BALA A. ISKENDEROV, JAHID Yu. MAMEDOV

BEHAVIOR OF THE SOLUTION OF THE CAUCHY PROBLEM FOR BARENBLATT-ZHELTOV-KOCHINA TYPE EQUATION AT GREAT VALUES OF TIME

Abstract

In the paper we obtain the estimation of the Cauchy problem solution for Barenblatt-Zheltov-Kochina type equation at great values of time.

By studying liquid filtration in cracked rocks with porosity G.I. Barenblatt, Yu.P. Zheltov and I.N. Kochina in [1] obtained an equation unsolved with respect to time derivative of the form

$$(\eta \Delta - 1) D_t u(x, t) + \chi \Delta u(x, t) = 0, \quad x \in R_3 , \qquad (I)$$

were Δ is a Laplace operator with respect to $x = (x_1, x_2, x_3) \in R_3$, R_3 is a threedimensional Eucleadian space, η is a permeability coefficient, χ is a piezoconductivity coefficient. Different boundary value problems for this equation in a bounded domain, mainly in one-dimensional, three-dimensional spaces were stated in the paper [1] and expression for pressure difference in the both sides of the break surface was obtained.

The mixed problem for equation (I) in a multivariate cylindrical domain was studied in the paper [2]. In this paper we obtain the estimation of the Cauchy problem solution for Barenblatt-Zheltov-Kochina type equation at great values of time. In $R_{m+n} \times (0, \infty)$ we consider the following Cauchy problem

$$\left(\sigma^{2}\Delta_{m,n} - \beta^{2}\right) D_{t}u\left(x,t\right) + \omega^{2}\Delta_{m}u\left(x,t\right) = 0$$
(1)

$$u(x,t)|_{t=0} = \varphi(x), \qquad (2)$$

here $x = (x_1, x_2, ..., x_{m+n})$,

$$\Delta_{m,n} = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_m^2} + \frac{\partial^2}{\partial x_{m+1}^2} + \dots + \frac{\partial^2}{\partial x_{m+n}^2},$$
$$\Delta_m = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_m^2},$$

 σ, β, ω are positive constants having physical sense. We'll assume that the function u(x,t) for each t with respect to x is a distribution over $D(R_{m+n})$ ([3], p.40) continuous with respect to t, and we'll understand the solution of problem (1)-(2) in the sense of distributions ([3], p. 124 - 178), where the space of finite infinitely differentiable function in R_{m+n} is denoted by $D(R_{m+n})$. Notice that equation (1) belongs to Sobolev-Galperin class of equations. Solvability problems of the Cauchy problem for this class of equations in the class of distributions was studied by A.G. Kostyuchenko and G.I. Eskin in [4].

[B.A.Iskenderov, J.Yu.Mamedov]

Representation of solution of the Cauchy problem (1)-(2).

Assuming u(x,t) as a distribution and performing Fourier transformation on problem (1) - (2) we get the duality problem

$$\sigma^{2} \left(|s|^{2} + \beta^{2} \right) V_{t} \left(s, t \right) + \omega^{2} \left| \bar{s} \right|^{2} V \left(s, t \right) = 0$$
(3)

$$V\left(s,t\right)|_{t=0} = \tilde{\varphi}\left(s\right),\tag{4}$$

where the sign \sim denotes Fourier transformation with respect to $x, s = (s_1, s_2, ..., s_{m+n})$ is a duality variable to x with respect to Fourier transformation

$$\bar{s} = (s_1, s_2, \dots s_m), \ \bar{\bar{s}} = (s_{m+1}, s_{m+2}, \dots s_{m+n}), \ |s|^2 = |\bar{s}|^2 = |\bar{\bar{s}}|^2 \equiv r^2.$$

Having solved problem (3) - (4) we get.

$$V(s,t) = e^{-\frac{\omega^2 |\bar{s}|^2 t}{\sigma^2 |s|^2 + \beta^2}} \tilde{\varphi}(s).$$

