Transactions of NAS of Azerbaijan 197

Vagif R. IBRAHIMOV, Mehriban N. IMANOVA

ON A NEW METHOD OF SOLUTION TO
VOLTERRA INTEGRAL EQUATION

Abstract

By solving many applied problems we collide with the solution of Volterra
type integral equations. Volterra integral equations are investigated long ago,
however up to now there hasn’t been constructed an effective method to find
numerical solution of nonlinear Volterra integral equation. Therefore, differ-
ent methods are suggested for approzimate solution of nonlinear Volterrs type
integral equation. One of the popular methods of numerical solution of such
equations is replacement of an integral by a quadrature formula. To improve
such methods some authors suggested to use quadrature formulae with regard to
Runge-Kutta or Adams methods. Unlike these methods here we suggest to use
multistep methods for finding numerical solution of nonlinear Volterra type in-
tegral equations and give a method to determine the coefficients of the suggested
method.

Introduction: Let’s introduce the following Volterra integral equation
xX
y(e) = @)+ [ Koy ds o elonX]. 1)
o

It is assumed that the function K (z,s,y) continuous in totality of variables has
continuous partial derivatives to some order p , inclusively. The derivatives of p+ 1-
th order are bounded.

By means of a constant step h > 0 we divide the segment [zg, X| into N equal
parts. The partition poinds are taken in the from: x; = 29 +ih (i =0,1,2,...,N)
and equation (1) on the segment [z, x, 1] is written as follows:

Tp+k—1
y (@) = f(2) + / K (2,5,y (s)) ds+
o
b [ K@sy@)ds o€, 2)
Tn+4+k—1
Denote
Tn+k—1
oript () = / K (2,59 (s)) ds.
zo
Then
Tn+k
y($n+k):f(xn+k)+80n+k—1 (Tpsr) + / K (xp+k, s,y (s)) ds. (3)
Tn+k—1

Depending on the values k£ in order to calculate the integral in relation (3) we
can apply Runge-Kutta or Adams method (for & = 1 Runge-Kutta methods, for
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k > 1 Adams method or their generalizations are used) (see [1]). Obviously, if
Opik—1 (Tnik) is known, we can determine the value of variable y (2,44) . Usually,
in all the well known papers in order to determine ¢,, ;. (Z5+k) quadrature formu-
lae (see [1 — 18]) are used. It follows from (3) that exactness of quadrature formulae
should correspond to exactness of the methods applied to calculation of the integral
participating in relation (3), i.e. Runge-Kutta methods or Adams methods. As is
known, by increasing the values of n by a unit there arise some difficulties in choos-
ing quadrature formulae coefficiends (see e.g [1]). By refinement the step h, the
amount of calculated terms in quadrature formulae very increases and this creates
some difficulties in using the indicated methods. In order to be released from these
indicated deficiencies here we suggest a new method by using of which the amount
of calculated quantities in defining y (z,,4%) doesn’t depend on the values of n. This
method is said to be a multistep method with constant coefficients and when applied
to equation (1) has the following from:

Zazyn—&% Zazfn—l-z + h225(])K xn—&-]awn—l-z:ynﬂ) ) (4)

7=0 =0

where «;, ﬁl(-J ) are some real numbers, k is integer-valued quantity, h is a step of
partitioning the segment [z(, X] into N equal parts, y,, is an approximate value
of the solution of Volterra equations at the points z,, = zg + mh, and f,, =
f(zm) (m=0,1,2,...).

Notice that, in order to solve equation (1) some authors suggest to use iterative
methods (see e.g [1],[5],[6]) . In some cases there arises a problem on determination
of stability domain that was investigated in [12].

