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ON THE CONVERGENCE OF NUMERICAL

METHOD OF THE SOLUTION OF NONLINEAR

VOLTERRA EQUATION OF THE SECOND KIND

Abstract

As is known, the quadrature method is very urgent up to now in finding the
solutions of nonlinear Volterra integral equation of the second kind. Some au-
thors suggest the quadrature method jointly with Runge-Kutta or Adams meth-
ods. However in all these cases it is necessary to calculate integral sum wherein
the amount of calculations of integrand function (nucleus) increses in passing
from a point to a point where the value of the solution of integral equation should
be determined. In order to preserve constant amount of calculations of the in-
tegral nucleus a multi-step method is suggested in [2] . Here, in §1 sufficient
conditions for the convergence of the indicated method are found. Some con-
crete methods applied to the solution of typical equations are in §2. Comparison
of the obtained results with the known ones is also given.

Introduction.
We consider a numerical solution of the following Volterra integral equation:

y (x) = f (x) +

x∫
x0

K (x, s, y (s)) ds, x ∈ [x0, X] . (1)

We assume that continuous in totality of variables function K (x, s, y) has continuous
partial derivatives up to some order p, inclusively. The derivatives of p + 1-th order
are bounded.

In order to construct the method we divide the segment [x0, X] into N equal
parts by means of the constant step h > 0. We take the partitioning points in the
form: xi = x0 + ih (i = 0, 1, 2, ..., N) .

To find numerical solution of equation (1) we suggest the following method:

k∑
i=0

αiyn+i =
k∑

i=0

αifn+i + h
k∑

j=0

k∑
i=0

β
(j)
i K (xn+j , xn+i, yn+i) , (2)

where αi, β
(j)
i are some real numbers, k is an integer quantity, h is a partitioning

step of the segment [x0, X] into N equal parts, ym is an approximate value of the
solution of Volterra integral equations at the points xm = x0 + mh, and fm =
f (xm) (m = 0, 1, 2, ..) (see [2]) .

By solving many applied problems there arises necessity to use the high accuracy
methods. To this end, some authors suggest to raise the accurary of the used method.
In [3] Richardson’s extrapolation method and in [4] Runge method are suggested.



168
[M.N.Imanova,V.R.Ibrahimov]

Transactions of NAS of Azerbaijan

Numerical solution of ordinary differential equations has been well studied and
there are many numerical methods for its solutions. Therefore there exist a tendency
of substitution of the solution of integral equations by its corresponding differential
equation. In [6] by degenerating, the nucleus of equation (1) is substituted by a
system of differential equations thereto multi-step method is applied. It is also
shown that the solution of the obtained system of difference equations is simple.

Notice that in [2] by means of concrete methods it is shown that if the method
(2) is stable and implicit, then its degree of accuracy is higher than the accuracy
degree of the explicit stable method. Therefore, here we suggest to use implicit
methods in the structure of predictor-corrector method. The construction method
of the predictor-corrector method was taken from the paper [5] .

§1. Convergence of multi-step method with constant coefficients.
In [2] it is shown that the use of some methods of type (2) do not always give

acceptable results. Therefore, there arises necessity to study the convergence of the
method (2) . To this end, in the method (2) we replace yn+i (i = 0, 1, ..., k) by their
exact values y (x + ih) , (x = x0 + nh) . Then we get:

k∑
i=0

αiy (x + ih) =
k∑

i=0

αif (x + ih) +

+h
k∑

j=0

k∑
i=0

β
(j)
i K (xn+j , xn+i, y (xn+i)) + rn. (1.1)

Here rn is the error of the method (2) . Notice that by using the method (2) it is
assumed that the initial values y0, y1, y2, ..., yk−1 . are known. We can define the
convergence of the method (2) by means of the following theorem.

Theorem. Let the following conditions be fulfilled:
1). Continuous function K (x, s, z) is determined in some closed domain D and

in the same place has continuous partial derivatives up to some p + 1, inclusively.
2). The method (2) has degree p and αk 6= 0.

3). Initial data were calculated with accuracy of p, i.e.

y (xi)− yi = O (hp) , (i = 0, 1, ..., k − 1) .

4). Round-off errors have higher accuracy than initial data. Namely

δn = O
(
hp+1

)
(n = 0, 1, 2, ...) .

Then, it holds the following

max
k≤m≤N

(y (xm)− ym) = O (hp) , h → 0.

Proof. As it is known, in real calculations the method (2) is in the form:

k∑
i=0

αiyn+i =
k∑

i=0

αifn+i + h

k∑
j=0

k∑
i=0

β
(j)
i K (xn+j , xn+i, yn+i) + δn, (1.2)



Transactions of NAS of Azerbaijan
[On the convergence of numerical method]

169

where δn are round-off errors obtained by finding the quantity yn+k .