Hence, performing the Fourier inverse transformation on V(s,t) for the solution of Cauchy problem (1) - (2) we get

$$u(x,t) = \frac{1}{(2\pi)^{m+n}} \int_{R_{m+n}} \dots \int e^{-\frac{\omega^2 |\bar{s}|^2 t}{\sigma^2 |s|^2 + \beta^2}} \tilde{\varphi}(s) e^{-i(x,s)} ds = G(x,t) * \varphi(x),$$

where

$$G(x,t) = \frac{1}{(2\pi)^{m+n}} \int_{R_{m+n}} \dots \int e^{-\frac{\omega^2 |\bar{s}|^2 t}{\sigma^2 |s|^2 + \beta^2}} e^{-i(x,s)} ds.$$

The integral in the expression G(x, t) doesn't converge in the ordinary sense. Therefore, taking into account

$$\tilde{\varphi}(s) = (-1)^{\mu} \left(1 + \left|s\right|^{2}\right)^{-m} \left(1 - \widetilde{\Delta_{m,n}}\right)^{\mu} \varphi(s)$$

we represent the solution of Cauchy problem (1) - (2) u(x, t) in the form

$$u(x,t) = G_1(x,t) * (1 - \Delta_{m+n})^{\mu} \varphi(s),$$

where

$$G_1(x,t) = \frac{1}{(2\pi)^{m+n}} \int_{R_{m+n}} \dots \int \left(1 + |\overline{s}|^2\right)^{-\mu} e^{-\frac{\omega^2 |\overline{s}|^2 t}{\sigma^2 |s|^2 + \beta^2}} e^{-i(x,s)} ds.$$
(5)

We choose the number μ so that the integral in (5) converges absolutely. To this end we assume

$$2\mu = \begin{cases} m+n+1, & \text{if } m+n \text{ is odd} \\ m+n+2, & \text{if } m+n \text{ is even} \end{cases}$$

Now we get the estimation of $G_1(x,t)$ at great values of time.

 72_{-}

 $\frac{1}{[Behavior of the solution of the Cauchy prob.]}73$

Asymptotic estimation of the function $\mathbf{G}_{1}\left(x,t ight)$ at great values of time.

In (5) pass to spherical coordinates

$$s_{1} = r \cos \varphi_{1}$$

$$s_{2} = r \sin \varphi_{1} \cos \varphi_{2}$$

$$s_{3} = r \sin \varphi_{1} \sin \varphi_{2} \cos \varphi_{3}$$

$$\dots$$

$$s_{m-1} = r \sin \varphi_{1} \sin \varphi_{2} \dots \sin \varphi_{m-2} \cos \varphi_{m-1}$$

$$s_{m} = r \sin \varphi_{1} \sin \varphi_{2} \dots \sin \varphi_{m-1} \cos \varphi_{m}$$

$$s_{m+1} = r \sin \varphi_{1} \sin \varphi_{2} \dots \sin \varphi_{m} \cos \varphi_{m+1}$$

$$\dots$$

$$\dots$$

$$(6)$$

 $s_{m+n} = r \sin \varphi_1 \sin \varphi_2 \dots \sin \varphi_{m+n-2} \sin \varphi_{m+n-1}$

then

$$s_1^2 + s_2^2 + \dots + s_m^2 = r^2 \cos^2 \varphi_1 + \dots + r^2 \sin^2 \varphi_1 \sin^2 \varphi_2 \dots \cos^2 \varphi_m =$$
$$= r^2 \left(1 - \sin^2 \varphi_1 \dots \sin^2 \varphi_m \right) \equiv r^2 T \left(\overline{\varphi}\right), \tag{7}$$

where

$$0 \leq \varphi_j \leq \pi, \quad j = 1, 2, ..., m + n - 2; \quad 0 \leq \varphi_{m+n-1} \leq 2\pi,$$
$$\overline{\varphi} = (\varphi_1, \varphi_2, ..., \varphi_m), \quad \overline{\overline{\varphi}} = (\varphi_{m+1}, \varphi_{m+2}, ..., \varphi_{m+n}).$$