81. Construction of a multistep method with constant coefficients.

Here we suggest several methods to construct a multistep method with constant
coefficients. One of them is of the form. Let’s consider calculation of quantities
Opik—1(Tnk). At first we use expansion K (z,4k, S,y (s)) by the first argument
around the point z, 1. In this case we have :

Tth—1 Tptk—1
oninr (Tnik) = / K (@i 5,y (5)) ds = / (K @it 50 (5)) +
o o
h2
+h‘K;; ($n+k_1,3,y(3)) + K (xn-i-k’—hsvy(s)) +> ds. (11)

If in relation (1.1) we replace the derivatives by their appropriate difference relations
and considering

Tn41

K (Tn1i, 8,9 (8)) ds =y (Tn+i) — f (Tni)

o

we can write

Pntk—1 anrk Z lzy xn—‘rz + h Z Z 60 mn—f—jv T+, yn-‘ri) +
7=0 =0
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—i—lef (mnﬂ) + R,. (1.2)
=0

Taking into account (1.2) in (3) and using the Adams method for calculating the in-
tegral participating in (3) we get method (4) . Thus, we constructed several methods.
However they are turned to be unstable. One of them is of the form:

Yn+2 = 2yn+1 —Yn + fn+2 - 2fn+1 + fn —h (K (xnvxn-i-hyn-i-l) =+

+K (xm T, yn)) /2 +h (3K (xn+27 Tn+1, yn+1) - K (anr?v Tn, yn)) /2' (1'3)

The method is of the second order of exactness and is explicit.
Determination 1. Method (4) is said to be stable, if the roots of its charac-
teristic polynomial

k
pA) =D aX
=0

lie interior to a unit circle whose boundaries have no multiple roots.

As it follows from definition, stability of method (4) is determined exactly in the
same way as the stability of k£ -step method with constant coefficients applied to
numerical solution of ordinary differential equations.

In order to construct stable methods of quantities K (x,1,S,y (s)) we make
substitution in the form:

Tnt+k—1

k—1 k—1
K (xn-i-k» S, Y (S)) ds = Z QiYn+i + Z aifn+z'+
i=0 1=0

o

k—1 Tn+k—1

+Zﬁj / K (%n44,5,y(s))ds + Ry, (1.4)

J=0 Tn+j

Taking into account (1.4) in (3) and applying Adams method for calculating integrals

we get method (4) . Here, in order to find the coefficients o, ﬁl(]) (i,j =0,1,....k+4)
we use the method of undetermined coefficients. At first we determine the exactuess
of method (4).

Determination 2. Integer-valued p is said to be a order of method (4) if it
holds:

k
> (ai(y(z +ih) — f(x+ih) —

=0
k .
~h " BYK (x4 jha +ihy (@ +in) | | =0 (WY, h— 0. (1.5)
j=0

In some cases it is convenient to determine the quantity ﬁgj ) in the form:
BY = aiy? (5,i=0,1,2,....k).

We look for the solution of equation (1) in a class of continuous functions having
continuous partial derivatives up to some p + 1. Naturally, y (x) = exp (z) is con-
tained in the indicated class of functions. If method (4) has a definite order it should
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remain this power for the following equation

xT

y(x)=1+ /y(s) ds (1.6)

0

whose exact solution is an exponential function, i.e. y (x) = exp (z).
Let’s consider a special case and apply method (4) to the solution of equation
(1.6). Then we have:

k k k k
Zaiyn-‘ri = Zaz hZZﬁ Yn+i- (1'7)
=0

=0 7=0 =0

Using the expansion

y(x +ih) =y (x) +ihy (z) +

in relation (1.7) we have

(ih)° ih)P
Yn + ihy,, + 2!) yr 4+ .+ (P!)y(p) (z) + O (hPT1) — 1) =

k

h iP~LpP

=330 (i + ok T 0 () )
7=0 i=0

hence we obtain that in order (1.5) hold, it is necessary and sufficient that the coef-
ficients «;, ﬂz(»J ) (i,7 = 0,1, ..., k) satisfy the following system of algebraic equations:

k k k k
ZOM:O, Zzai:ZZﬁy),
N il =0 - Zzl=_01 ( )]ZO =0 (1.8)
1= 7=0 i=

The obtained relation is a homogeneous system of linear-algebraic equations in which
the amount of equations equals p + 1, and the amount of the unknowns equals
(k+2)(k+1). If p< (k+2)(k+1), system (1.8) has a solution differ from zero.
To construct stable methods let’s consider the case kK = 2. Then from (1.8) we
have:
ap+ o+ o =0,