Denote
εm = y (xm)− ym (m = 0, 1, 2, ...) .

Subtracting (1.2) from (1.1) we get:

k∑
i=0

αiεn+i = h
k∑

j=0

k∑
i=0

β
(j)
i L

(j)
n+iεn+i + rn − δn, (1.3)

here
L

(j)
n+i = K ′

y

(
xn+j , xn+i, ξn+i

)
, j, i = 0, 1, ..., k,

ξn+i is between y (xn+i) and yn+i . We rewrite relation (1.3) in the form

εn+i =
k−1∑
i=0

1
αk

−αi + h

k∑
j=0

β
(j)
i L

(j)
n+i

 εn+i + Rn , (1.4)

here

Rn = (rn − δn) /αk , αk = αk − h

k∑
j=0

β
(j)
k L

(j)
n+k.

Denote

bn+i =
k∑

j=0

β
(j)
i L

(j)
n+i (i = 0, 1, ...., k) .

Let’s consider the following relation

−αi + hbn+i

αk − hbn+k
= −αi

αk
+ hυn+i (1.5)

where υn+i = (αkbn+i + αibn+k) /αk (αk − bn+kh) .

Considereing sufficient smallness of h we can assume hbn+k ≤ αk/2.

Hence, it follows that υn+i (i = 0, 1, ..., k − 1) are bounded, i.e. |υn+i| ≤ υ.

If we consider (1.5) in (1.4) we can write

εn+k = −
k−1∑
i=0

αi

αk
εn+i + h

k−1∑
i=0

υn+iεn+i + Rn .

By means of the following vector

Yn+k = (εn+i , εn+2 , ..., εn+k) (1.6)

we can write the received relation in the following form (to(1.6) we add the identity
εn+v ≡ εn+v (v = 1, 2, ..., k − 1)):

Yn+k = AYn+k−1 + hVn+kYn+k−1 + Wn,k , (1.7)
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where the matrices A, Vn+k and the vector are defined in the form:

A =


−αk−1

αk
−αk−2

αk
... −α1

αk
−α0

αk

1 0 ... 0 0
... ... ... ... ...

0 0 ... 1 0

 ,

Wn,k =


Rn

0
...
0

 ,

Vn+k =


vn+k−1 vn+k−2 ... vn

0 0 ... 0
... ... ... ...

0 0 ... 0


The matrix A is a Frobenius matrix. Therefore, the set of eigen value of the

matrix A concides with the roots of the characteristic polynomial ρ (λ) ≡
k∑

i=0

αiλ
i

of the method (2) . From the statility of the method it follows that eigen value of
the matrix A are not greater that a unit in modulus, and the ones equal to a unit in
modulus are not multiple. Consequently, there exists a non-singular matrix C such
that the matrix D = C−1AC satisfies the condition ‖D‖ ≤ 1.

In equation (1.7) we use change of variables Yn+k = CZn+k and multiplying the
obtained equation by C−1 from the left we get :

Zn+k = DZn+k−1 + hV n+kZn+k−1 + Wn,k , (1.8)

Here V j = C−1VjC , W j = C−1Wj .

Obviously, the norm of the matrix Vj is estimated by the elements of the first
row. Then we have (without losing generality we assume αk = 1):

‖Vj‖ ≤
k−1∑
i=0

∣∣∣∣αkbn+i + αibn+k

αk (αk − bn+kh)

∣∣∣∣ ≤ γL,

Here L = max
∣∣∣L(j)

n+i

∣∣∣ , γ = 2k

k∑
i=0

∣∣∣β(j)
i

∣∣∣ .

Then ∥∥V j

∥∥ ≤ ∥∥C−1
∥∥ ‖Vj‖ ‖C‖ ≤ γL

∥∥C−1
∥∥ ‖C‖ ,

‖wj‖ ≤
∥∥C−1

∥∥ ‖Wj‖ =
∥∥C−1

∥∥max
n
|Rn| .

Allowing for the obtained estimations in equation (1.8) we have:

‖Zj‖ ≤ β |Rj |+ (1 + γLh) ‖Zj−1‖ . (1.9)
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where β =
∥∥C−1

∥∥ .

Considering inequality (1.9) as a recurrent relation and expressing ‖Zj‖ (j ≥ k)
by ‖Zk−1‖ we get the following:

‖Zm‖ ≤ β
m∑

j=k

(1 + γLh)m−j |Rj |+ (1 + γLh)m−k+1 ‖Zk−1‖ (1.10)

Taking into account

(1 + γLh)m−j ≤ exp (γLh (m− j)) ≤ exp (γLX) ,

we can rewrite relation (1.10) in the form:

‖Zm‖ ≤ exp (γLX)

β

m∑
j=k

|Rj |+ ‖Zk−1‖

 .