Using (6) and (7) and passing in (5) to polar coordinates we get

$$G_1(x,t) = \frac{1}{(2\pi)^{m+n}} \int_0^\infty \frac{r^{m+n-1}}{(1+r^2)^{\mu}} \times$$

$$\times \int_{0}^{\pi} \dots \int_{0}^{\pi} \int_{0}^{2\pi} \sin^{n-2} \varphi_{m+1} \sin^{n-3} \varphi_{m+2} \dots \sin \varphi_{m+n-2} d\varphi_{m+1} \dots d\varphi_{m+n-2} \times$$
$$\times \int_{0}^{\pi} \dots \int_{0}^{\pi} \sin \varphi_{1}^{m+n-2} \sin \varphi_{2}^{m+n-3} \dots \sin^{n-1} \varphi_{m} e^{-\frac{\omega^{2} r^{2} t T(\overline{\varphi})}{\sigma^{2} (r^{2}+\beta^{2})}} e^{i(x, r\delta(\varphi))} d\varphi_{1} \dots d\varphi_{m}, \quad (8)$$

where $s = r\delta(\varphi_1, ..., \varphi_{m+n-1})$. In (8) denote the internal integral by $J(x, r, \overline{\varphi}, t)$

$$J\left(x,r,\overline{\varphi},t\right) = \int_{K_m} \dots \int \sin^{m+n-2} \varphi_1 \sin^{m+n-3} \varphi_2 \dots \sin^{n-1} \varphi_m \times \\ \times e^{-\frac{\omega^2 r^2 t T\left(\overline{\varphi}\right)}{\sigma^2 \left(r^2 + \beta^2\right)}} e^{i(x,r\delta(\varphi))} d\varphi_1 \dots d\varphi_m, \tag{9}$$

[B.A.Iskenderov, J.Yu.Mamedov]

where

$$K_m = [0,\pi] \times [0,\pi] \times \ldots \times [0,\pi]$$

is *m*-dimensional cube. By K_0 denote *m*-dimensional cube

$$K_0 = \underbrace{\left[\frac{\pi}{2} - \varepsilon, \ \frac{\pi}{2} + \varepsilon\right] \times \dots \times \left[\frac{\pi}{2} - \varepsilon, \ \frac{\pi}{2} + \varepsilon\right]}_{m \text{ times}},$$

and by $O_3 \equiv K_0^* \cup K_1^*$ a finite covering of the cube K_m and write appropriate expansion of the unit

$$1\equiv\sum_{v=0}^{1}\psi_{v}\left(\overline{\varphi}\right),$$

where $\psi_{v}\left(\overline{\varphi}\right)$ are finite infinitely differentiable functions with support in K_{v}^{*} .

Denote

$$J_{v}\left(x,r,\overline{\varphi},t\right) =$$

$$= \int_{K_{v}^{*}} \dots \int \sin^{m+n-2} \varphi_{1} \dots \sin^{n-1} \varphi_{m} e^{-\frac{\omega^{2} r^{2} t T\left(\overline{\varphi}\right)}{\sigma^{2} \left(r^{2}+\beta^{2}\right)}} \psi_{v}\left(\overline{\varphi}\right) e^{i(x,r\delta(\varphi))} d\overline{\varphi}.$$
(10)

The point $\varphi_1 = \frac{\pi}{2}, \varphi_2 = \frac{\pi}{2}, ..., \varphi_m = \frac{\pi}{2}$ is a simple saddle point of the function $T(\overline{\varphi})$. Really,

$$\frac{\partial}{\partial \varphi_j} T\left(\overline{\varphi}\right) = -2\sin\varphi_j \cos\varphi_j \sin^2\varphi_1 \dots \sin^2\varphi_{j-1} \sin^2\varphi_{j+1} \sin^2\varphi_m. \tag{10'}$$

Hence we get

$$\frac{\partial^2}{\partial \varphi_j^2} T\left(\overline{\varphi}\right) \Big|_{\overline{\varphi} = \overline{\varphi}_0} = -2, \qquad j = 1, 2, ..., m$$

and

$$\frac{\partial^2}{\partial \varphi_{\mu} \partial \varphi_j} T\left(\overline{\varphi}\right) \Big|_{\overline{\varphi} = \overline{\varphi}_0} = 0, \qquad \quad \mu \neq j,$$

where

$$\overline{\varphi}_0 = \left[\frac{\pi}{2}, \ \frac{\pi}{2}, ..., \frac{\pi}{2}\right].$$

Consequently

$$\det \left\| \frac{\partial^2 T\left(\overline{\varphi}_0\right)}{\partial \varphi_\mu \partial \varphi_j} \right\| = (-2)^m \neq 0,$$

i.e. the point $\overline{\varphi}_0$ is non-degenerate saddle point of the function $T(\overline{\varphi})$. Applying the saddle point method ([5], p. 418) to the integral $J_0(x, r, \overline{\overline{\varphi}}, t)$ as $t \to +\infty$ we get

$$J_0\left(x,r,\overline{\overline{\varphi}},t\right) = 2^{-n} \pi^{-\left(\frac{m}{2}+n\right)} t^{-\frac{m}{2}} e^{i\left(x,r\delta\left(\frac{\pi}{2}\overline{\overline{\varphi}}\right)\right)} + O\left(t^{-\frac{m}{2}-1}\right).$$
(11)

