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ON GRADIENT METHODS IN OPTIMAL
CONTROL PROBLEMS FOR NONLOCAL

PROCESSES

Abstract

A problem of optimal control by systems with the lamped parameters with
nonlocal boundary conditions is considered. Formula for gradient is obtained in
optimal control problem with nonlocal boundary conditions.

We consider a problem of optimal control by systems with the lamped parame-
ters with nonlocal boundary conditions. An optimal control problem with nonlocal
conditions arise in different fields of science, technics, medicine and etc. Numerous
mathematical models of nonlocal processes, described by differential equations with
nonlocal boundary conditions, are given in [1]. In [2] we get a formula of gradient
for various processes of optimal control with nonlocal boundary conditions.

At the present paper we get formula of gradient in optimal control problem with
nonlocal boundary conditions.

Problem statement. Let some controlled process be described by the differential
equation

ẋ (t) = f (t, x, u) , t ∈ [0, T ] , (1)

with nonlocal boundary conditions

Ax (0) = a, (2)

T∫
0

B (t)x (t) dt = b. (3)

It is supposed that the process is controlled by the functions, that belong to the
functional space L2:

u = u (·) ∈ U = {u (t) ∈ L2 [0, T ] , u (t) ∈ Vnn.b. t ∈ [0, T ] , V ⊂ Rr}. (4)

Let quality control criterion be minimization of functional of the following form:

J (u) = Φ (x (T )) , (5)

where x = (x1, x2, ..., xn) are phase states of the system, u = (u1, u2, .., ur) are con-
trols, functions f (t, x, u) , Φ (x) of variables (t, x, u) ∈ [0, T ]×En×Er be considered
as known, U is a given set from L2 [0, T ], the moment T is fixed. Supposed, that A is
a constant rectangular matrix of orderm×n, B (t) is a functional matrix (n−m)×n.

Main results. Suppose the following conditions are fulfilled:
1. B (t) is a matrix-function with continuous elements on the segment [0, T ] and

det

 A
T∫
0

B (t) dt

 6= 0.
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2. The function f (t, x, u) is continuous by totality of its own arguments with
the its own partial derivatives by variables x, u at (t, x, u) ∈ [0, T ] × En × Er and,
moreover, the following conditions:

|f (t, x+ x̄, u+ h)− f (t, x, u)| ≤ K (|x̄|+ |h|) ,

||fx (t, x+ x̄, u+ h)− fx (t, x, u)|| ≤ K (|x̄|+ |h|) ,
||fu (t, x+ x̄, u+ h)− fu (t, x, u)|| ≤ K (|x̄|+ |h|) ,

|Φx (x+ x̄)− Φx (x)| ≤ L |x̄|
are fulfilled for all (t, x+ x̄, u+ h) , (t, x, u) ∈ [0, T ]×En×Er, where K = const ≥ 0.

3. KT

[
‖L‖ ‖B (t)‖C

T

2
+ 1

]
, where L is the inverse matrix to the matrix A

T∫
0

B (t) dt

, ‖B (t)‖C is a norm of the matrix B (t) in the space C (0, T ).

Theorem. Let conditions 1-3 be fulfilled. Then, nonlocal boundary problem
(1)-(3) at each fixed u ∈ U has a unique solution. Besides, functional (5) is dif-
ferentiable by u = u (t) in norm Lr2 [0, T ] everywhere on Lr2 [0, T ], moreover, its
gradient J ′ (u) = J ′ (u, t) ∈ Lr2 [0, T ] at the point u = u (t) is representable in the
form

J ′ (u) = −Hu (t, x, u, ψ) |x=x(t,u),u=u(t),ψ=ψ(t,u) =

= (fu (t, x (t, u) , u (t)))′ ψ (t, u) , 0 ≤ t ≤ T,

where x (t) = x (t, u), 0 ≤ t ≤ T is a solution of problem (1)-(3), corresponding to
the control u = u (t), and ψ (t) = ψ (t, a) 0 ≤ t ≤ T is a solution of the conjugated
system

A′λ+
T∫
0

B′ (t) dtµ+
T∫
0

Hx (t, x (t) , u (t) , ψ (t)) dt+ Φx (x (T )) = 0, (6)

ψ (t) =
t∫
0

B′ (τ) dτµ+
t∫
0

Hx (τ , x (t) , u (τ) , ψ (τ)) dτ +A′λ,

H (t, x, u, ψ) = 〈f (t, x, u) , ψ (t)〉 , (7)

”′” means a transposition.
Proof. It is easy to reduce the boundary problem (1)-(3) to the equivalent

integral equation:

x (t) =

 A
T∫
0

B (t) dt

−1 (
a
b

)
−

−

 A
T∫
0

B (t) dt

−1  0
T∫
0

B (t)
t∫
0

f (τ , x (τ) , u (τ)) dτ

 . (8)

We carry out the proof of the first part of the theorem by the succesive approx-
imation method by formulas:

x0 (t) =

 A
T∫
0

B (t) dt

−1 (
a
b

)
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xn+1 (t) =

 A
T∫
0

B (t) dt

−1 (
a
b

)
−

 A
T∫
0

B (t) dt

−1

×

×

 0
T∫
0

B (t)
t∫
0

f (τ , xn (τ) , u (τ)) dτ

 +
t∫
0

f (τ , xn (τ) , u (τ)) dτ, n = 0, 1, 2, ...

