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BALA A. ISKENDEROV, JAHID Yu. MAMEDOV

BEHAVIOR OF THE SOLUTION OF THE CAUCHY
PROBLEM FOR

BARENBLATT-ZHELTOV-KOCHINA TYPE
EQUATION AT GREAT VALUES OF TIME

Abstract

In the paper we obtain the estimation of the Cauchy problem solution for
Barenblatt-Zheltov-Kochina type equation at great values of time.

By studying liquid filtration in cracked rocks with porosity G.I. Barenblatt, Yu.P.
Zheltov and I.N. Kochina in [1] obtained an equation unsolved with respect to time
derivative of the form

(η∆− 1)Dtu (x, t) + χ∆u (x, t) = 0, x ∈ R3 , (I)

were ∆ is a Laplace operator with respect to x = (x1, x2, x3) ∈ R3, R3 is a three-
dimensional Eucleadian space, η is a permeability coefficient, χ is a piezoconductivity
coefficient. Different boundary value problems for this equation in a bounded do-
main, mainly in one-dimensional, three-dimensional spaces were stated in the paper
[1] and expression for pressure difference in the both sides of the break surface was
obtained.

The mixed problem for equation (I) in a multivariate cylindrical domain was
studied in the paper [2] . In this paper we obtain the estimation of the Cauchy
problem solution for Barenblatt-Zheltov-Kochina type equation at great values of
time. In Rm+n × (0,∞) we consider the following Cauchy problem(

σ2∆m,n − β2
)
Dtu (x, t) + ω2∆mu (x, t) = 0 (1)

u (x, t)|t=0 = ϕ (x) , (2)

here x = (x1, x2, ...xm+n) ,

∆m,n =
∂2

∂x2
1

+ ...+
∂2

∂x2
m

+
∂2

∂x2
m+1

+ ...+
∂2

∂x2
m+n

,

∆m =
∂2

∂x2
1

+ ...+
∂2

∂x2
m

,

σ, β, ω are positive constants having physical sense. We’ll assume that the function
u (x, t) for each t with respect to x is a distribution over D (Rm+n) ([3] , p.40)
continuous with respect to t, and we’ll understand the solution of problem (1)−(2) in
the sense of distributions ([3] , p. 124− 178), where the space of finite infinitely
differentiable function in Rm+n is denoted by D (Rm+n). Notice that equation (1)
belongs to Sobolev-Galperin class of equations. Solvability problems of the Cauchy
problem for this class of equations in the class of distributions was studied by A.G.
Kostyuchenko and G.I. Eskin in [4] .
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Representation of solution of the Cauchy problem (1)–(2).
Assuming u (x, t) as a distribution and perfoming Fourier transformation on

problem (1)− (2) we get the duality problem

σ2
(
|s|2 + β2

)
Vt (s, t) + ω2 |s̄|2 V (s, t) = 0 (3)

V (s, t)|t=0 = ϕ̃ (s) , (4)

where the sign v denotes Fourier transformation with respect to x, s = (s1, s2, ...sm+n)
is a duality variable to x with respect to Fourier transformation

s̄ = (s1, s2, ...sm) , s = (sm+1, sm+2, ...sm+n) , |s|2 = |s|2 =
∣∣s∣∣2 ≡ r2.

Having solved problem (3)− (4) we get.

V (s, t) = e
−

ω2 |s̄|2 t
σ2 |s|2 + β2

ϕ̃ (s) .

Hence, performing the Fourier inverse transformation on V (s, t) for the solution of
Cauchy problem (1)− (2) we get

u (x, t) =
1

(2π)m+n

∫
Rm+n

...

∫
e
−

ω2 |s̄|2 t
σ2 |s|2 + β2

ϕ̃ (s) e−i(x,s)ds = G (x, t) ∗ ϕ (x) ,

where

G (x, t) =
1

(2π)m+n

∫
Rm+n

...

∫
e
−

ω2 |s̄|2 t
σ2 |s|2 + β2

e−i(x,s)ds.