The domain K_1^* doesn't contain the point $\varphi_j = \frac{\pi}{2}$, j = 1, 2, ..., m with some neighborhood. Therefore, there exist the constants C_1 , c_1 such that for $\overline{\varphi} \in K_1^*$

$$0 < c_1 \le T\left(\overline{\varphi}\right) \le C_1 < 1. \tag{12}$$

Transactions of NAS of Azerbaijan $\frac{1}{[Behavior of the solution of the Cauchy prob.]}$

For $G_1(x,t)$ it holds the representation

$$G_1(x,t) = \frac{1}{(2\pi)^{m+n}} \sum_{v=0}^{1} \int_0^{\pi} \dots \int_0^{\pi} \int_0^{2\pi} B_v(x,\overline{\overline{\varphi}},t) \times$$

 $\times \sin^{n-2}\varphi_{m+1}\sin^{n-3}\varphi_{m+2}....\sin\varphi_{m+n-2}d\overline{\overline{\varphi}} \equiv G_1^{\left(0\right)}\left(x,t\right) + G_1^{\left(1\right)}\left(x,t\right),$

where

Hence

$$B_v\left(x,\overline{\overline{\varphi}},t\right) = \int_0^\infty \frac{r^{m+n-1}}{(1+r^2)^{\mu}} J_v\left(x,r,\overline{\overline{\varphi}},t\right) dr, \quad v = 0,1.$$
(13)

Let's consider $B_1(x, \overline{\varphi}, t)$. Changing integration order in (13) we get

$$B_{1}\left(x,\overline{\overline{\varphi}},t\right) = \int_{K_{1}^{*}} \dots \int \sin^{m+n-2}\varphi_{1}\dots\sin^{n-1}\varphi_{m} \times \psi_{1}\left(\overline{\varphi}\right) \times \\ \times \left\{\int_{0}^{\infty} \frac{r^{m+n-1}}{\left(1+r^{2}\right)^{\mu}} e^{-\frac{\omega^{2}r^{2}tT\left(\overline{\varphi}\right)}{\sigma^{2}\left(r^{2}+\beta^{2}\right)}} e^{i(x,r\delta(\varphi))}dr\right\} d\overline{\varphi}.$$
(14)

We represent the internal integral in (14) in the form

$$W(x,\varphi,t) = \left\{ \int_{0}^{a} + \int_{a}^{\infty} \right\} \frac{r^{m+n-1}}{(1+r^{2})^{\mu}} e^{-\frac{\omega^{2}r^{2}tT\left(\overline{\varphi}\right)}{\sigma^{2}\left(r^{2}+\beta^{2}\right)}} e^{i(x,r\delta(\varphi))} dr \equiv$$
$$\equiv W^{(I)}\left(x,\varphi,t\right) + W^{(II)}\left(x,\varphi,t\right), \tag{15}$$

where a > 0 is a sufficiently small number. In order to reduce $W^{(I)}(x, \varphi, t)$ to the form wherein the Watson lemma is applicable, we make substitution

$$\frac{\omega^2 r^2 T\left(\overline{\varphi}\right)}{\sigma^2 r^2 + \beta^2} = \tau^2.$$

$$r = \frac{\beta \tau}{\left(\frac{\omega^2}{\sigma^2} T\left(\overline{\varphi}\right) - \tau^2\right)^{\frac{1}{2}}}.$$
(16)

Substituting (16) in expression $W^{(I)}(x,\varphi,t)$ we get

$$= \frac{\omega^2}{\sigma^2} \beta^{m+n-1} T\left(\overline{\varphi}\right) \int_0^{\frac{\omega}{\sigma} \frac{aT^{1/2}(\overline{\varphi})}{(a^2+\beta^2)^{1/2}}} \frac{\tau^{m+n-1} e^{i\left(x, \frac{\beta\tau\delta(\varphi)}{\left(\frac{\omega^2}{\sigma^2}T(\overline{\varphi}) - \tau^2\right)^{\frac{1}{2}}\right)}}{\left(\frac{\omega^2}{\sigma^2}T\left(\overline{\varphi}\right) - \tau^2\right)^{\frac{m+n}{2} + 1 - \mu}} d\tau.$$
(17)