To prove the second part of the theorem we use formula of increment for func-
tional (5). Let u, u + ū be two controls from U , and x (t) and x (t) + x̄ (t) be
corresponding solutions of problem (1)-(3). Then

J (u+ ū)− J (u) = Φ (x (T, u+ ū))− Φ (x (T, u)) =

= 〈Φx (x (T, u)) , z (T )〉+ Φ (x (T ) + x̄ (T ))− Φ (x (T ))− (9)

−〈Φx (x (T )) , x̄ (T )〉+ 〈Φ (x (T )) , x̄ (T )− z (T )〉 ,
where z (t) is a solution of the following boundary value problem:

ż (t) = fx (t, x (t) , u (t)) z (t) + fu (t, x (t) , u (t)) ū (t) , (10)

Az (0) = 0, (11)
T∫
0

B (t) z (t) dt = 0. (12)

Let ψ (t) be an arbitrary n-dimensional function from L2 [0, T ], λ and µ be
arbitrary constant vectors of dimension m and n−m, respectively.

With the help of these vectors we can rewrite formula (9) in the form:

J (u+ ū)− J (u) =
T∫
0

〈Hu (t, x (t) , u (t) , ψ (t)) , ū (t)〉 dt+

+
T∫
0

〈
ψ (t)−

t∫
0

B′ (τ) dτµ−
t∫
0

Hx (τ , x (τ) , u (τ) , ψ (τ)) dτ −A′λ, ż (t)
〉
dt+

+

〈
A′λ+

T∫
0

B′ (τ) dtµ−
T∫
0

Hx (t, x (t) , u (t) , ψ (t)) dt+ Φx (x (T )) , z (T )

〉
+η, (13)

where

η = Φ(x (T ) + x̄ (T ))−Φ (x (T ))−〈Φx (x (T )) , x̄ (T )〉+ 〈Φx (x (T )) , x̄ (T )− z (T )〉 .

We can show, that
|η| ≤ C ‖ū‖2

where C ≥ 0 is a constant.
The proof of the second part of the theorem follows from representation (13).
Remark. Indeed, a system of the conjugated equations (6), (7) depends on

three unknowns: (λ, µ, ψ (t)), 0 ≤ t ≤ T . But, provided det

 A
T∫
0

B (t) dt

 6= 0 we

can exclude variables (λ, µ). Indeed, system (6) can be represented in the form A′

T∫
0

B′ (t) dt

 (
λ
µ

)
= −

T∫
0

Hx (t, x (t) , u (t) , ψ (t)) dt− Φx (x (τ)) .
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Hence

(
λ
µ

)
= −

 A′

T∫
0

B′ (t) dt

−1 [
T∫
0

Hx (t, x (t) , u (t) , ψ (t)) dt+ Φx (x (T ))

]
. (14)

Now, considering (14) in (7) we have

ψ (t) =
t∫
0

Hx (τ , x (τ) , u (τ) , ψ (τ)) dτ−

−

 A′

t∫
0

B′ (τ) dτ

  A′

T∫
0

B′ (t) dt

−1
T∫
0

Hx (t, x (t) , u (t) , ψ (t)) dt−

−

 A′

t∫
0

B′ (τ) dτ

  A′

T∫
0

B′ (t) dt

−1

Φx (x (T )) . (15)

Integral equation (15) is a system of conjugated equations. It contains the items
of Volter and Fredholm integral equations. Such equations are conditionally solv-
able. One can show, that at condition 3. a system of integral equations is also
solvable, i.e. nonlocal boundary value problem (1)-(3) and a system of equations
(15) are simultaneously solvable.

On numerical solution of problem (1)-(5). At the numerical solution of
problems of infinite-dimensional optimization, in particular optimal control prob-
lems, the known methods, for example gradient methods, let to find approximate
solution of initial problem. For that, it’s necessary to compute formula of a gradient
of the studied problems. In this case, for computing a gradient of functional (5) at
limitations (1)-(4) it is necessary to solve sequentially two nonlocal boundary value
problems: first we have to determine x (t, u) from problem (1)-(4), and then ψ (t, u)
from (15) and finally, to find desired gradient by formula J ′ (u).
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