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ON BASIS PROPERTIES OF SYSTEM OF ROOT

FUNCTIONS OF A FOURTH ORDER SPECTRAL

PROBLEM WITH SPECTRAL AND PHYSICAL

PARAMETERS IN BOUNDARY CONDITION

Abstract

In the paper the fourth order spectral problem

yIV (x) = λy (x) , x ∈ (0, 1)

y′′ (0) = y′′′ (0) = y′′ (1) = 0,

y′′′ (1) + dλy (1) = 0,

is considered, where λ ∈ C is a spectral parameter, and d < 0 is a physical
parameter.

The general characteristic of eigenvalues disposition on a real axis is given,
the root space structure and the oscillation properties of eigenfunctions are stud-
ied, the asymptotic formulae for eigenvalues and eigenfunctions are derived, and
the basis properties in Lp (0, 1) , p ∈ (1,∞) of the system of root functions of
this problem is proved.

Let’s consider the following problem

yIV (x) = λy (x) , x ∈ (0, 1) , (0.1)

y′′ (0) = y′′′ (0) = y′′ (1) = 0, (0.2)

y′′′ (1) + dλy (1) = 0, (0.3)

where λ ∈ C is a spectral parameter, and d ∈ R is a physical parameter. This prob-
lem arises, for example, by solving the dynamic boundary value problem describing
small transverse vibrations of homogeneous rod of free left end and subjected to
the action of tracing force at the first end by the method of variable separation. In
particular, the case d > 0 describes situation when on the right end of a rod, the
additional mass of the quantity d is concentrated. The bibliography of papers, in
which we can find more exact information on physical meaning of the similar type
problems, is given in [1].

Problem (0.1)-(0.3) in the case d > 0 is investigated in [1]. In this paper the oscil-
lation properties of eigenfunctions were studied, the asymptotic formulae for eigen-
values and eigenfunctions were obtained, and the basicity in Lp (0, 1) , p ∈ (1,∞) of
the systems of eigenfunctions of this problem with one removed eigenfunction was
established.

Everywhere hereinafter we assume that the condition d < 0 holds.
The aim of the present paper is to research basic properties in spaces Lp (0, l) ,

p ∈ (1,∞), of systems of the root functions of boundary value problem (0.1) - (0.3).
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1. Some properties of solutions of problem (0.1) - (0.2) for λ < 0.
As in [1-3] for studying the oscillation properties of eigenfunctions of boundary

value problem (0.1)-(0.3) we’ll use the Prufer type transformation of the following
form 

y (x) = r (x) sinψ (x) cos θ (x) ,
y′ (x) = r (x) cosψ (x) sinϕ (x) ,
y′′ (x) = r (x) cosψ (x) cosϕ (x) ,
y′′′ (x) = r (x) sinψ (x) sin θ (x) .

(1.1)

Equation (0.1) allows the equivalent formulation in the matrix form

V ′ = MV, (1.2)

where

V =


y

y′

y′′

y′′′

 , M =


0 1 0 0
0 0 1 0
0 0 0 1
λ 0 0 0

 .

Assuming w (x) = tanψ (x) and using transformation (1.1) in equation (1.2), we
get a system of the first order differential equations with respect to the functions
r, w, θ, ϕ of the form

r′ =
[
sin 2ψ sin (θ + ϕ) + cos2 ψ sin 2ϕ+ λ sin2 ψ sin 2θ

] r
2
, (1.3a)

w′ = w2 cos θ sinϕ− 1
2
w sin 2ϕ+ cos θ sinϕ− 1

2
λw sin 2θ, (1.3b)

θ′ = −w sin θ sinϕ+ λ cos2 θ, (1.3c)

ϕ′ = cos2 ϕ− w sin θ sinϕ. (1.3d)

Lemma 1.1. Let y (x, λ) be a nontrivial solution of problem (0.1)-(0.2) for
λ < 0. Then the Jacobian J [y] = r3 sinψ cosψ of transformation (1.1) is non-zero
for x ∈ (0, 1).