The integral in the expression G (x, t) doesn’t converge in the ordinary sense. There-
fore, taking into account

ϕ̃ (s) = (−1)µ
(
1 + |s|2

)−m ˜(1−∆m,n)µ ϕ (s)

we represent the solution of Cauchy problem (1)− (2) u (x, t) in the form

u (x, t) = G1 (x, t) ∗ (1−∆m+n)µ ϕ (s) ,

where

G1 (x, t) =
1

(2π)m+n

∫
Rm+n

...

∫ (
1 + |s|2

)−µ
e
−

ω2 |s̄|2 t
σ2 |s|2 + β2

e−i(x,s)ds. (5)

We choose the number µ so that the integral in (5) converges absolutely. To this
end we assume

2µ =
{

m+ n+ 1, if m+ n is odd
m+ n+ 2, if m+ n is even

Now we get the estimation of G1 (x, t) at great values of time.
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Asymptotic estimation of the function G1 (x, t) at great values of time.

In (5) pass to spherical coordinates

s1 = r cosϕ1

s2 = r sinϕ1 cosϕ2

s3 = r sinϕ1 sinϕ2 cosϕ3

.........................................

sm−1 = r sinϕ1 sinϕ2.... sinϕm−2 cosϕm−1 (6)

sm = r sinϕ1 sinϕ2.... sinϕm−1 cosϕm

sm+1 = r sinϕ1 sinϕ2.... sinϕm cosϕm+1

...........................................

sm+n = r sinϕ1 sinϕ2.... sinϕm+n−2 sinϕm+n−1

then

s21 + s22 + ...+ s2m = r2 cos2 ϕ1 + ...+ r2 sin2 ϕ1 sin2 ϕ2.... cos2 ϕm =

= r2
(
1− sin2 ϕ1... sin

2 ϕm

)
≡ r2T (ϕ) , (7)

where

0 ≤ ϕj ≤ π, j = 1, 2, ...,m+ n− 2; 0 ≤ ϕm+n−1 ≤ 2π,

ϕ = (ϕ1, ϕ2, ..., ϕm) , ϕ =
(
ϕm+1, ϕm+2, ..., ϕm+n

)
.

Using (6) and (7) and passing in (5) to polar coordinates we get

G1 (x, t) =
1

(2π)m+n

∞∫
0

rm+n−1

(1 + r2)µ×

×
π∫

0

...

π∫
0

2π∫
0

sinn−2 ϕm+1 sinn−3 ϕm+2.... sinϕm+n−2dϕm+1....dϕm+n−2×

×
π∫

0

...

π∫
0

sinϕm+n−2
1 sinϕm+n−3

2 .... sinn−1 ϕme
− ω2r2tT (ϕ)

σ2(r2+β2) ei(x,rδ(ϕ))dϕ1...dϕm, (8)

where s = rδ
(
ϕ1, ..., ϕm+n−1

)
.

In (8) denote the internal integral by J
(
x, r, ϕ, t

)
J

(
x, r, ϕ, t

)
=

∫
Km

...

∫
sinm+n−2 ϕ1 sinm+n−3 ϕ2.... sin

n−1 ϕm×

×e
−
ω2r2tT (ϕ)
σ2

(
r2 + β2

)
ei(x,rδ(ϕ))dϕ1...dϕm, (9)
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where
Km = [0, π]× [0, π]× ...× [0, π]

is m-dimensional cube. By K0 denote m-dimensional cube

K0 =
[π
2
− ε,

π

2
+ ε

]
× ....×

[π
2
− ε,

π

2
+ ε

]
︸ ︷︷ ︸

m times

,

and by O3 ≡ K∗
0 ∪ K∗

1 a finite covering of the cube Km and write appropriate
expansion of the unit

1 ≡
1∑

v=0

ψv (ϕ) ,

where ψv (ϕ) are finite infinitely differentiable functions with support in K∗
v .

Denote
Jv

(
x, r, ϕ, t

)
=

=
∫

K∗
v

...