Taking into account estimation (12) and sufficient smallness of a from (17) we deduce that intergrand has no singularities in integration interval. Applying Watson lemma ([5], p. 58) to the integral in (17) as $t \to +\infty$ we get

 $W^{(I)}(x,\varphi,t) =$

$$W^{(I)}\left(x,\varphi,t\right) = \frac{1}{2}\beta^{m+n-1}\Gamma\left(\frac{m+n}{2}\right) \times$$

75

76_____ Transactions of NAS of Azerbaijan [B.A.Iskenderov, J.Yu.Mamedov]

$$\times \left(\frac{\omega^2 T\left(\overline{\varphi}\right)}{\sigma^2}\right)^{\mu - \frac{m+n}{2}} t^{-\frac{m+n}{2}} \left(1 + |x| O\left(t^{-\frac{1}{2}}\right)\right). \tag{18}$$

Estimating by modulus $W^{(II)}(x,\varphi,t)$ and considering that the function $\frac{r^2}{r^2+\beta^2}$ monotonically increases, and $T(\overline{\varphi}) \ge c_1 > 0$, we get

$$\left| W^{(II)}\left(x,\varphi,t\right) \right| \le C e^{-\frac{\omega^2 a^2 T(\overline{\varphi})t}{\sigma^2 (a^2 + \beta^2)}}.$$
(19)

It follows from (15), (18) and (19) that as $t \to +\infty$

$$W(x,\varphi,t) = \frac{\beta^{m+n-1}}{2} \Gamma\left(\frac{m+n}{2}\right) \left(\frac{\omega^2 T\left(\overline{\varphi}\right)}{\sigma^2}\right)^{\mu-\frac{m+n}{2}} t^{-\frac{m+n}{2}} \left(1+|x|O\left(t^{-\frac{1}{2}}\right)\right).$$
(20)

Now, let's consider $B_0(x,\overline{\varphi},t)$. Substituting the expression $J_0(x,r,\overline{\varphi},t)$ from (11) in (13) for v > 0 we get

$$B_0(x,\overline{\varphi},t) = 2^{-n} \pi^{-\left(\frac{m}{2}+n\right)} t^{-\frac{m}{2}} \int_0^\infty \frac{r^{m+n-1}}{(1+r^2)^{\mu}} e^{i\left(x,r\delta\left(\frac{\pi}{2}\overline{\varphi}\right)\right)} dr \left(1+O\left(t^{-\frac{1}{2}}\right)\right).$$

Substituting the expression $B_0\left(x,\overline{\overline{\varphi}},t\right)$ in $G_1^{(0)}\left(x,t\right)$ and estimating by modulus we get

$$\left|G_{1}^{(0)}(x,t)\right| \le G(m,n) t^{-\frac{1}{2}}$$
(21)

uniformly with respect to $x \in R_{m+n}$.

Further, substituting asymptotics $W(x, \varphi, t)$ from (20) in the expression $B_1(x, \overline{\varphi}, t)$ from (14) we get

$$B_1\left(x,\overline{\overline{\varphi}},t\right) = C_1\left(\beta,\omega,\sigma,m,n\right)t^{-\frac{m+n}{2}}\left(1+xO\left(t^{-\frac{1}{2}}\right)\right)$$

uniformly with respect to $\overline{\overline{\varphi}} \in K_{n-1} = \underbrace{[0,\pi] \times \ldots \times [0,\pi] \times [0,2\pi]}_{(n-1) \text{ times}}$, where

$$C_{1}\left(\beta,\omega,\sigma,m,n\right) = \frac{\beta^{m+n-1}}{2} \left(\frac{\omega^{2}}{\sigma^{2}}\right)^{\mu-\frac{m+n}{2}} \Gamma\left(\frac{m+n}{2}\right) \times \\ \times \int_{K_{1}^{*}} \dots \int \sin^{m+n-2} \varphi_{1} \dots \sin^{n-1} \varphi_{m} T^{\mu-\frac{m+n}{2}}\left(\overline{\varphi}\right) d\overline{\varphi}.$$
(22)

From (13) and (22) it follows that as $t \to +\infty$

$$\left|G_{1}^{(1)}(x,t)\right| \leq C_{1}\left(\beta,\omega,\sigma,m,n\right)t^{-\frac{m+n}{2}}$$
(23)

uniformly with respect to $x \in R_{m+n}$.