2 2
a1 + 209 = ZZ@@,

7=0 =0
1/201 + 205 = A0 + 81 + 57 + 25 + 268 + 267
16ar +4/302 = (81" + 817 + 87) ;242 (8 + 87 +57)  (1.9)
1/2401 +2/302 = (B + 67+ 57) /6 +4 (58 + 60 + ) /3.
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If in this system we put as = 1,1 = g = —1/2, the amount of the unknowns will
equal 9, but if we use the substitution,

a=0" +07 + 67, b=p 48 +87, e=50" + 850+,

the amount of the unknowns will equal 3. If in this case system (1.9) has a solution
differ from zero, then order of the method p = 4. At first we construct a method
with order p = 3. We diminish the amount of equations by a unit. In this case one
of stable methods with order p = 3 will be of the form:

Yn+2 = (yn-i-l + yn) /2 + fn+2 - (fn+1 + fn) /2 +h (_2K (xn, Tn+2, yn+2) -

—2K (l‘n, Ln, yn) + 3K ($n+1a Tn+2, yn+2) +4K ($n+17 Tn+1, ynJrl) +
+K (1:n+1a Tn, yn) +2K (ﬂj‘n+2, Tn42, yn+2) +
+4K ($n+2, Tn+1, yn+1) +2K ($n+2a Tn, yn)) /8' (1'10)

Let’s consider the solution of system (1.9) for ag = 1. In this case the amount of
the unknowns and equations coincide and equal 5 and system (1.9) has a unique
solution of the form:

as=1,01 =0, =—-1,a=4/3,b=1/3,¢=1/3.

Notice that the method having power p = 4 is not unique, since we can change the

value of the coefficients ﬂl(j) (1=0,1,2; j=0,1,2) is some ranges. One of these
methods is of the form:

Ynt2 = Yn + fn+2 - fn +h (_K (wruxna yn) -

-K (xnv Tn+1, yn-i-l) - K (xn, Tn+2, yn+2) + K (xn—i—la T, yn) +
+4K (xn—i-la Tn+1, yn+1) + K ($n+1a Tn4-2, yn+2) + K (xn+27 Tn, yn) +

+K ($n+2, Tn41, yn—i—l) + K (xn+2a Tn+2, yn-‘r?)) /3 (1'11)

Methods (1.10) and (1.11) are implicit. Therefore we construct explicit stable
method.

In this case some coefficients equal zero, and namely 3;5 = 0 (7=0,1,2).
Hence it follows b = 0. It is easy to show that on this case there are not stable
methods with order p > 2. Hence it follows that we can construct explicit stable
methods with order p = 2. One of these methods is of the form:

Yn+2 = (yn+1 + yn) /2 + fni2 — (fn+1 + fn) /2 +h (K ($n7$n+1,yn+1) -

—3K (wm T, Yn) + 3K (wn+17 Tn+1, yn—I—l) + K (mn—I—la T, Yn) + (1~12)
+3K (Tnt2: Tnt1, Ynt1) + K (Tnt2, Tny yn)) /4.

