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APPLIED PROBLEMS OF MATHEMATICS AND MECHANICS

Sakina S. ALLAHVERDIEVA

MATHEMATICAL MODELING OF MOTION OF
AVALANCHE - LIKE FLOWS AND CALCULATION

OF DETERMINING PARAMETERS

Abstract

In the paper, mathematical model of motion of different type multi -phase
media on inclined surface describing the current avalanche-like flows is con-
structed on the basis of averaging method. We consider turbulence models of
different complexity with regard to rheology of multi-phase media by means of
which the parameters of turbulent transfer applaring in averagied flow equations
may be given.

1. Introduction. The structure of avalanche-like flow may be represented in
the form of granulated liquid that is a group of discrete solid particles dispersed
in liquid in such a way that the particles of solid component are in contact with
neighboring particles.

Landslips, mudflows, snow avalanches, floadings are dangerous natural processes
and they create obstacles in constructing civil and industrial buildings, roads, de-
veloping lands and extracting mineral products. They are dangerous for human life.
At present everywhere realization of measures in engineering defence of terretories
and objects is not always sensible and economically warranted. Therefore, study of
motion of landslips, mudflows, snow avalanches and prediction of development of
these processes are very urgent and have practical value.

The requirement to mathematical models of motion of lavanche-like like flows is
that the model must be constructed on the base of mechanics of composite media in
the frames of macroscopic - phenomenological representations and simultaneously
possess the properties of granulated medium (hard component), liquid and gas (wa-
ter, air).

2. Mathematical model. In describing motion of avalanche-like flow we use
a model of multi-phase medium that ”pours” down (motion arises from rest state).
Variable steepness slope- that is long and wide in the form of variable length and
depth channel, i.e. the effects related with interactions on lateral boundaries of the
flow, are taken into account. The flow motion is subjected to the action of gravity
force and friction force. This model may be constructed by various methods. In
some cases for each mixture component we can write a sysyem of equations and
phase interactions take into account with the help of additional terms. In other
cases we can approximately represent multi-phase flow as homogeneous one with
averaged properties. The advantage of the last method is comparative simplicity of
statement and solution of practical problems. Approximation degree of the obtained
results that in some cases are far from truth, is the defect of this method.

In models considered up to now where turbulence of the flow is taken into account
[1, p. 57], the multi-phase property was ignored, if multi-phase property was taken
into account, the turbulence was ignored [2]. It was assumed that for describing
turbulence at a point it suffices to know only the scale of velocity, but stress com-
ponents may be expressed by this scale by means of Kolmogorov-Prandtl relation
for turbulent viscosity. However, in transferring separate components, the stresses
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are inadequately reflected by these relations, even if the transfer of velocity scale
is correctly described. In complicated turbulent flows of multi-phase avalanche-like
media, difference in evolution of different Reynolds stress components should be
taken into consideration and transfer of these components must be taken properly
into account. To this end the models using transfer equations for separate compo-
nents of turbulent stresses Ui · Uj [3] must be worked out. These equations may be
derived exactly, but for obtaining a close system, modal relations must be introduced
as well. The advantage of exact equations is that there automatically appear the
terms taking into account buoyancy forces, rotational motions and other factors and
therefore they are very complicated, especially if they satisfy invariance and realiz-
ability requirements. Therefore, inspite of their great potential abilities they are not
frequently used in practice up to now. In motion of various character avalanche-like
flows, consideration of temperature change of medium is inevitable. We can assume
that exact equation for thermoelastic Reynolds stresses (for Reynolds great num-
bers), small scale dissipative turbulent motions are isotropic (local isotropy). Then
we can express the dissipative term as follows:

εij =
2
3
εσij

Here ε is velocity of dissipation of kinetic energy K =
1
2
Ui · Uj , (scalar products

of the same name quantities are denoted by dash).
Exact equation for a general case is not cited here because of its awkwardness.
In many cases mean value of flow characteristics change slowly in vertical direc-

tion, so, change of these quantities in horizontal direction may be determined by
solving two-dimensional equations of mean flow for values averaged in depth.