∫
sinm+n−2 ϕ1... sin

n−1 ϕme
−
ω2r2tT (ϕ)
σ2

(
r2 + β2

)
ψv (ϕ) ei(x,rδ(ϕ))dϕ. (10)

The point ϕ1 =
π

2
, ϕ2 =

π

2
, ...., ϕm =

π

2
is a simple saddle point of the function T (ϕ).

Really,

∂

∂ϕj

T (ϕ) = −2 sinϕj cosϕj sin2 ϕ1... sin
2 ϕj−1 sin2 ϕj+1 sin2 ϕm. (10′)

Hence we get
∂2

∂ϕ2
j

T (ϕ)
∣∣
ϕ=ϕ0

= −2, j = 1, 2, ....,m

and
∂2

∂ϕµ∂ϕj

T (ϕ)
∣∣
ϕ=ϕ0

= 0, µ 6= j,

where
ϕ0 =

[π
2
,
π

2
, ...,

π

2

]
.

Consequently

det
∥∥∥∥∂2T (ϕ0)
∂ϕµ∂ϕj

∥∥∥∥ = (−2)m 6= 0,

i.e. the point ϕ0 is non-degenerate saddle point of the function T (ϕ) . Applying the
saddle point method ([5] , p. 418) to the integral J0

(
x, r, ϕ, t

)
as t→ +∞ we get

J0

(
x, r, ϕ, t

)
= 2−nπ−(m

2
+n)t−

m
2 ei(x,rδ(π

2
ϕ)) +O

(
t−

m
2
−1

)
. (11)

The domain K∗
1 doesn’t contain the point ϕj =

π

2
, j = 1, 2, ...,m with some

neighborhood. Therefore, there exist the constants C1, c1 such that for ϕ ∈ K∗
1

0 < c1 ≤ T (ϕ) ≤ C1 < 1. (12)
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For G1 (x, t) it holds the representation

G1 (x, t) =
1

(2π)m+n

1∑
v=0

∫ π

0
...

∫ π

0

∫ 2π

0
Bv

(
x, ϕ, t

)
×

× sinn−2 ϕm+1 sinn−3 ϕm+2.... sinϕm+n−2dϕ ≡ G
(0)
1 (x, t) +G

(1)
1 (x, t) ,

where

Bv

(
x, ϕ, t

)
=

∫ ∞

0

rm+n−1

(1 + r2)µJv

(
x, r, ϕ, t

)
dr, v = 0, 1. (13)

Let’s consider B1

(
x, ϕ, t

)
. Changing integration order in (13) we get

B1

(
x, ϕ, t

)
=

∫
K∗

1

...

∫
sinm+n−2 ϕ1.... sin

n−1 ϕm × ψ1 (ϕ)×

×
{ ∞∫

0

rm+n−1

(1 + r2)µ e
−
ω2r2tT (ϕ)
σ2

(
r2 + β2

)
ei(x,rδ(ϕ))dr

}
dϕ. (14)

We represent the internal integral in (14) in the form

W (x, ϕ, t) =


a∫

0

+

∞∫
a

 rm+n−1

(1 + r2)µ e
−
ω2r2tT (ϕ)
σ2

(
r2 + β2

)
ei(x,rδ(ϕ))dr ≡

≡W (I) (x, ϕ, t) +W (II) (x, ϕ, t) , (15)

where a > 0 is a sufficiently small number. In order to reduce W (I) (x, ϕ, t) to the
form wherein the Watson lemma is applicable, we make substitution

ω2r2T (ϕ)
σ2r2 + β2 = τ2.