Proof. Let’s suppose that the statement of lemma 1.1 isn’t true. Let x1 ∈
(0, 1) be closest point to the origin at which sinψ (x1, λ) cosψ (x1, λ) = 0, whence it
follows, that at least one of the indicated factors equals zero. In case sinψ (x1, λ) = 0
we have y (x1, λ) = y′′′ (x1, λ) = 0. In view of (0.2) and (0.1) there exists the
point x0 ∈ (0, x1) such that y (x0, λ) = 0. Without loss of generality, we can
consider, that y (x, λ) y′′′ (x, λ) > 0 for x ∈ (x0, x1). Since y (x0, λ) = y (x1, λ) =
0, there exists the point ξ0 ∈ (x0, x1) , such that y′ (ξ0, λ) = 0. Assume δ0 =
arctan (y (ξ0, λ) /y′′′ (ξ0, λ)). Then the function y (x, λ) is a solution of the boundary
value problem.

yIV (x) = λy (x) , 0 < x < ξ0,

y′′ (0) = y′′′ (0) = 0, y′ (ξ0) = 0, y (ξ0) cos δ0 − y′′′ (ξ0) sin δ0 = 0.

By virtue of relations (A.1), (A.2) [3] the eigenvalues of this problem are positive,
that contradicts the condition λ < 0.
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Analogously we consider the cases cosψ (x1, λ) = 0.
Lemma 1.1. is proved.
Let y (x, λ) be a nontrivial solution of problem (0.1)-(0.2), and let θ (x, λ) and

ϕ (x, λ) be the corresponding angular functions from (1.1). Without loss of general-
ity, the initial values of these functions can be defined in the following way (see the
proof of theorem 3.1 [3]).

θ (0, λ) = 0 at ψ (0, λ) 6= 0, ϕ (0, λ) =
π

2
sgn |ψ (0, λ)− π/2| . (1.4)

Remark 1.1. If ψ (0, λ) = 0, then θ (0, λ) = 0. Indeed, from (1.1) it follows,
that y (0, λ) = y′′′ (0, λ) = 0, but as y′′ (0, λ) = 0, then y′ (0, λ) 6= 0. Hence, by (1.1)
we have

tan θ (0, λ) = lim
x→0

y′′′ (x, λ)
y (x, λ)

= lim
x→0

yIV (x, λ)
y′ (x, λ)

= lim
x→0

λy (x, λ)
y′ (x, λ)

=
λy (0, λ)
y′ (0, λ)

= 0.

Lemma 1.2. Let ψ (0, λ) = 0. Then
(i) ψ (x, λ) ∈ (0, π/2), x ∈ (0, 1);
(ii) lim

x→0
θ′ (x, λ) = λ/2.

Proof. By (1.3b) we have w′ (0, λ) = 1. Since w′ (x, λ) =
ψ′ (x, λ)

cos2 ψ (x, λ)
, then

ψ′ (0, λ) > 0, and hence w (x, λ) ∈ (0, π/2), x ∈ (0, 1).

Notice that
1

w (0, λ)
= cotψ (0, λ), and therefore in (1.3c) θ′ (0, λ) makes no

sense. Using (1.1) we obtain

lim
x→0

sin θ (x, λ) sinϕ (x, λ)
w (x, λ)

= lim
x→0

y′ (x, λ) y′′′ (x, λ)
y2 (x, λ)

cos2 θ (x, λ) =

= y′ (0, λ) lim
x→0

y′′′ (x, λ)
y2 (x, λ)

= y′ (0, λ) lim
x→0

yIV (x, λ)
2y (x, λ) y′ (x, λ)

=

= y′ (0, λ) lim
x→0

λy (x, λ)
2y (x, λ) y′ (x, λ)

= y′ (0, λ) lim
x→0

λ

2y′ (x, λ)
=
λ

2
. (1.5)

Taking into account (1.5), from (1.3c) we find

lim
x→0

θ′ (x, λ) =
λ

2
. (1.6)

Theorem 1.1. The function y (x, λ), x ∈ [0, 1], λ < 0, has exactly one simple
zero in the interval (0, 1).