It is easy to show that

‖εn‖ ≤ ‖Yn‖ ≤ ‖C‖ ‖Zn‖ ,

‖Zk−1‖ ≤
∥∥C−1

∥∥ ‖Yk−1‖ =
∥∥C−1

∥∥ max
0K,i≤k−1

|εi| .

Then we can write

‖Ym‖ ≤ ‖C‖ exp (γLX)

β
m∑

j=k

|Rj |+
∥∥C−1

∥∥ ‖Yk−1‖

 .

Consequently, for the error of the method (2) we get the following estimates:

‖εn‖ ≤ exp (γLX)

M1

m∑
j=k

|Rj |+ M2 max
0≤i≤k−1

|εi|

 , (1.11)

Here M1 = β ‖C‖ , M2 = ‖C‖
∥∥C−1

∥∥ .

If in (1.11) we take in to account the conditions of the theorem, we get:

εn = O (hp) , h → 0.

§2 Construction of some concrete multi step methods and their com-
parison with the known methods.

Here, in constructing concrete methods we use the ways suggested in [2]. In order
to find the coefficients αi , β

(j)
i (i, j = 0, 1, ..., k) for k = 2 we use the following
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system of algebraic equations:

α0 + α1 + α2 = 0,

α1 + 2α2 = β
(0)
0 + β

(0)
1 + β

(0)
2 + β

(1)
0 +

+β
(1)
1 + β

(1)
2 + β

(2)
0 + β

(2)
1 + β

(2)
2 ,

1
2
α1 + 2α2 = β

(0)
1 + β

(0)
2 + β

(1)
1 +

+β
(1)
2 + β

(2)
1 + β

(2)
2 ,

1
6
α1 +

4
3
α2 =

1
2
β

(0)
1 + 2β

(0)
2 +

+
1
2
β

(1)
1 + 2β

(1)
2 +

1
2
β

(2)
1 + 2β

(2)
2 ,

1
24

α1 +
2
3
α2 =

1
6
β

(0)
1 +

4
3
β

(0)
2 +

+
1
6
β

(1)
1 +

4
3
β

(1)
2 +

1
6
β

(2)
1 +

4
3
β

(2)
2 ,

1
120

α1 +
4
15

α2 =
1
24

β
(0)
1 +

2
3
β

(0)
2 +

+
1
24

β
(1)
1 +

2
3
β

(1)
2 +

1
24

β
(2)
1 +

2
3
β

(2)
2 .

(2.1)

If the obtained system has a solution differ from zero, then we get a method with
degree p = 5. First of all we consider construction of stable explicit method. To this
end we write the last equations from (2.1) in the form:

a + 2b = α1/2 + 2α2 ,

a/2 + 2b = α1/6 + 4α2 /3 ,

a/6 + 4b/3 = α1/24 + 2α2 /3 ,

a/24 + 2b/3 = α1/120 + 4α2 /3 ,

(2.2)

here a = β
(0)
1 + β

(1)
1 + β

(2)
1 , b = β

(0)
2 + β

(1)
2 + β

(2)
2 .

Obviously, for explicit methods b ≡ 0. We can show that in this case explicit
stable methods with degree p > 2 do not exist. Assume that there exist explicit
stable methods with degree p = 3. Then, from (2.2) we have:

a = α1/2 + 2α2 and a/2 = α1/6 + 4α2 /3.

Without losing generality we can assume α2 = 1. Hence we get that α1 = 4 and the
existing methods are unstable. Therefore we consider construction of explicit stable
method with degree p = 2.One of these methods is of the form

yn+2 = (3yn+1 + yn) /4 + fn+2 − (3fn+1 + fn) /4+

h (−K (xn , xn , yn )−K (xn+1 , xn , yn )−

−K (xn+2 , xn , yn ) + 4K (xn , xn+1 , yn+1 ) +

+4K (xn+1 , xn+1 , yn+1 ) + 5K (xn+2 , xn+1 , yn+1 )) /8 (2.3)
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Using system (2.2) we construct stable implicit method with degree p = 3. Such
methods are more than one. The following methods belong to the of stable methods
with degree p = 3 :

yn+2 = (yn + yn+1) /2 + fn+2 − (fn+1 + fn) /2+

h (4K (xn+1 , xn+1 , yn+1) + K (xn+2 , xn , yn ) +

+4K (xn+2 , xn+1 , yn+1 ) + 3K (xn+2 , xn+2 , yn+2)) /8 (2.4)

yn+2 = (yn + yn+1) /2 + fn+2 − (fn+1 + fn) /2+

h (K (xn , xn , yn) + 4K (xn , xn+1 , yn+1 ) +

+3K (xn , xn+2 , yn+2) + 4K (xn+1 , xn+1 , yn+1)) /8 (2.5)