Hence
r =

βτ(
ω2

σ2
T (ϕ)− τ2

) 1
2

. (16)

Substituting (16) in expression W (I) (x, ϕ, t) we get

W (I) (x, ϕ, t) =

=
ω2

σ2
βm+n−1T (ϕ)

∫ ω
σ

aT1/2(ϕ)

(a2+β2)1/2

0

τm+n−1e

i

(
x,

βτδ(ϕ)(
ω2

σ2 T (ϕ)−τ2
) 1

2

)
e−tτ2(

ω2

σ2T (ϕ)− τ2
)m+n

2
+1−µ

dτ. (17)

Taking into account estimation (12) and sufficient smallness of a from (17) we deduce
that intergrand has no singularities in integration interval. Applying Watson lemma
([5] , p. 58) to the integral in (17) as t→ +∞ we get

W (I) (x, ϕ, t) =
1
2
βm+n−1Γ

(m+ n

2

)
×
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×
(
ω2T (ϕ)
σ2

)µ−m+n
2

t−
m+n

2

(
1 + |x|O

(
t−

1
2

))
. (18)

Estimating by modulus W (II) (x, ϕ, t) and considering that the function
r2

r2 + β2

monotonically increases, and T (ϕ) ≥ c1 > 0 , we get∣∣∣W (II) (x, ϕ, t)
∣∣∣ ≤ Ce

− ω2a2T (ϕ)t

σ2(a2+β2) . (19)

It follows from (15) , (18) and (19) that as t→ +∞

W (x, ϕ, t) =
βm+n−1

2
Γ

(
m+ n

2

) (
ω2T (ϕ)
σ2

)µ−m+n
2

t−
m+n

2

(
1 + |x|O

(
t−

1
2

))
. (20)

Now, let’s consider B0

(
x, ϕ, t

)
. Substituting the expression J0

(
x, r, ϕ, t

)
from

(11) in (13) for v > 0 we get

B0

(
x, ϕ, t

)
= 2−nπ−(m

2
+n) t−

m
2

∞∫
0

rm+n−1

(1 + r2)µ e
i(x,rδ(π

2
ϕ))dr

(
1 +O

(
t−

1
2

))
.

Substituting the expression B0

(
x, ϕ, t

)
in G(0)

1 (x, t) and estimating by modulus we
get ∣∣∣G(0)

1 (x, t)
∣∣∣ ≤ G (m,n) t−

1
2 (21)

uniformly with respect to x ∈ Rm+n.
Further, substituting asymptoticsW (x, ϕ, t) from (20) in the expressionB1

(
x, ϕ, t

)
from (14) we get

B1

(
x, ϕ, t

)
= C1 (β, ω, σ,m, n) t−

m+n
2

(
1 + xO

(
t−

1
2

))
uniformly with respect to ϕ ∈ Kn−1 = [0, π]× ...× [0, π]× [0, 2π]︸ ︷︷ ︸

(n−1) times

, where

C1 (β, ω, σ,m, n) =
βm+n−1

2

(
ω2

σ2

)µ−m+n
2

Γ
(
m+ n

2

)
×

×
∫

K∗
1

...

∫
sinm+n−2 ϕ1.... sin

n−1 ϕmT
µ−m+n

2 (ϕ) dϕ. (22)

From (13) and (22) it follows that as t→ +∞∣∣∣G(1)
1 (x, t)

∣∣∣ ≤ C1 (β, ω, σ,m, n) t−
m+n

2 (23)

uniformly with respect to x ∈ Rm+n.
From (13) , (21) and (23) it follows that as t→ +∞

|G1 (x, t)| ≤ C (m,n, β, σ) t−
m
2

(
1 + |x| t−

1
2

)
(24)
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for all x ∈ Rm+n.
From the above said one and (5) it follows the following theorem.
Theorem 1. The Green function G (x, t)of problem (1)−(2) is generalized func-

tion on the space D (Rm+n) of singularity order µ, for it it holds the representation

G (x, t) =
(
1−∆m,n

)µ
G1 (x, t) ,

where G1 (x, t) is a continuous function with respect to (x, t) and as t→ +∞ for it
estimation (24) holds.

Let’s introduce the following space. We denote by Hθ (ρ (x) , Rm+n) (θ ≥ 1)
a sub-space of Sobolev-Slobodetskii space Hθ (Rm+n) (see [6] , p. 131) for whose
elements

‖ϕ (x)‖Hθ(ρ(x),Rm+n) =


∫

Rm+n

...

