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STABILITY OF OPTIMAL CONTROL PROBLEM

FOR SYSTEMS WITH NON-SEPARATED

BOUNDARY CONDITIONS

Abstract

In the paper we consider an optimal control problem for systems with non-
separated boundary conditions under inexact input data. Convergence of an
optimal control problem with inexact data to initial problem by functional and
gradient is proved under some conditions.

In modelling, development of methods and numerical solution of applied prob-
lems of optimal control, as in other fields of computing mathematics there arises a
problem on determination of closeness of two mathematical models one of which is
considered as a perturbed one with respect to other one. Therewith it is necessary
to know a priori if the considered problem is stable with respect to perturbation,
and have estimations of deviation convergence rate of solutions.

In many applied problems that are unstable and non-correct proximity of infor-
mation on the problem and its input data gives negative answer to these conver-
gences. Therefore, special approximations with use of the regularization methods
are worked out [1]. At the same time the problems may be correct, stable at which
proximity of information in the initial problem and its input data doesn’t influ-
ence essentially on closeness of approximate optimal elements to the solution of the
initial problem. From the computing point of view the solution methods of such
problems are less laborious in comparison with unstable problems. Convergence
of approximate optimal controls to the set of optimal controls allows not to con-
duct regularization, and thereby numerical method is simplified, volume and time
of calculations in solving applied problems is shortened. Therefore, in working out
numerical methods for solving this or other concrete problem it is necessary to know
a priori to which class does this problem belong and how does it behave itself with
respect to perturbations and has convergence estimate.

In the paper we consider a linear-quadratic of optimal control problem with
non-separated boundary conditions for inexact input data.

Let the functional

J (u) = α ‖x (t0, u)− y‖2 + β ‖x (T, u)− z‖2 , (1)

be minimized, where x (t, u) is determined from the conditions

·
x (t) = A (t)x (t) +B (t)u (t) + f (t) , t0 ≤ t ≤ T ; (2)

D1x (t0) +D2 x (T ) = C (3)

u = u (·) ∈ U ⊆ Lr
2 [t0, T ] . (4)
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Here, it is assumed that A (t) , B (t) , f (t) are the given piece-wise continuous
matrices of the function of order n × n, n × r, n × 1 , respectively, α and β are
non-negative numbers; time moments t0, T and the points y, z, c ∈ En are given; D1

and D2 dimensional n× n are constant matrices, moreover det (D1 +D2) 6= 0. U is
a convex closed set. We can show that for

Amax (T − t0)
(
(D1 +D2)

−1D2 + 1
)
< 1,

where Amax = max
[t0,T ]

|A (t)| the boundary value problem (2)-(4) has a unique solution

for each fixed u ∈ U .
In the paper [2] it is shown that the functional (1) is differentiable under restric-

tions (2)-(4) and its gradient is of the form:

J ′ (u) = B∗ (t)ψ (t, u) ∈ Lr
2 [t0, T ] , (5)

where ψ (t, u) is the solution of the integral equation

ψ (t) = −2α (x (t0, u)− y)∗ (D1 +D2)
−1D2+

+2β (x (T, u)− z)∗ (D1 +D2)
−1D1−

−
T∫

t0

A∗ (t)ψ (t) dt (D1 +D2)
−1D1+

+

t∫
t0

A∗ (τ)ψ (τ) dτ , t0 ≤ t ≤ T. (6)

Remark. We can write the integral equation (6) in the following equivalent
form:

·
ψ (t) = A∗ (t)ψ (t) , t0 ≤ t ≤ T,

D∗
1 (D∗

1 +D∗
2)
−1 ψ (T ) +D∗

2 (D∗
1 +D∗

2)
−1 ψ (t0) =

= 2D∗
2 (D∗

1 +D∗
2)
−1 α (x (t0, u)− y) + 2D∗

1 (D∗
1 +D∗

2)
−1 β (x (T, u)− z) .

The conditions imposed the on input data of the problem provide boundedness
of the solution of problem (2)-(3) and (6) i.e.

‖x (t, u)‖ ≤ C0 , ‖ψ (t, u)‖ ≤ C1 , t0 ≤ t ≤ T.

