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VIBRATION AND STABILITY OF A CONIC SHELL

FLITTER IN SUPERSONIC GAS FLOW

Abstract

In the proposed paper in development of results of works [5-7], it is considered
the problem of the flutter of truncated shell, there has been adduced data of
evaluative computations, their comparison with similar ones obtained by the
piston theory.

A new feature in he formulation of the problem resides in the fact that in the
formula for the excess pressure, the item with the second mixed derivative of the
shell flexure with the respect to the time and coordinate is held, the evaluation
and qualitative analysis of the approximate solution have shown that taking into
account the item can appreciably decline the flutter critical speed.

Introduction. In the papers on supersonic panel flutter of shells (see e.g. [1.2])
the piston theory is used for the pressure of aerodynamic intercoupling between gas
flow and shell. Insufficiency of such an approach is discussed in the papers [4-6], and
the results of these investigations are used in [6, 7] for new statements of problems
on flutter of plates and conical shells. In the suggested paper as development of the
results of [5-7] we consider a problem on a truncated conic shell flutter, cite data
on evaluative computations and their comparison with similar ones obtained by the
piston theory.

A new moment in the problem statement is that the formula for excess pressure
contains the item with the second mixed derivative of the shell flexure by time and
coordinate; evaluation and qualitative analysis of approximate solution show that
taking into account this item may appreciably decrease the flutter critical speed.

1. Aerodynamic intercoupling pressure. Let’s consider a circular cone
streamlined by supersonic flow without angle of incidence. Origin of a Cartesian
coordinate system is in the vertex, the axis x is directed along the velocity vector.
In non-deformed state the equation forming z1 = kx, k = tgα, α is half-opening of
a cone, α2 << 1. A part of the cone x1 ≤ x ≤ x2 is engaged by a shell; by w (x, t)
we denote its flexures in axially symmetric case, and have:

x1 ≤ x ≤ x2, z = kx− w (x, t) . (1.1)

According to plane sections law [8, 9] the state of gas after shock wave is de-
termined from the solution of a plane problem on piston, that moves by the law
z̄ = kvt − w (vt, t), where v is flow velocity. The solution of this problem by a
small parameter method, [9], under additional suggestion |w (x, t) /kx| << 1 was
obtained in [5], but it was realized for the case of a cone stream-line; below we carry
out appropriate analysis.

For the excess pressure on a shell in [7] it was obtained the expression
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2ρ0D2
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here ρ0, p0, α0 is density, pressure and a sound velocity at the non-perturbed flow; k
is a polytropic exponent; ε = (χ− 1) / (k + 1) shock wave velocity is found from the
square equation. εDa (D) + 2vtgα = 2D, a (D) = 1 + 2a2

0/
(
(χ− 1)D2

)
that after

some denotation u0 = Mtgα, u = D/a0 = Mtgβ is reduced to the following form

(3 + χ)u2 − 2 (χ+ 1)u0u− 2 = 0. (1.3)

By passing to the Euler system of coordinates it should be

x = vt, ẇ = ∂w/∂t+ v∂w/∂x.

Estimate the orders of addends in (1.2)
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The integrals are computed by the mean-value theorem. Since [w/kx] << 1 and
k ∼ ε we conclude that the written out addends are of order ε2 or higher and we
can neglect them.

The excess pressure ∆p (1.2) consists of a sum of quasistatic q0 and dynamic q1
components; assume w = w0 (x) + w1 (x, t), then we get from (1.2)

q0 =
2ρ0D2

χ+ 1
H01 −

4ρ0Dv

χ+ 1
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2
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H01 = 1 +
ε

4
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2ρ0D2
; H1 = 1 +

3ε
4
− 11ε

8χ
a (D) ;

H2 = 1− 3ε
2χ (χ+ 1)

a (D) (1.6)

Estimate the orders of quantities of addends in the second parenthesis of (1.5).
We compare “density” of apparent additional mass with mass of a shell in a

surface unit
ρ0Dx

2v
1
ρh

∼ ρ0kvl

2ρvh
=
kρ0l

2ρh
, l = x2 − x1; (1.7)

Compare the second addend with the third one(
2v
∂2w1

∂t∂x

)
: v2∂

2w1

∂x
∼ 2vw1

t0l

l2

v2w1
=

2l
t0v

∼ 2lw0

v
,

here ω0 ∼ πc0
√
h/Rζ/l, c20 = E/ρ, ζ is a coefficient of order of several units [12], E,

ρ is a Young modulus and density of a shell material, R is a mean radius. Finally,
2lω0/v ∼ 2π (c0/v) ζ

√
h/R; for ordinary values of parameters this relation will be

a quantity of order of several units (the same result will be obtained if t0 − l/v).
Relation (1.7) will be a quantity of order 10−1˜10−2 and we can neglect them.

