1}^{\infty}$ is complete in C^m and $\delta = 0$, then the system $\{u_n\}_{n \in N_0}$

is neither complete, nor minimal in the space \mathcal{X}_0 .

Proof. Non-completeness of the system $\{u_n\}_{n\in\mathbb{N}_0}$ is proved in [6]. Show that this system is not minimal.

Assume the contrary. Let the system $\{u_n\}_{n\in\mathbb{N}_0}$ be minimal in \mathcal{X}_0 and the system $\{z_n\}_{n\in\mathbb{N}_0}\subset\mathcal{X}_0^*$ be orthogonally conjugated to this system:

$$z_i(u_j) = \delta_{ij}, \quad i, j \in N_0.$$

Then the system $\hat{z}_n = (z_n, 0, ..., 0), n \in N_0$ will be biorthogonal to the system $\hat{u}_n, n \in N_0$. Then, according to lemma

$$\hat{z}_n = \hat{\vartheta}_n + \sum_{k=1}^m c_{n_k} \hat{\vartheta}_{n_k}, \quad \forall \ n \in N_0.$$

Write this equality in second coordinates:

$$b_n + \sum_{k=1}^{m} c_{n_k} b_{n_k} = 0, \quad \forall n \in N_0.$$
 (2)

[A.A.Huseynli

By the theorem condition, the system $\{b_n\}_{n=1}^{\infty}$ is complete in C^m . Then it follows from equality (2) that the system $\{b_{n_k}\}_{k=1}^{\infty}$ is complete in C^m as well. Since $\delta=0$, we get contradiction.

The theorem is proved.

Theorem 4. Let B_1 and B_2 be some Banach spaces (generally speaking, infinite-dimensional), the space B_2 be reflexive, the system $x_n = (u_n, \vartheta_n)$, $u_n \in B_1$, $\vartheta_n \in B_2$, n = 1, 2, ... be a basis in the space $B = B_1 \oplus B_2$, and the system $x_n^* = (u_n^*, \vartheta_n^*)$, $u_n^* \in B_1$, $\vartheta_n^* \in B_2$, n = 1, 2, ... be biorthogonal to the system x_n , n = 1, 2, ... Then the system $\{\vartheta_n^*\}_{n=1}^{\infty}$ is complete in B_2^* .

Proof. Let's assume the contrary. Then there exists an element $y \in B_2$, $y \neq 0$ such that $\forall n \in \mathbb{N}$: $\vartheta_n^*(y) = 0$ (as the space B_2 is reflexive).

Let's consider the element $\hat{y}=(0,y)\in B$. Since $y\neq 0$, then $\hat{y}\neq 0$. It follows from $\vartheta_n^*(y)=0,\,n\in N$ that $\forall n\in N: x_n^*(\hat{y})=0$.

So, $\hat{y} = 0$. But this contradicts to the condition $\hat{y} \neq 0$.

The theorem is proved.

From theorem 3 and 4 we get the following corollary:

Corollary. Assume $\{\hat{u}_n\}_{n=1}^{\infty}$, $\hat{u}_n = (u_n, a_n)$, $u_n \in \mathcal{X}_0$, $a_n = (\alpha_{n1}, ..., \alpha_{nm}) \in C^m$ is a basis in the space $\mathcal{X} = \mathcal{X}_0 \oplus C^m$, and the system $\{\hat{\vartheta}_n\}_{n=1}^{\infty}$, $\hat{\vartheta}_n = (\vartheta_n, b_n)$, $\vartheta_n \in \mathcal{X}_0^*$, $b_n = (\beta_{n1}, ..., \beta_{nm}) \in C^m$ is biorthogonal to the system $\{\hat{u}_n\}_{n=1}^{\infty}$. If $\delta = 0$, the system $\{u_n\}_{n \in \mathcal{N}_0}$ is neither complete, nor minimal in the space \mathcal{X}_0 .

References

- [1]. Fulton C.T. Two point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc.Roy.Soc.Edinburg Sect.A. 1997, v.77, pp.293-308.
- [2]. Roussakovskiy E.M. Operator treatment of a boundary value problem with the spectral parameter contained in the boundary conditions. Func. Analysis and its applications. 1975, v.9, pp.91-92. (Russian)
- [3]. Shkalikov A.A. Boundary value problems for ordinary differential equations with the parameter in the boundary conditions. Proceed. of I.G.Petrovskiy seminars, 1983, issue 9, pp.190-229. (Russian)
- [4]. Kapustin N.Yu., Moiseev E.I. On the basicity in L_p of a system of eigenfunctions responding to two problems with spectral parameter in the boundary condition. Differ. Uravn. 2000, v.36, No10. (Russian)
- [5]. Kerimov N.B., Mirzoyev V.S. On basis properties of the spectral problem with spectral parameter in the boundary condition. Sib.Math.Jour., 2003, v.44, No1, pp.1041-1045. (Russian)
- [6]. Gasymov T.B. On necessary and sufficient conditions of basicity of some defective systems in Banach spaces. Trans. of NAS of Azerb., 2006, v.XXVI, No1, p.65-70.

Ali A. Huseynli

Institute of Mathematics and Mechanics of NAS of Azerbaijan. 9, F. Agayev str., AZ-1141, Baku, Azerbaijan. Tel:(99412) 439-47-20

Received February 12, 2007; Revised April 30, 2007.