From (13), (21) and (23) it follows that as $t \to +\infty$

$$|G_1(x,t)| \le C(m,n,\beta,\sigma) t^{-\frac{m}{2}} \left(1 + |x| t^{-\frac{1}{2}}\right)$$
(24)

 $\frac{1}{[Behavior of the solution of the Cauchy prob.]}$

for all $x \in R_{m+n}$.

From the above said one and (5) it follows the following theorem.

Theorem 1. The Green function G(x,t) of problem (1)-(2) is generalized function on the space $D(R_{m+n})$ of singularity order μ , for it it holds the representation

$$G(x,t) = (1 - \Delta_{m,n})^{\mu} G_1(x,t),$$

where $G_1(x,t)$ is a continuous function with respect to (x,t) and as $t \to +\infty$ for it estimation (24) holds.

Let's introduce the following space. We denote by $H^{\theta}(\rho(x), R_{m+n})$ $(\theta \ge 1)$ a sub-space of Sobolev-Slobodetskii space $H^{\theta}(R_{m+n})$ (see [6], p. 131) for whose elements

$$\|\varphi(x)\|_{H^{\theta}(\rho(x),R_{m+n})} = \left\{ \int_{R_{m+n}} \dots \int \rho^{2}(x) \sum_{|\alpha| \le \theta} \left| D^{2}\varphi(x) \right|^{2} dx \right\}^{1/2} < +\infty,$$

where $\rho(x)$ is some measurable function increasing at infinity in a power way.

Theorem 2. Let $D_{x_j}^{\beta_j} \varphi(x) \in H^{2\mu}(\rho(x), R_{m+n})$. Then for the solution of the Cauchy problem (1) - (2) as $t \to +\infty$ it holds the estimation

$$\left| D_{t}^{\alpha} D_{x_{j}}^{\beta_{j}} u\left(x,t\right) \right| \leq C\left(m,n\right) t^{-\frac{m}{2}-2\alpha} \left(1+\left|x\right|^{2}\right)^{\frac{1}{2}} \left\| D_{x_{j}}^{\beta_{j}} \varphi\left(\xi\right) \right\|_{H^{2\mu}(\rho(x),R_{m+n})}$$

where $\rho(x) = (1 + |x|)^{m+n+3}$, $0 \le \alpha \le 1$, $0 \le \beta_j \le 2$. **Proof.** Estimate u(x,t) from relation (5). Applying Cauchy-Bunyakovskii inequality to this relation preliminarily multiplying and dividing integrand expression into $\left(1+|\xi|^2\right)^{\frac{m+n+3}{4}}$ we get

$$|u(x,t)| \leq \left\{ \int_{R_{m+n}} \dots \int \frac{|G_1(x-\xi,t)|^2}{\left(1+|\xi|^2\right)^{\frac{m+n+3}{2}}} d\xi \right\}^{1/2} \times \left\{ \int_{R_{m+n}} \dots \int \left(1+|\xi|^2\right)^{\frac{m+n+3}{2}} |(1-\Delta)^{\mu} \varphi(\xi)|^2 d\xi \right\}^{1/2} = \left\{ \int_{R_{m+n}} \dots \int \frac{|G_1(x-\xi,t)|^2}{\left(1+|\xi|^2\right)^{\frac{m+n+3}{2}}} d\xi \right\}^{1/2} \|(1-\Delta)^{\mu} \varphi(\xi)\|_{L_2(\rho(x),R_{m+n})}.$$
(25)

Estimate the first multiplier in (25) denoting it by I(x,t). Using asymptotic estimation (24) we get

$$I(x,t) \leq Ct^{-\frac{m}{2}} \left\{ \int_{R_{m+n}} \dots \int \frac{1+|x-\xi|^2}{\left(1+|\xi|^2\right)^{\frac{m+n+1}{2}}} d\xi \right\}^{1/2} \leq Ct^{-\frac{m}{2}} \left(1+|x|^2\right)^{\frac{1}{2}} \times \left\{ \int_{R_{m+n}} \dots \int \frac{|\xi|^2 d\xi}{\left(1+|\xi|^2\right)^{\frac{m+n+3}{2}}} \right\}^{1/2} = C_1 t^{-\frac{m}{2}} \left(1+|x|^2\right)^{\frac{1}{2}}.$$
(26)