Proof. From (1.3c) it follows, that θ (x, λ) takes the values kπ (k ∈ Z) only
strictly decreasing. Using relations (1.3c), (1.6), taking into account (1.4) and re-
mark 1.1 we have θ (x, λ) < 0. By lemma 3 from [1] y′′′ (1, λ) y (1, λ) < 0. Then
from (1.1) it follows, that cos θ (1, λ) sin θ (1, λ) < 0. From formulae (7), (8) of the
paper [1] it follows, that for sufficiently small values of λ the function y (x, λ) has
one simple zero in the interval (0, 1); and so θ (1, λ) ∈ (−3π/2,−π).
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If sin θ (x0, λ) = −π
2

at some point x0 ∈ (0, 1), then θ′ (x0, λ) 6= 0 holds. Indeed,

when θ′ (x0, λ) = 0, by lemma 1.2 from (1.3c) it follows, that sinϕ (x0, λ) = 0. Then
by (1.1) we have y (x0, λ) = 0, y′ (x0, λ) = 0, that contradicts the condition λ < 0
(see [3]).

Now let’s prove, that the function y (x, λ) in the interval (0, 1) has exactly one
zero. Indeed, if the function y (x, λ) in the interval (0, 1) has more than one zero,
then the function θ (x, λ) has to cross at least one of the lines θ = −sπ− π

2
, s = 0, 1

at least two times. Let x1, x2, x1 < x2, be the closest points to the origin, such
that θ (x1, λ) = θ (x2, λ) = −sπ − π

2
, where s = 0 or s = 1. Therefore θ′ (x1, λ) < 0,

θ′ (x2, λ) > 0 and θ (x, λ) ∈
(
−π − sπ,−π

2
− sπ

)
, x ∈ (x1, x2), where s = 0 or s = 1.

Hence, by (1.1) y (x1, λ) = y (x2, λ) = 0 and y (x, λ) y′′′ (x, λ) > 0 at x ∈ (x1, x2).
Then y′ (ξ, λ) = 0 at some point ξ ∈ (x1, x2), that contradict the condition λ < 0
(see the proof of lemma 1.1). Theorem 1.1 is proved.

From (9) [1] we obtain the asymptotic form

F (λ) =
4
√
λ3 cos 4

√
λ

cos 4
√
λ− sin 4

√
λ

(
1 +O

(
1/ 4
√
λ
))

, |λ| → ∞. (1.7)

Let µn (0), n = 1, 2, ..., be simple nonnegative eigenvalue of problem (0.1), (0.2)
and y (1) cos δ − y′′′ (1) sin δ = 0, at δ = 0 (see [1,3]). Denote D = (−∞, µ2 (0)) ∪
∞⋃

n=3

(
µn−1 (0) , µn (0)

)
.

Lemma 1.3. The function F (λ) is convex in the interval (−∞, µ2 (0)).
Proof. Following the corresponding reasonings [4, suggestion 4] we get, that

the meromorphic function F (λ) allows the representation

F (λ) =
∞∑

n=2

λcn
µn (0) (λ− µn (0))

, (1.8)

where cn = res
λ=µn(0)

F (λ) < 0.

Differentiating (1.8) we obtain

F ′ (λ) = −
∞∑

n=2

cn

(λ− µn (0))2
, F ′′ (λ) = 2

∞∑
n=2

cn

(λ− µn (0))3
,

whence it follows, that F ′ (λ) > 0 for λ ∈ D, F ′′ (λ) > 0 at λ ∈ (−∞, µ2 (0)).
Lemma 1.3 is proved.