Integrating three-dimensional equations in depth and assuming that pressure
distribution is hydrostatic, we can derive mean flow equations for quantities averaged
in depth. As a result we get:

Continuity equation
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Equation of motion amount (in direction Y )
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Equation of medium temperature
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The last two terms in equations (2)-(4) are dispersing.
Here u and v are horizontal velocities; h (t, x, y) is flow depth, τ s , τ b are tangen-

tial stresses of surface and bottom, respectively, qs is distributed heat flow through
surface (heat flow from bottom may be assumed to be equal to zero in majority of
cases), are denoted:

F =

zb+h∫
zb

ρ (u− u) (v − v) dz; G =

zb+h∫
zb

ρ (u− u)2 dz;

P =
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zb

P (u− u) (v − v) dz; Q =
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ρ (v − v)2 dz;

Φ =
1
h
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Φdz; U =
1
h
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Udz; v =
1
h

zb+h∫
zb

vdz;

zb are coordinates of inchined surface streamlined by multi-phase, multi-component
flow.

Now, turbulence models are necessary in order to determine depth averaged val-
ues of turbulent stresses τ ij and depth averaged flows J i and also bottom tangential
stresses (friction stresses) τ b.

Flow shift at the surface (wind shift) and heat influx from the heat surface is
determined by turbulent average flow of mixed mass. The quantities τ b and qs are
usually determined by means of simple empiric laws that contain friction coefficients
and heat transfer. In the equations mentioned above, in many practice situations
we can neglect the terms containing turbulent stresses τ ij averaged in depth in
comparison with other terms, and effect of turbulence tells on tangential bottom
stresses τ b.

In these cases only relation of bottom tangential stresses depth averaged veloc-
ities should be determined in model. To this end we use the relation derived from
the friction law

τ bx = ρ · cfu
√

u2 + v2 ; τ by = ρ · cfv
√

u2 + v2 (5)

where cf is empirical friction coefficient dependent on the state of the given surface
the values for smooth and rough bottoms may be found in technical references).

Unlike turbulent stresses, turbulent mass and heat flows J i always play an im-
portant role and require model assumptions.

In equations (1)-(4) there are also so-called dispersive terms that appear because
of vertical inhomogeneity of quantities related with mean flow. These terms have no
connection with turbulence, they arise only because of depth averaging process and
modelling of these terms is not turbulence modelling. All the turbulence models con-
sidered here, are based on turbulent viscosity (diffusion) concept. A great majority
of investigations of such content assumptions such as steadyness of turbulent viscos-
ity (diffusion) coefficients whose acceptance essentially simlifies the mathematical
problem.
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When turbulence is generated mainly in bottom and lateral areas (e.g. flow in
chanel and old riversbeds) depth averaged coefficient of turbulent diffusion is well
described by the expression that contains dynamic velocity uτ and flow depth h :

Rt = c · uτ · h (6)

Here c is an empiric constant depending on flow geometry (c ≈ 0, 135 ÷ 0.275)
and it changes depending on the ratio of flow width to its depth.

Notice that in calculations of depth averaged quantities the depth average value
of the turbulent diffusion coefficient Rt belong to transfer on the whole not only to
turbulent but also to dispersive one that arises because of heteregeneity of vertical
distribution of velocities, temperatures and concentrations.

Potentially universal model of motion of avalanche like flows should allow con-
sideration of backround outbursts to environment. Limit values of quantities typical
for free flow are given on free boundaries. On rigid boundaries (lateral surface and
botton) immediately after viscous underlayer it is given resultunt velocity (upez)
allowing for boundary layer (of variable thickness) because of adhesion of heterege-
neous media:

(upez) =
uτ

χ
ln
(
y+
0 · E0

)
(7)

where y+
0 = y0 ·uτ/v ; χ is the Carman constant (∼ 0, 4), E0 is roughness coefficient

(∼ 9÷ 17), the point y0 is chosen so that y+
0 the dimensionless distance from the

wall y+
0 is in the interval 30÷ 100 ; v is kinematic molecular viscosity coefficient.

Conclusions. In the paper we considered different degree complexity turbulence
models with regard to rheology of multi-phase madia by whose means we can give
turbulent transfer parameters appearing in averaged flow equations. These models
were worked out to investigate natural phenomena such as motion of avalanche-like
flows and airdynamics of environment in nature catastrophes as floodings and etc.

Elaboration of effective methods of solution of practical problems on the base of
the suggested model will be represented in future papers of the author.
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