∫
ρ2 (x)

∑
|α|≤θ

∣∣D2ϕ (x)
∣∣2 dx


1/2

< +∞,

where ρ (x) is some measurable function increasing at infinity in a power way.
Theorem 2. Let D

βj
xjϕ (x) ∈ H2µ (ρ (x) , Rm+n) . Then for the solution of the

Cauchy problem (1)− (2) as t→ +∞ it holds the estimation∣∣∣Dα
t D

βj
xj u (x, t)

∣∣∣ ≤ C (m,n) t−
m
2
−2α

(
1 + |x|2

) 1
2
∥∥∥Dβj

xjϕ (ξ)
∥∥∥

H2µ(ρ(x),Rm+n)
,

where ρ (x) = (1 + |x|)m+n+3 , 0 ≤ α ≤ 1, 0 ≤ βj ≤ 2.
Proof. Estimate u (x, t) from relation (5). Applying Cauchy-Bunyakovskii in-

equality to this relation preliminarily multiplying and dividing integrand expression

into
(
1 + |ξ|2

)m+n+3
4 we get

|u (x, t)| ≤
{∫

Rm+n

...

∫
|G1 (x− ξ, t)|2(
1 + |ξ|2

)m+n+3
2

dξ
}1/2

×

×
{∫

Rm+n

...

∫ (
1 + |ξ|2

)m+n+3
2 |(1−∆)µ ϕ (ξ)|2 dξ

}1/2

=

=
{∫

Rm+n

...

∫
|G1 (x− ξ, t)|2(
1 + |ξ|2

)m+n+3
2

dξ
}1/2

‖(1−∆)µ ϕ (ξ)‖L2(ρ(x),Rm+n) . (25)

Estimate the first multiplier in (25) denoting it by I (x, t) . Using asymptotic
estimation (24) we get

I (x, t) ≤ Ct−
m
2

{∫
Rm+n

...

∫
1 + |x− ξ|2(

1 + |ξ|2
)m+n+1

2

dξ
}1/2

≤ Ct−
m
2

(
1 + |x|2

) 1
2 ×

×
{∫

Rm+n

...

∫
|ξ|2 dξ(

1 + |ξ|2
)m+n+3

2

}1/2
= C1t

−m
2

(
1 + |x|2

) 1
2
. (26)
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From (25) and (26) we get

|u (x, t)| ≤ C1 (m,n) t−
m
2 ‖(1−∆m,n)µ ϕ (ξ)‖L2(ρ(x),Rm+n)

(
1 + |x|2

)1/2
.

Asymptotics Dtu (x, t) as t → +∞ is studied in the same way as the asymptotics
u (x, t) with a difference that the integrand in the espression G1 (x, t) from (8) is
multiplied by T (ϕ) , by differentiating with respect to t, that increases order of zero
of this function at the point ϕ =

(π
2
,
π

2
, ...,

π

2

)
for two units. Taking this into

account as t→ +∞ we get

DtJ0

(
x, r, ϕ, t

)
= C (m,n) t−

m
2
−2

(
1 +O

(
t−1

))
(27)

uniformly with respect to x, r, ϕ.
By differentiating u (x, t) with respect to xj by the convolution differentiation

property we throw the derivative over the initial function ϕ (x) . Further, using
estimation (25) and acting as in the estimation of u (x, t) we get∣∣∣Dα

t D
βj
xj u (x, t)

∣∣∣ ≤ C (m,n) t−
m
2
−2α

(
1 + |x|2

) 1
2
∥∥∥Dβj

xjϕ (ξ)
∥∥∥

H2µ(ρ(x),Rm+n)
. (28)

The theorem is proved.
Remark. For β = 0 the asymptotics J0

(
x, r, ϕ, t

)
as t → +∞ doesn’t change,

and the estimation B1

(
x, ϕ, t

)
from (14) gives∣∣B1

(
x, ϕ, t

)∣∣ ≤ Ce−c1t.

Therefore the first addend in the expression G1 (x, t) from (13) makes the basic
contribution to the asymptotis of the solution of problem (1)−(2) and consequently,
asymptotic estimation (27) for great values of time of the solution of Cauchy problem
(1)− (2) doesn’t change.
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