Here and below, by C0 , C1 , C2 , ... we denote positive constants independent of
t ∈ [t0, T ] , u = u (t) ∈ Lr

2 [t0, T ].
Along with problem (1)-(4) we consider the optimal control pronlem:

Jk (u) = αk ‖xk (t0, u)− yk‖2 + βk ‖xk (T, u)− zk‖2 → min (7)

under restrictions

·
xk (t) = Ak (t)xk (t) +Bk (t)u (t) + fk (t) , t0 ≤ t ≤ T ; (8)
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D1xk (t0) +D2 xk (T ) = Ck (9)

Here we assume that the matrices Ak (t) , Bk (t) , fk (t) , D1 , D2 , the points
yk , zk , ck and the numbers αk, βk are approximations of the corresponding matrices
A (t) , B (t) , f (t) , D1 , D2 , the points y , z , c and the numbers α, β , moreover

max

{
sup

t0≤t≤T
‖Ak (t)−A (t)‖ , sup

t0≤t≤T
‖Bk (t)−B (t)‖ ,

sup
t0≤t≤T

‖fk (t)− f (t)‖ , ‖yk − y‖ , ‖ck − c‖ ,

‖zk − z‖ , |αk − α| , |βk − β|} ≤ ηk, k = 1, 2, 3, ... (10)

lim
k→∞

ηk = 0.

If the inequality

(Amax + ηk) (T − t0)
[[

(D1 +D2)
−1D2

]
+ 1

]
< 1,

is fulfilled we can show that problem (8)-(9) has a unique solution for each fixed
u ∈ U. Obviously, the difference ∆xk (t) = xk (t, u)− x (t, u) satisfies the conditions

∆
·
x (t) = Ak (t) ∆xk (t) + (Ak (t)−A (t))x (t) +

+ (Bk (t)−B (t))u (t) + fk (t)− f (t) , t0 ≤ t ≤ T ; (11)

Dk
1∆xk (t0) +Dk

2 ∆xk (T ) = Ck − C0 (12)

we can represent the boundary value problem (11), (12) in the form

∆xk (t) ≡ xk (t, u)− x (t, u) = (D1 +D2)
−1 (Ck − C)−

− (D1 +D2)
−1D2

T∫
t0

[Ak (t) ∆xk (t) + (Ak (t)−A (t))x (t) +

(Bk (t)−B (t))u (t) + (fk (t)− f (t))] dt+

+

t∫
t0

[Ak (τ) ∆xk (τ) + (Ak (τ)−A (τ))x (τ) +

+ (Bk (τ)−B (τ))u (τ) + (fk (τ)− f (τ))] dτ .

Here we pass to the norm, consider the conditions (10) and have:

|∆xk (t)| ≤
∣∣∣(D1 +D2)

−1
∣∣∣ ηk +

∣∣∣(D1 +D2)
−1D2

∣∣∣×(Amax + ηk)

T∫
t0

|∆xk (t)| dt+ ηk

T∫
t0

|∆xk (t)| dt+
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+ηk

T∫
t0

|u (t)| dt+ ηk (T − t0)

 + (Amax + ηk)

t∫
t0

|∆xk (t)| dt+

+ηk

t∫
t0

|x (τ)| dτ + ηk

t∫
t0

|u (τ)| dτ + ηk (T − t0) .

Strengthening the right hand side of the last inequality and passing to the norm, we
get

max
[t0,T ]

|∆xk (t)| ≤ (Amax + ηk) (T − t0)×

×
[∣∣∣(D1 +D2)

−1D2

∣∣∣ + 1
]
max
[t0,T ]

|∆xk (t)|+

(D1 +D2)
−1 ηk + C0 (T − t0) ηk

[
1 +

∣∣∣(D1 +D2)
−1D2

∣∣∣] +

+ηkR (T − t0)
1/2

[[
1 +

∣∣∣(D1 +D2)
−1D2

∣∣∣] +

+ηk (T − t0) 1 +
∣∣∣(D1 +D2)

−1D2

∣∣∣] .
In view of ηk → 0 as k → ∞ it follows that there exists such a number k0 that for
k > k0

(Amax + ηk) (T − t0)
[∣∣∣(D1 +D2)