77

Transactions of NAS of Azerbaijan

[B.A.Iskenderov, J.Yu.Mamedov]

From (25) and (26) we get

 $|u(x,t)| \le C_1(m,n) t^{-\frac{m}{2}} \| (1 - \Delta_{m,n})^{\mu} \varphi(\xi) \|_{L_2(\rho(x),R_{m+n})} \left(1 + |x|^2 \right)^{1/2}.$

Asymptotics $D_t u(x,t)$ as $t \to +\infty$ is studied in the same way as the asymptotics u(x,t) with a difference that the integrand in the espression $G_1(x,t)$ from (8) is multiplied by $T(\overline{\varphi})$, by differentiating with respect to t, that increases order of zero of this function at the point $\overline{\varphi} = \left(\frac{\pi}{2}, \frac{\pi}{2}, ..., \frac{\pi}{2}\right)$ for two units. Taking this into account as $t \to +\infty$ we get

$$D_t J_0\left(x, r, \overline{\overline{\varphi}}, t\right) = C\left(m, n\right) t^{-\frac{m}{2}-2} \left(1 + O\left(t^{-1}\right)\right)$$
(27)

uniformly with respect to $x, r, \overline{\overline{\varphi}}$.

By differentiating u(x,t) with respect to x_j by the convolution differentiation property we throw the derivative over the initial function $\varphi(x)$. Further, using estimation (25) and acting as in the estimation of u(x,t) we get

$$\left| D_{t}^{\alpha} D_{x_{j}}^{\beta_{j}} u\left(x,t\right) \right| \leq C\left(m,n\right) t^{-\frac{m}{2}-2\alpha} \left(1+|x|^{2}\right)^{\frac{1}{2}} \left\| D_{x_{j}}^{\beta_{j}} \varphi\left(\xi\right) \right\|_{H^{2\mu}(\rho(x),R_{m+n})}.$$
 (28)

The theorem is proved.

Remark. For $\beta = 0$ the asymptotics $J_0(x, r, \overline{\overline{\varphi}}, t)$ as $t \to +\infty$ doesn't change, and the estimation $B_1(x, \overline{\overline{\varphi}}, t)$ from (14) gives

$$|B_1(x,\overline{\overline{\varphi}},t)| \leq Ce^{-c_1t}.$$

Therefore the first addend in the expression $G_1(x,t)$ from (13) makes the basic contribution to the asymptotic of the solution of problem (1) - (2) and consequently, asymptotic estimation (27) for great values of time of the solution of Cauchy problem (1) - (2) doesn't change.

References

[1]. Barenblatt G.I., Zheltov Yu.P., Kochina I.N. On principal representation of thery of filtration of liquids in cracked rocks. Prikladnaya matematika i mekhanika. 1960, Vol. 24, Issue 5, pp. 852-864 (Russian).

[2]. Huseynov F.B., Iskenderov B.A. On a mixed problem for Barenblatt-Zheltov-Kochina equation in domain cylindrical by space variables. Uspeki mat. Nauk, 2006, Vol. 61, Issue 2, pp. 165-166 (Russian).

[3]. Gelfand I.M., Shilov G.E. Some problems of the theory of differential equations. Moscow, Fizmatgiz, 1958, 274 p. (Russian).

[4]. Kostyuchenko A.G., Eskin G.I. *The Cauchy problem for Sobolev-Galperin equations*. Trudy Moskovskogo math. obshestva. 1961, Vol 10. pp. 273-284.

[5]. Federyuk M.V. Asymptotics, integrals and series. Moscow. "Nauka", 1987, 544p.

[6]. Mikhailov V.P. Partial differential equations. Moscow. "Nauka", 1983, 424p.

Bala A. Iskenderov, Jahid Yu. Mamedov

Institute of Mathematics and Mechanics of NAS of Azerbaijan. 9, F. Agayev str., AZ1141, Baku, Azerbaijan. Tel.: (99412) 510 14 91 (off.).

Received September 4, 2006; Revised December 7, 2006.

 78_{-}