2. Oscillation properties of eigenfunctions of boundary value problem
(0.1)-(0.3).

Lemma 2.1. The eigenvalues of boundary value problem (0.1)-(0.3) are real,
and form no more than countable set not having the finite limit point. All nonzero
eigenvalues of boundary value problem (0.1)-(0.3) are simple.
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Proof. If λ is nonreal eigenvalue of problem (0.1)-(0.3), then λ also will be
eigenvalue of this problem. At that, as in lemma 2 [2] we can show the validity of
the equality

1∫
0

|y (x, λ)|2 dx+ d |y (1, λ)|2 = 0 (2.1)

Multiplying the both parts of equation (0.1) by the function y (x, λ) and inte-
grating the obtained equality by parts in the range from 0 to 1, and also taking into
account (0.2), (0.3) we get

1∫
0

∣∣y′′ (x, λ)
∣∣2 dx = λ

 1∫
0

|y (x, λ)|2 dx+ d |y (1, λ)|2
 . (2.2)

Taking into account (2.1) in (2.2), we find that y′′ (x, λ) = 0, x ∈ [0, 1], whence
by (0.1) we have λ = 0. And this contradicts nonreality of λ.

The eigenvalues of boundary value problem (0.1)-(0.3) are zeros of the entire
function y′′′ (1, λ) + dλy (1, λ). This function doesn’t vanish at λ ∈ C/R. Hence, it
doesn’t equal zero identically. Therefore its zeros form no more than countable set
not having the finite limit point.

If λ∗ 6= 0 is multiple root of the equation y′′′ (1, λ) + dλy (1, λ) = 0, then as in
lemma 3 from [2] we obtain

1∫
0

y2 (x, λ∗) dx+ dy2 (1, λ∗) = 0 (2.3)

Multiplying the both parts of equation (0.1) by the function y (x, λ∗) and inte-
grating the obtained equality by parts in the range from 0 to 1, and also taking into
account (0.2), (0.3) we have

1∫
0

(
y′′ (x, λ)

)2
dx = λ∗

 1∫
0

y2 (x, λ) dx+ dy2 (1, λ∗)

 . (2.4)

Taking into account (2.3) in (2.4), we obtain y′′ (x, λ) = 0, x ∈ [0, 1], whence by
(0.1) we have λ∗ = 0. Lemma 2.1 is proved.

Definition 3.1. (see also [5, §2, i.3]). Let y (x) be eigenfunction of problem
(0.1)-(0.3) corresponding to the eigenvalue λ. We call v (x) the associated function
to the eigenfunction y (x), if it satisfies the equation

vIV (x) = λv (x) + y (x) , 0 < x < 1,

and the boundary conditions

v′′ (0) = v′′′ (0) = v′′ (1) = 0,
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v′′′ (1) + dλv (1) + dy (1) = 0.

Obviously, that λ = 0 is eigenvalue of problem (0.1)-(0.3) and to this eigenvalue
there correspond two linear-independent eigenfunctions.

It is easy to check, that if d 6= −1/4, then there is no associated function regarding
the eigenfunctions responding to the eigenvalue λ = 0, and if d = −1/4, then the

function v (x) =
x5

120
−x

4

72
+b1x+b2, where b1, b2 are arbitrary constants, is assosiated

to the eigenfunction y (x)− 1/3, responding to the eigenvalue λ = 0.
Thus, the root space corresponding to the eigenvalue λ = 0 for d 6= −1/4 consists

of the functions c1x + c2, and for d = −1/4 consists of the functions c1x = c2 +

c3

(
x5

120
− x4

72

)
, where c1, c2 are arbitrary constants.

Notice, that the eigenvalues of problem (0.1)-(0.3) coinside with roots of the
equation

F (λ) = −dλ (2.5)

Theorem 2.1. There exists indefinitely strictly increasing sequence of the eigen-
values λ1, λ2, ..., λn of spectral problem (0.1)-(0.3), at that λ1 < 0, λ2 = 0, if
d ∈ (−1/4, 0) and λ1 = 0, if d ∈ (−∞,−1/4]. The eigenfunctions yn (x) corre-
sponding to the eigenvalues λn 6= 0, posses the following oscillation properties: (a)
if d ∈ (−∞,−1/4), then the eigenfunction yn (x) , n = 2, 3, ..., has n−1 simple zeros
in the interval (0, 1); (b) if d = −1/4, then the eigenfunction yn (x), n = 2, 3, ...,
has n simple zeros in the interval (0, 1); (c) if d = (−1/4, 0), then the eigenfunc-
tion y1 (x) has one simple zeros in the interval (0, 1), and the eigenfunction yn (x) ,
n = 3, 4, ..., has n− 1 simple zeros in the interval (0, 1).