−1D2

∣∣∣ + 1
]
< 1

so
max |∆xk (t)| ≤ [1− (Amax + ηk) (T − t0)×

×
[∣∣∣(D1 +D2)

−1D2

∣∣∣ + 1
]]−1 ∣∣∣(D1 +D2)

−1
∣∣∣ +

+
(
1 +

∣∣∣(D1 +D2)
−1D2

∣∣∣) [
C (T − t0) +R (T − t0)

1/2 + (T − t0)
]
ηk

or
max |∆xk (t)| ≤ C2ηk

As an approximation for the gradient J ′ (u) we take

J ′k (u) = B∗
k (t)ψk (t, u) ∈ L2 [t0, T ] (13)

where ψk (t, u) is determined from the equality

ψk (t) = −2αk (xk (t0, u)− yk)
∗
(
Dk

1 +Dk
2

)−1
Dk

2+

+2βk (xk (T, u)− zk)
∗
(
Dk

1 +Dk
2

)−1
Dk

1−

−
T∫

t0

A∗k (t)ψk (t) dt
(
Dk

1 +Dk
2

)−1
Dk

1 +

t∫
t0

A∗k (τ)ψk (τ) dτ .
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Then for the difference ∆ψk (t) = ψk (t, u)− ψ (t, u) we can get the estimation. For
the difference of conjugate equations we have

∆ψk (t) ≡ ψk (t, u)− ψ (t, u) =

= −2 [αk (xk (t0)− yk)
∗ − α (x (t0)− y)∗] (D1 +D2)

−1D2+

+2 [βk (xk (T )− zk)
∗ − β (x (T )− z)∗] (D1 +D2)

−1D1−

−

 T∫
t0

A∗k (t)ψk (t) dt−
T∫

t0

A∗ (t)ψk (t) dt

 (D1 +D2)
−1D1+

+

t∫
t0

A∗k (τ)ψk (τ) dτ −
t∫

t0

A∗ (τ)ψk (τ) dτ .

Here we conduct same groupings and get

∆ψk (t) ≡ −2 [αk (xk (t0)− x (t0))
∗ − (yk − y)∗

+(αk − α) (x (t0)− y)∗] (D1 +D2)
−1D2 + 2 [βk (xk (T )− x (T ))∗−

−β (zk − z)∗ + (βk − β) (x (T )− y)] (D1 +D2)
−1D1−

−

 T∫
t0

A∗k (t)ψk (t) dt−
T∫

t0

(Ak (t)−A (t))∗ ψ (t) dt

 (D1 +D2)
−1D1+

+

t∫
t0

A∗k (τ)ψk (τ) dτ −
t∫

t0

(Ak (τ)−A (τ))∗ ψ (τ) dτ .

We pass to the norm and strengthen the right hand side of the inequality. Then

|∆ψr (t)| ≤ 2 [|αk| (|xk (t0)− x (t0)| − |yk − y0|+

+ |αk − α|) (|x (t0)| − |y|)]
∣∣∣(D1 +D2)

−1D2

∣∣∣ +

+2 [|βk| (|xk (T )− x (T )|+ |zk − z|) +

+ |βk − β| (|x (T )| − |y|)]
∣∣∣(D1 +D2)

−1D1

∣∣∣ +

+

 T∫
t0

|Ak (t)| |∆ψk (t)| dt+

T∫
t0

|Ak (t)−A (t)| |ψ (t)| dt

 ∣∣∣(D1 +D2)
−1D1

∣∣∣ +

+

T∫
t0

|Ak (t)| |∆ψk (t)| dt−
T∫

t0

|Ak (t)−A (t)| |ψ (t)| dt.

Considering conditions (10) we have

|∆ψk (t)| ≤ 2 ((|α|+ ηk) (C2ηk + ηk) + ηk (C0 + |y|))
(
(D1 +D2)

−1D2

)
+
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+2 ((|β|+ ηk) (C2ηk + ηk) + ηk (C0 + |z|))
∣∣∣(D1 +D2)

−1D1

∣∣∣ +

+

(Amax + ηk)

T∫
t0

|∆ψk (t)| dt+ ηk

T∫
t0

|ψ (t)| dt

 ∣∣∣(D1 +D2)
−1D1

∣∣∣ +

+(Amax + ηk)

T∫
t0

|∆ψk (t)| dt+ ηk

T∫
t0

|ψ (t)| dt.