With regard to above-introduced denotation, the expressions for q0, q1 from
(1.4), (1.5) will take the form
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here we denote H0 = 1 + εa∗ (u) /4− 1/
(
2u2
)
, in expressions for H1, H2 we should

replace a (D) by a∗ (u) = 1 + 2/
(
(χ+ 1)u2

)
.

2. Problem statement. The state of the point on a conic surface is determined
by the coordinates s = x/ cosα, θ = ψ sinα where ψ is a polar angle. For small
conicity α2 << 1, therefore with good exactness s = x. Vibrations of the cone is
described by the equations [10]

D2
0∆w −∆kF − L (w,F ) = ∆p− ρh

∂2w

∂t2

2∆2F + 2Eh∆kw + L (w,w) = 0. (2.1)

Here D0 = Eh3/
(
12
(
1− µ2

))
µ is a Poisson coefficient of a shell material, F is

a stress function. In (2.1) the operators are of the form
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Similar to representation w = w0 (x)+w1 (x, t) we assume F = F0 (x)+F1 (x, t).
Introduce dimensionless quantities keeping the previous denotation for them:

x =⇒ x/x2, w0 =⇒ w0/h, F0 =⇒ F0/
(
Eh2x2

)
,

w1 =⇒ w1/h2 F1 =⇒ F1/
(
Eh2x2

)
.

Substituting all in (2.1) we linearize by perturbations w1, F1 and make the ob-
vious simplifications. For the principal state functions we get (the substitution
x = x1 + y is done).

tgα

12 (1− µ2)
H2λ2

0∆
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1
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∂2F0
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+
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=

2χp0
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u2tgα

H2λ2
0

H0 = q∗0; (2.2)

here we denote h/x2 = (h/l) (l/x2) ≡ Hλ0.
We complete system (2.2) with Navier additional conditions [11]

y = 0, y = 1− x1 : w0 = 0,
∂2w0

∂y2
= 0, F0 = 0;

∂2F0

∂y2
= 0. (2.3)

We assume perturbed state as axially symmetric and put w1 = W (y) exp (ωt),
F1 = Φ(y) exp (ωt); for the functions W,Φ from (2.1) we get the system:
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c20
Ω2W = 0. (2.4)

Dimensionless frequency is introduced by the relation Ω = lω/α0; c20 = E/ρj , we
accept conditions (2.3) as boundary conditions.

The obtained eigen-value problem essentially differs from flutter problems based
on the piston theory for ∆p by the fact that the second equation contains an item
with derivative Ω∂W/∂y and thereby analysis of the problem is appreciably compli-
cated.
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3. Basic state. Assume ω0 = K0 sin δπy, F0 = N0 sin δπy, δ (1− x1) = 1;
substitute this in (2.2) and carry out ordinary projection procedure, and get

K0

[
tgαH2λ2

0

12 (1− µ2)

(
(δπ)2

2δ
− (δπ) J1 + J2 +

1
2δπ

J3

)
−A2J4

]
+

+N0J5 =
2

(δπ)3
q∗0 (3.1)

K0J5 −N0tgα

(
(δπ)2

2δ
− (δπ) J1 + J2 +

1
2δπ

J3

)
= 0,

here we denote A2 = χp0uu0H2/ (2EHλ0), the numbers Jk are integrals on the inter-
val [0, 1− x1] from combinations of trigonometric and power functions (x1 + y)±m,
m are integers; on concrete values of integrals we’ll speak in an example. From (3.1)
we determine parameter N0 that we’ll need in future.

4. Perturbed state. We carry out qualitative analysis of system (2.4) on the
basis of two-term approximation: W = k1 sin δπy + k2 sin 2δπy, Φ = N1 sin δπy +
N2 sin 2δπy. After the known procedure, from the first equation of (2.4) we get the
system

N1tgα · S11 +N2tgα · S12 = J5k1 + 4J6k2

N1tgα · S21 +N2tgα · S22 = J10k1 + 4J11k2 (4.1)

the matrix Sij is expressed by the integrals Jk, about which we spoke at the end of
the previous item. Write solution (4.1) in the form Ni = αisks, the concrete form
of the matrix {αis} will be given below. Substitute this solution into the second
equation of (2.4); after Bubnov-Galerkin procedure we get a system of homogeneous
equations with determinant