Proof. By virtue of lemma 3 [1], asymptotic form (1.7) and equalities
y (1, µn (0)) = 0, n = 2, 3, ..., we have

lim
λ→−∞

F (λ) = −∞, lim
λ→µn(0)−0

F (λ) = +∞, lim
λ→µn(0)+0

F (λ) = −∞. (2.6)

Taking into account convexity of the function F (λ) in the interval (−∞, µ2 (0))
(see lemma 1.3) and the equality F ′ (0) = 1/4, which follows from (10) [1], we get,
that equation (2.5) has the solution λ1 ∈ (−∞, 0) only in the case d ∈ (−1/4, 0) and
has the solution λ2 ∈ (0, µ2 (0)) only in the case d ∈ (−∞,−1/4).

Let now λ ∈
(
µn (0) , µn+1 (0)

)
, n = 2, 3, .... By (28) [6], (2.4) and (2.6) equation

(2.5) has a unique solution λn+1 for d ∈ (−∞, 0) \ {−1/4} and λn for d = −1/4.
Statements (a)-(c) of theorem 2.1 follow from lemma 4 [1] and theorem 1.1.

Theorem 3.1 is proved.
Corollary. For n = 2, 3, ..., the relation

µn (0) < µn

(π
2

)
< λn+1−σ < µn+1 (0) , (2.7)

is true, where σ = 1−sgn
∣∣∣∣d+

1
4

∣∣∣∣, µn

(π
2

)
, n = 2, 3, ..., is simple eigenvalue of

problem (0.1), (0.2) and y (1) cos δ − y′′′ (1) sin δ = 0, for δ =
π

2
.
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3. Basicity in Lp (0, 1), p ∈ (1,∞) , of systems of root functions of spec-
tral problem problem (0.1) - (0.3).

To study basicity properties of systems of root functions of boundary value prob-
lem (0.1)-(0.3) in the spaces Lp (0, 1), p ∈ (1,∞), it is nesessary to attract asymptotic
form of eigenfunctions of this problem.

Theorem 3.1. The following asymptotic formulae are true

4
√
λn =

(
n+ σ − 3

4

)
π +O

(
1
n

)
(3.1)

yn (x) = sin
(
n+ σ − 3

4

)
πx−cos

(
n+ σ − 3

4

)
πx−e−(n+δ− 3

4)πx +O

(
1
n

)
, (3.2)

where σ = 1−sgn
∣∣∣∣d+

1
4

∣∣∣∣, at that relation (3.2) holds uniformly on x ∈ [0, 1].

Proof of theorem 3.1 is carried out on the scheme of proof of theorem 7 from [1]
using theorem 2.1 and corollary 2.1. We consider three cases:

Case 1. Let d ∈ (−1/4, 0). By virtue of theorem 2.1 λ1 < 0 λ2 = 0
λn > 0, n = 3, 4, .... Denote by y21 (x) and y22 (x), x ∈ [0, 1], two linear-independent
eigenfunctions from root space, corresponding the eigenvalue λ2 = 0.

Consider the following systems of eigenfunctions of boundary value problem
(0.1)-(0.3):

(I1) y1 (x) , y2i (x) , y3 (x) , ..., yn, ..., i = 1, 2, where y21 (x) = 1 and y22 (x) = x+c,
x ∈ [0, 1], c is an arbitary constant different from −1/3;

(I2) y1 (x) , y21 (x) , y22 (x) , y3 (x) , ..., yn, ..., n 6= r, r ∈ N\ {2} , y21 (x) = 1,
y22 (x) = x + c or y21 (x) = x + α, y22 (x) = x + β, x ∈ [0, 1], c, α, β (α 6= β)
are arbitary constants.