We can easily prove that system (2.2) has no solution different from zero. Con-
sequently, for k = 2 there are no stable methods with degree p = 5. Therefore, we
consider construction of stable methods with degree p = 4. Such methods are more
than one. One of them has the following form:

yn+2 = yn + fn+2 − fn + h (−K (xn , xn+2 , yn+2)−

−K (xn , xn+1 , yn+1)−K (xn , xn , yn) +

K (xn+1 , xn+2 , yn+2) + 4K (xn+1 , xn+1 , yn+1) +

+K (xn+1 , xn , yn) + K (xn+2 , xn+2 , yn+2) +

K (xn+2 , xn+1 , yn+1) + K (xn+2 , xn , yn)) /3 (2.6)

Now, let’s consider construction of explicit method and select the coefficients in the
form: β

(2)
i = −αiγ

(j)
i . In this one of the explicit stable methods with degree p = 2

is of the form:

yn+2 = (3yn+1 + yn) /4 + fn+2 − (3fn+1 + fn) /4 + h (−3K (xn+2 , xn , yn) +

+6K (xn+1 , xn+1 , yn+1) + 7K (xn+2 , xn+1 , yn+1)) /8.

Notice that in this case the method with degree p = 4 is unique and is of the form:(
β

(2)
i = 0 (i = 0, 1, 2)

)
:

yn+2 = yn + fn+2 + h (K (xn , xn , yn) +

+4K (xn , xn+1 , yn+1) + K (xn , xn+2 , yn+2)) /3. (2.7)

Thus, we considered construction of 6 methods of type (4) , whose coefficients
are the solution of system (2.1) . Two of these methods were constructed in [2] .

To illustrate the obtained results we consider application of the methods con-
structed here to concrete equations. We also compare the obtained results on the



174
[M.N.Imanova,V.R.Ibrahimov]

Transactions of NAS of Azerbaijan

method constructed above with the results obtained by quadrature methods suc-
cessfully applied in numerical methods for solving integral equations. All examples
have been taken from the paper [1].

Example 1. For numerical solution of the integral equation (exact solution
y (x) = x + x3/6) :

y (x) = x +

x∫
0

sin (x− s) y (s) ds, x ∈ [0, 1] , (2.8)

we use the following method (see [2])

yn − 2yn−1 + yn−2 = fn − 2fn−1 + fn−2−

h (K (xn−2 , xn−1 , yn−1) + K (xn−2 , xn−2 , yn−2)) /2

+h (3K (xn , xn−1 , yn−1)−K (xn , xn−2 , yn−2)) /2

but in [1, p. 87] the trapezoid method is used.
The error obtained in [1] at the finite point x = 1 equals 0, 255, the error of the

above-indicated methods at the same point equals 0, 036.

All the methods constructed above has degree p = 2, 3, 4. Consequently, if the
solution of equation (1) is a polynomial with degree no more thatn 2, the error of
methods with degree p ≥ 3 will equal zero. In this relation we consider the following
example whose solution equals y (x) = x2.

Example 2. The methods constructed above were applied to numerical solution
of the integral equation

y (x) = 1 +

x∫
1

√
y (s)ds, x ∈ [1, 2] , (2.9)

The calculations were carried out to within 10−12 and for all methods with degree
p > 2 the error was equal to zero, i.e. approximate and exact values of the solution
of equation (2.9) coincided. However, in [1, p. 83] , equation (2.9) was solved by
iterated methods and the error at final step was equal to 0, 1802. Then the next
integral equation whose solution equals y (x) = x, was considered.

Example 3. We solve the integral equation:

y (x) =

x∫
0

(
1 + s2

)
ds, x ∈ [0, 1] (2.10)

by the methods constructed above.
The calculations were carried out with accuracy 10−12 and error for all methods

at the points xi (i ≥ 2) was equal to zero.
Now, let’s consider the numerical solution of integral equations whose solution

is not a polynomial. One of these equations is of the form:
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Example 4.

y (x) = 2 +

x∫
0

(y (s) / (s + 1)− (s + 1/y (s))) ds, x ∈ [0, 6] (2.11)

The solution of equation (2.11) is written in the form:

y (x) = (x + 1)
√

4− 2 ln (x + 1).

We find the numerical solution of the equation by predictor-corrector methods
that use methods (2.4)− (2.6) for the step h = 0, 025. At the step I high accuracy is
attained, then the error of the method hesitate (increases, then decreases) and at the
point x = 6 the error of the method has order 10−7. The obtained result coincides
with the result obtained in [1, p. 93] where for numerical solution of equation (2.11)
a method with degree p = 5 is applied and the principle of finding of solution by
the regions that provide attainment of higher accuracy of results whose use is more
complicated than the use of the method (2), is used.
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