Now, in order to construct a method of type (4) we use another method. In equation
(1) we put = 2, . Then we have

Tn+k

@) = F o)+ [ K sy (s) ds. (1.13)

Zo
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Using Lagrange and Newton interpolation polynomial we represent K (2,4, S,y (s))
in the form:

k—1
K(xn-l-kvsvy(s)) ~ = ZOQK (mn+i783y (S)) .
=0

Taking the latter into account in (1.12) we have:

Tn+k

k k k—1
Zai?/n—l—i = Zaifn-i-i - Z Qj / K (Tn+j, s,y (s)) ds.
i=0 i=0 =0 L
Replacing the integral by the quadrature formula
Tn+k k
[ K Gnsios () ds 25D AP (s
s i=0

and taking into account in (1.13) we get the following multi-step method

k k
Z QiYnti = Z i fnri —h
i=0 i=0

It in method (4) we replace

k-1

Qaj ’Yl(-j)K (l'nJrjv Tn+i, yn+i) . (1.14)

- k
i=0  j=0

BY =y (=01, k—1; i=01,..k)

i

from it we get method (1.14) For k& = 2 one of stable methods with power p = 3 will
be of the form:

Yn+2 = (yn+1 +yn) /2 + fn+2 - (fn+1 + fn) /2 + h(K ($naxnayn) +

+8K (CUn, Tn+1, yn+1) + 3K (l‘na Tn+2, yn+2) + K (l'nJrl’ L, yn) + (1'15)
+8K ($n+17$n+1’ yn—i—l) + 3K (xn—i—la Tn+2, yn+2)) /16

§2. Construction of some specific multistep methods.

In the first section we suggested the methods for constructing multistep method
with constant coefficients of type (4). Here, using the indicated methods we con-
struct specific methods and give their comparison with the known methods.

Notice that all the methods were constructed for k = 2 and ag # 0.

Let’s consider the first method and in the equation (1) put x = x,, and write the
obtained relation in the form:

y(zn) = f(xn) + / K (zy,s,y(s))ds + / K (zy,s,y(s))ds. (2.1)

0 Tn—1

Calculate the first integral by the following scheme:

Tn—1

/ K (zy,s,y(s))ds+ 71K (Tp-1,5,y(s))ds+

zo o
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n / K (zn-1,5,9(s)) d.sh— K (zn-2,8,y (S))ds +0 (h?). (2.2)

zo

Hence
Tn—1

[ B sy () ds = 2 (r0mr) =27 (o) + £ (-2) -
- / K (zp—_2,s,y(s))ds+ O (hz) .

To calculate the integral participating in (2.2) we apply the trapezoid method,
for calculating the second integral in (2.1) we use the following method:

3h

Tn "
/ K (xna S,y (5)) ds = ?K (l'mmnfla ) (xnfl)) - EK (xml'nf%y (l‘an))
Tn—1

then we get the following method:
Yn — 2Yn—1 + Yn—2 = fn - 2fn71 + fn72 —h (K (l'an»xnfla ynfl) +

+K (xn—Z; Tn—2, yn—Q)) /2 +h (3K (Q?n, Tn—1, yn—l) -
—K (Tn, Tn—2,Yn—2)) /2. (2.3)

This explicit method is unstable, since the a = 1 roots of the characteristic
equation are multiple.

Now, using the second method, construct a stable method of type (4). It is
easy to show that in this case a stable method with power p > 2k doesn’t exist and
maximal order of the explicid method equals 2 (p = 2) . Such methods are more than
one. One of these methods is of the form:

Ynt2 = Wnt1 +Yn) /24 foye — (fopr + fo) /2 + B (=K (Tn, T, yn) +

+7K (IEn, Tn41, ynJrl) - K (:L'nJrla T, yn) + K (1"71713 Tn—1, ynfl)) /8 (24)

Notice that stable methods with power p = 4 are also not unique. One of stable
implicit methods with order p = 4 is of the form:

Yni2 = Yn + foy2 — fu+h (K (xna$n7yn) +

+4K (CUn; Tn+1, yn+1) +K («Tm Tn+2, yn+2)) /3 (25)

In comparison with method (1.11) this method is simple and may be easily
applied to specific problems.

Thus, we constructed seven methods of different exactness power that were ap-
plied to numerical solution of some Volterra integral equations. In many cases the
results are better than the ones of the quadrature methods and Runge-Kutta and
Adams methods as well.
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