Case 2. Let d ∈ (−∞,−1/4). By virtue of theorem 2.1 λ1 = 0, λn > 0,
n = 2, 3, .... Denote by y11 (x) and y12 (x), x ∈ [0, 1], two linear-independent eigen-
functions from root space, corresponding the eigenvalue λ1 = 0.

Consider the following systems of eigenfunctions of boundary value problem
(0.1)-(0.3):

(II1) y1i (x) , y2 (x) , ..., yn, ..., i = 1, 2, where y11 (x) = 1 and y12 (x) = x + c,
x ∈ [0, 1], c is an arbitary constant different from −1/3;

(II2) y11 (x) , y12 (x) , y2 (x) , y3 (x) , ..., yn (x) , ..., n 6= r, r ∈ N\ {1} , y11 (x) = 1,
y12 (x) = x + c or y11 (x) = x + α, y12 (x) = x + β, x ∈ [0, 1], c, α, β (α 6= β) are
arbitary constants.

Case 3. Let d = −1/4. By virtue of theorem 2.1 we have λ1 = 0,
λn > 0, n = 2, 3, .... Remind (see §2), that λ1 = 0 is triple eigenvalue of boundary
value problem (0.1)-(0.3), at that to this eigenvalue there correspond two linear-
independent eigenfunctions y11 (x) and y12 (x), and for the eigenfunction x − 1/3

there exists the associated function y13 (x) =
x5

120
− x4

72
+ c1x+ c2.

Consider the following systems of root functions of problem (0.1)-(0.3):
(III1) y11 (x) , y12 (x) , y2 (x) , ..., yn (x) , ..., where y11 (x) = 1, y12 (x) = x+ c or

y11 (x) = x+ α, y12 (x) = x+ β, x ∈ [0, 1], c, α, β (α 6= β) are arbitary constants.
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(III2) y11 (x) , y13 (x) , y2 (x) , ..., yn(x), ...,where y11 (x) = 1, x ∈ [0, 1], c1 6=
41/11880;

(III3) y11 (x) , y12 (x) , y2 (x) , y3 (x) , ..., yn (x) , ..., n 6= r, r ∈ N\ {1} , y11 (x) = 1,
y12 (x) = x− 1/3 , x ∈ [0, 1].

Theorem 3.2. The systems of root functions (I 1), (I 2), (II 1), (II 2), (III 1),
(III 2), (III 3) of spectral problem (0.1)-(0.3) are minimal in the space Lp (0, 1), p ∈
(1,∞).

Proof. To prove the theorem it suffices to show the existence of systems which
are conjugate, respectively, to the systems (I1), (I2), (II1), (II2), (III1), (III2), (III3).

By virtue of (0.1), (0.2) for any different natural n and m we have

ym (1) y′′′n (1)− yn (1) y′′′m (1) = (λn − λm) (yn, ym) , (3.3)

where (yn, ym) =

1∫
0

yn (x) ym (x) dx. By (0.3) from (3.3) we obtain

(yn, ym) = −dyn (1) ym (1) . (3.4)

At proof of lemma 2.1 it was estblished, that for λn 6= 0, n ∈ N , the relation
1∫

0

y2 (x, λn) dx+ dy2 (1, λn) 6= 0 holds.

Consider the system (I1). At i = 1 elements of the system υ1 (x), υ21 (x), υ3 (x),
..., υn (x),... are defined by the equalities:

υ21 (x) = 2 (1− x) ,

υn (x) =
1

‖yn (x)‖2
2 + dy2

n (1)
(yn (x)− yn (1)− 2 (d+ 1) yn (1) (x− 1)) , (3.5)

where ‖·‖p is norm in the space Lp (0, 1), and at i = 2 the elements of the system
υ1 (x), υ22 (x), υ3 (x), ..., υn (x),... are defined by the equalities:

υ22 (x) = 2 (1− x) / (c+ 1/3) ,

υn (x) =
1

‖yn (x)‖2
2 + dy2

n (1)
(yn (x)− yn (1)−

− 2yn (1)
c+ 1/3

(
d (c+ 1) +

1
2

+ c

)
(x− 1)