∆ =
∣∣∣∣ a11 + β11Ω + γΩ2 a12 + β12Ω

a21 + β21Ω a22 + β22Ω + γΩ2

∣∣∣∣ . (4.2)

In the sequel, we’ll need the values of the parameters Bij and γ; write them out:

β11 =
2A2

Mδπ
J27 +

A1

2δ3π2
; β22 =

4A2

Mδπ
J26 +

A1

2δ3π2
;

β12 =
2A2

Mδπ
J28; β21 =

4A2

Mδπ
J25; γ =

1
2δ3π2

tgαa2
0

c20
; (4.3)

J25 =

1−x1∫
0

(x1 + y) cos δπy sin 2δπydy; J26 =
1
2

1−x1∫
0

(x1 + y) sin 4δπydy;

J27 =

1−x1∫
0

(x1 + y) sin 2δπydy; J28 =

1−x1∫
0

(x1 + y) cos 2δπy sin δπydy;
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here we denote A1 =
4kp0utgα ·H1

(k + 1)EHλ0
.

The following integrals are easily calculated

J25 =
2

3δπ

(
2x1 +

1
δ

)
= 2J28; J27 = − 1

8δ2π
= 2J26

therefore β11 = β22 = β0; β21 = −β12 = β1.
Vibrations are stable, if Re Ω < 0, otherwise they are unstable, boundaries of sta-

bility and unstability domains and respectively, critical combination of parameters
are determined by the condition Re Ω = 0.

Assume Ω = iΩ0, Ω0 6= 0 and substitute it in (4.2) and as a result we get the
system:

2β0γΩ
2
0 = β0 (a22 + a11) + (a21 − a12)β1.

a22a11 − a21a12 + γ2Ω4
0 − Ω2

0

[
γ (a22 + a11) + β2

0 + β2
1

]
= 0

From the first equation we define vibration frequency in critical condition

Ω2
0 =

a22 + a11

2γ
+
a21 − a12

2γβ0

β1 (4.4)

after substitution (4.3) in the second equation it takes the form

−a21a12 +
(a21 − a12)

2

4β2
0

β2
1 =

a22 + a11

2γ
(
β2

0 + β2
1

)
+

+
(a22 − a11)

2

4
+
a21 − a12

2γβ0

(
β2

0 + β2
1

)
β1.

5. Example and some estimations. For an example we take the values of
parameters: p0/E ∼ 10−5; tgα = 0, 17

(
α ∼= π/18 = 100

)
;H = 3 · 10−3;λ0 = 0, 5;

x1 = 0, 5; δ = 2; by estimating the orders of quantities we’ll assumeH0∼H1∼H2∼1.
From system (3.1) we find N0

∼= −2 · 10−2: the matrix elements aij are equal (later
we’ll omit the approximate equality sign): a11 = 0, 2; a12 = −10−2; a21 = 10−2;
a22 = 8 ·10−2. In the determinant of (4.2) the elements a11, a21, a22 are positive, the
element a12 is negative. The numbers aij have the structure: aij = a

(1)
ij +a(2)

ij (M)M2

moreover a(2)
ij , weakly depends on M . In future we’ll need the order of relation

β0β1/γ; the calculations give β0β1/γ ∼ 10−3M2.
A new essential element of the problem statement is the taking into account

the item with the second mixed derivative of the flexure in time and coordinate; in
expressions (4.4) and (4.5) the parameter β1 corresponds to it.

The first qualitative result obviously follows from (4.4) increase of vibration
frequency in critical condition; this increase may be appreciable, since as estimations
show, β1/β0 ∼ 10.

From the quation (4.5) that for the above-given parameters serves to determine
flutter critical velocity implies that Mkp (β1 6= 0) < Mkp (β1 = 0). Indeed, a(1)

22 ∼
a

(1)
11 ∼ 10−1,

∣∣∣a(1)
12

∣∣∣ ∼ a
(1)
21 ∼ 10−2, β2

0/γ ∼ 10−5M2. Therefore, the left hand side of
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equality (4.5) appreciable increases for β 6= 0 in comparison with the case β1 6= 0,
and the curve increases in a smaller degree, since the last item is small in comparison
with other ones. This conclusion is the most essential, since earlier in the papers [12,
13, 14] it was shown that taking into account the second derivative of the flexure
with respect to coordinate in (1.9) leads to decrease of flutter critical velocity, as
well.
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