Hence (
1− (Amax + ηk) (T − t0)

(∣∣∣(D1 +D2)
−1D2

∣∣∣ + 1
))

max |ψ (t)| ≤

≤
[
2 ((|α|+ ηk) (C2 + 1) + (C0 + |y|))

∣∣∣(D1 +D2)
−1D2

∣∣∣ +

+2 ((|β|+ ηk) (C2 + 1) + (C0 + |z|))
∣∣∣(D1 +D2)

−1D1

∣∣∣] ηk+

+
(
C1 (T − t0)

(∣∣∣(D1 +D2)
−1D1

∣∣∣ + 1
))

ηk

Considering the condition

Amax (T − t0)
(∣∣∣(D1 +D2)

−1D2

∣∣∣ + 1
)
< 1

we have

max |∆ψk (t)| ≤
[
1− (Amax + ηk) (T − t0)

(∣∣∣(D1 +D2)
−1D2

∣∣∣ + 1
)]−1

×

×
[
2 ((|α|+ ηk) (C2 + 1) + (C0 + |y|))

∣∣∣(D1 +D2)
−1D2

∣∣∣ +

+2 ((|β|+ ηk) (C2 + 1) + (C0 + |z|))
∣∣∣(D1 +D2)

−1D1

∣∣∣ +

+C1 (T − t0)
(∣∣∣(D1 +D2)

−1D1

∣∣∣ + 1
)]
ηk

or
|∆ψk (t)| ≡ |ψk (t, u)− ψ (t, u)| ≤ C3ηk (14)

Now, let’s estimate the differences Jk (u)− J (u) .

Jk (u)− J (u) = αk ‖xk (t0, u)− yk‖2 + βk ‖xk (T, u)− zk‖2−

−α ‖x (t0, u)− y‖2 + β ‖x (T, u)− z‖2 =

= (αk − α) ‖xk (t0, u)− yk‖2 + (βk − β) ‖xk (T, u)− zk‖2 +

+α
(
‖xk (t0, u)− yk‖2 − ‖x (t0, u)− y‖2

)
+

+β
(
‖xk (T, u)− zk‖2 − ‖x (T, u)− z‖2

)
.

Hence we can easily get the following estimate

|Jk (u)− J (u)| ≤ C4ηk
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We estimate J ′k (u)−J ′ (u) in the norm L2 [t0, T ] in a similar way. From correspond-
ing formulae it is seen that

J ′k (u)− J ′ (u) =

T∫
t0

(B∗
k (t)ψk (t, u)−B∗

k (t)ψ (t, u) +

|+B∗
k (t)ψ (t, u)−B∗ (t)ψ (t, u)) dt =

=

T∫
t0

B∗
k (t) (ψk (t, u)− ψ (t, u)) dt−

T∫
t0

(B∗
k (t)−B∗ (t))ψ (t, u) dt.

Passing to the norm in the space Lr
2 [t0, T ] , we have

∥∥J ′k (u)− J ′ (u)
∥∥ ≤ T∫

t0

|B∗
k (t)| |ψk (t, u)− ψ (t, u)| dt+

+

T∫
t0

|B∗
k (t)−B∗ (t)| |ψ (t, u)| dt ≤

≤ C3 (Bmax + ηk) (T − t0) ηk + C1 (T − t0) ηk = C5ηk

Using (5), (9)-(12) we have

∥∥J ′k (u)− J ′ (u)
∥∥

L2[t0,T ]
=

 T∫
t0

|B∗
k (t)ψk (t, u)−B∗ (t)ψ (t, u)|2 dt

1/2

≤ C5ηk

Thus, we prove the
Theorem. Let the above enumerated conditions be fulfilled. Then,

lim
k→∞

∥∥J ′k (u)− J ′ (u)
∥∥

L2[t0,T ]
= 0, lim

k→∞
mk = m

where mk = min
U
Jk (u), m = min

U
J (u) .
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