)
. (3.6)

Consider the system (I2). At y21 (x) = 1, y22 (x) = x+ c, x ∈ [0, 1], the elements
of the system υ1 (x), υ21 (x), υ22 (x), υ3 (x), ..., υn (x),..., n 6= r, are defined by the
equalities:

υ21 (x) =


3 (c+ 1/3)

2 (d+ 1/4) yr (1)

(
yr (x)− yr (1)− 2 (d (1 + c) + 1/2 + c) yr (1)

c+ 1/3

)
,

c 6= −1/3
2 (1− x) , c = −1/3,

,
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υ22 (x) =
3

2 (d+ 1/4) yr (1)
(yr (x)− yr (1)− 2 (1 + d) yr (1) (x− 1)) ,

υn (x) =
1

‖yn (x)‖2
2 + dy2

n (1)

(
yn (x)− yn (1)

yr (1)
yr (x)

)
, (3.7)

and at y21 (x) = x+α, y22 (x) = x+β, x ∈ [0, 1], α 6= β, the elements of the system
υ1 (x), υ21 (x), υ22 (x), υ3 (x), ..., υn (x),..., n 6= r, are defined by the equalities:

υ21 (x) =
3

2
(
d+

1
4

)
(β − α) yr (1)

((
β +

1
3

)
(yr (x)− yr (1))−

−2
(
d (1 + β) +

1
2

+ β

)
yr (1) (x− 1)

)
,

υ22 (x) =
3

2
(
d+

1
4

)
(α− β) yr (1)

((
α+

1
3

)
(yr (x)− yr (1))−

−2
(
d (1 + α) +

1
2

+ α

)
yr (1) (x− 1)

)
,

υn (x) =
1

‖yn (x)‖2
2 + dy2

n (1)

(
yn (x)− yn (1)

yr (1)
yr (x)

)
. (3.8)

By equality (3.4) it is easy to see, that the written systems υ1 (x), υ2i (x), υ3 (x),
..., υn (x),..., i = 1, 2; υ1 (x), υ21 (x), υ22 (x), υ3 (x), ..., υn (x),..., n 6= r, are conju-
gate to the systems (I1) and (I2), respectively.

The systems conjugate to the systems (II1), (II2) are written out absolutely by
analogous way (at that υ2i (x) and υ1i (x), i = 1, 2, change places, respectively).

Consider the system (III1). At y11 (x) = 1, y12 (x) = x+c, x ∈ [0, 1], the elements
of the system υ11 (x), υ12 (x), υ2 (x), ..., υn (x),..., are defined by the equalities:

υ11 (x) =
4
3
− 1

2
(25 + 63c)

(
x− 1

3

)
−

(
c+

1
3

) (
63
2
x5 − 105

2
x4

)
,

υ12 (x) =
7
2

(
9x5 − 15x4 + 9x− 3

)
,

υn (x) =
1

‖yn (x)‖2
2 −

1
4
y2

n (1)

(
yn (x)− yn (1)− 3

2
yn (1) (x− 1)

)
, (3.9)

and at y11 (x) = x+α, y12 (x) = x+β, x ∈ [0, 1], α 6= β, the elements of the system
υ11 (x), υ12 (x), υ2 (x), ..., υn (x),..., are defined by the equalities:

υ11 (x) =
1

β − α

(
−4

3
+

1
2

(25 + 63β)
(
x− 1

3

)
+

(
β +

1
3

) (
63x5

2
− 105x4

2

))
,

υ12 (x) =
1

α− β

(
−4

3
+

1
2

(25 + 63α)
(
x− 1

3

)
+

(
α+

1
3

) (
63x5

2
− 105x4

2

))
,
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υn (x) =
1

‖yn (x)‖2
2 −

1
4
y2

n (1)

(
yn (x)− yn (1)− 3

2
yn (1) (x− 1)

)
. (3.10)

Consider the system (III2). The elements of the system υ11 (x), υ13 (x), υ2 (x),
..., υn (x),..., are defined by the equalities:

υ11 (x) =
1

41
11880

− c1

(
4
3

(
41

11880
− c1

)
+

(
− 7

297
+

25c1 + 63c2
2

) (
x− 1

3

)
+

+(−2 + 1260 (c1 + 3c2))
(
x5

120
− x4

72

)
,

υ13 (x) =
1

41
11880

− c1

(
63
2

(
x− 1

3

)
+

63
2
x5 − 105

2
x4

)
,

υn (x) =
1

‖yn (x)‖2
2 −

1
4
y2

n (1)

yn (x)− 3/2
41

11880
− c1

yn (1)×

×
(
x5

120
− x4

72
+

(
7

594
− c1

) (
x− 1

3

)))
(3.11)

Consider the system (III2). The elements of the system υ11 (x), υ12 (x), υ13 (x),
υ2 (x), ..., υn (x),..., n 6= r are defined by the equalities:

υ11 (x) =
4
3
− 3780 (c1 + c2)

(
x− 1

3

)
−

(
4
3
− 2520 (c1 + c2)

)
yr (x)
yr (1)

,

υ12 (x) = 3780
((

7
594

− c1

) (
x− 1

3

)
+

x5

120
− x4

72
− 2

3

(
41

11880
− c1

)
yr (x)
yr (1)

)
,

υ13 (x) = 1260
(

3
(
x− 1

3

)
− 2

yr (x)
yr (1)

)
,

υn (x) =
1

‖yn (x)‖2
2 −

1
4
y2

n (1)

(
yn (x)− yn (1)

yr (1)
yr (x)

)
. (3.12)

By virtue of (3.4) we establish, that the written out systems υ11 (x), υ12 (x), υ2 (x),
..., υn (x),...; υ11 (x), υ13 (x), υ2 (x), ..., υn (x),...; υ11 (x), υ12 (x), υ13 (x), υ2 (x),
..., υn (x),..., n 6= r are conjugate to the systems (III1), (III2), (III3), respectively.
Theorem 3.2 is proved.

Lemma 3.1. For sufficiently great n ∈ N , n 6= r, the asymptotic formula

υn (x) = yn (x) +O (1/n) . (3.13)

is true.
Proof. By formula (3.2) the relations

‖yn (x)‖2
2 = 1 +O (1/n) yn (1) = O (1/n) . (3.14)
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are true.
Using (3.14) in formulae (3.5)-(3.12) we obtain representation (3.13).
Lemma 3.1 is proved.
Theorem 3.3. The systems of root functions (I 1), (I 2), (II 1), (II 2), (III 1),

(III 2), (III 3) of spectral problem (0.1)-(0.3) form bases in the space Lp (0, 1), p ∈
(1,∞), and for p = 2 these bases are Riesz bases.

Proof of theorem 3.3 holds on the scheme of the proof of theorem 10 from [1]
(see also [7; theorem 5]) using theorem 3.1, 3.2 and lemma 3.1.

Remark 3.1. In the systems (I1) and (II1) the choice of constant c is essential.

The system (I1), where y22 (x) = x− 1
3
,and the system (II1), where y12 (x) = x− 1

3
,

are incomplete and nonminimal. Indeed, the function υ (x) = x− 1 is orthogonal to
all functions of these systems, and there hold the expansions

yi2 (x) =
∞∑

n=1,n6=i

2
(
d+

1
4

)
yn (1)(

‖yn (x)‖2
2 + dy2

n (1)
)yn (x) , i = 1, 2,

whose validity follows from basicity of the system (I1) for i = 1 and the system (II1)
for i = 1 in L2 (0, 1) .

In the system (III2) the choice of constant c1 is essential. For c1 = 41/11880 the

system (III2) is incomplete, since the function τ (x) =
63
2

(
x− 1

3

)
+

63
2
x5 − 105

2
x4

is orthogonal to all functions of this system.
Note, that similar results for the second order equation with spectral parameter

in the boundary condition are received in the paper [8].
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