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Magomed F. MEKHTIYEV

NON-AXIALLY-SYMMETRIC PROBLEMS OF
ELASTICITY THEORY FOR TRANSVERSALLY

ISOTROPIC HOLLOW SPHERE

Abstract

The non-axially-symmetrical problem of elasticity theory for transversally
isotropic hollow sphere is considered. Due to spherical symmetry the general
boundary value problem is broken up into two problems, one of which exactly
coincides with axially symmetric boundary value problem of hollow sphere, the
second one with boundary value problem of pure torsion of hollow sphere.

Let’s consider the transversally isotropic spherical layer in spherical coordinate
system

r1 ≤ r ≤ r2, θ1 (ϕ) ≤ θ ≤ θ2 (ϕ) , 0 ≤ ϕ ≤ 2π.

The shell is made of transversally isotropic material.
The spherical parts of layer’s boundary we call the face, and the remaining

boundary part we call the lateral surface.
Let’s give here the complete system of equations describing the spacial stress-

strain state of spherical layer. The equilibrium equations in stresses in the absence
of body forces, in spherical coordinate system, have the form:

∂σr

∂r
+

1
r

∂τ rθ

∂θ
+

1
r sin θ

∂τ rϕ

∂ϕ
+

2σr − σϕ − σθ + τ rθ cot θ
r

= 0

∂τ rϕ

∂r
+

1
r

∂τ θϕ

∂θ
+

1
r sin θ

∂σϕ

∂ϕ
+

3τ rϕ + 2τ θϕ cot θ
r

= 0

∂τ rθ

∂r
+

1
r

∂σθ

∂θ
+

1
r sin θ

∂τ θϕ

∂ϕ
+

(σθ − σϕ) cot θ + 3τ rθ

r
= 0,

(1.1)

where
σr = A11εr +A12 (εθ + εϕ) , σθ = A12εr +A22εθ +A23εϕ
σϕ = A12εr +A23εθ +A22εϕ, τ rϕ = G1εrθ

τ rϕ = G1εrϕ, τ rθ = Gεθϕ

(1.2)

εr =
∂ur

∂r
, εθ =

ur

r
+

1
r

∂uθ

∂θ
, εϕ =

ur

r
+
uθ

r
cot θ +

1
r sin θ

∂uϕ

∂ϕ

εrθ =
1
r

∂ur

∂θ
− uθ

r
+
∂uθ

∂r
, εrϕ =

∂uϕ

∂r
− uϕ

r
+

1
r sin θ

∂ur

∂ϕ

εθϕ =
1
r

∂uϕ

∂θ
− uϕ

r
cot θ +

1
r sin θ

∂uθ

∂ϕ

(1.3)

Aij , G, G1 are material constants, ur, uθ, uϕ are components of displacement vector.
Substituting (1.3), (1.2) in (1.1), after simple computations we get:

b11
∂2ur

∂r2
+

2b11
r

∂ur

∂r
+

2
r

(b11 − b22 − b23)ur+

+
1
r2
∂2ur

∂θ2 +
cot θ
r2

∂ur

∂θ
+

1
r2 sin2 θ

∂2ur

∂ϕ2
+

+
[
b12 + 1
r

∂

∂r
+
b12 − b22 − b23 − 1

r2

](
∂uθ

∂θ
+ cot θ · uθ

)
+
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+
1

r sin θ

[
(b12 + 1)

∂

∂r
+
b11 − b22 − b23 − 1

r

]
∂uϕ

∂ϕ
= 0

b12 + 1
r sin θ

∂2ur

∂r∂ϕ
+
b22 + b23 + 2
r2 sin θ

∂ur

∂ϕ
+
b23 +G0

r2 sin θ
∂2uθ

∂θ∂ϕ
+

+
b22 +G0

r2 sin θ
cot θ

∂uθ

∂ϕ
+

2
r

∂uϕ

∂r
+
G0

r2

(
∂2uϕ

∂θ2 + cot θ
∂uϕ

∂θ
− uϕ

sin2 θ

)
+

+
∂2uϕ

∂r2
+

b22

r2 sin2 θ

∂2uϕ

∂ϕ2
+

2 (G0 − 1)
r2

uϕ = 0 (1.4)

b12 + 1
r

∂2ur

∂r∂θ
+
b22 + b23 + 2

r2
∂ur

∂θ
+
∂2uθ

∂r2
+

2
r

∂uθ

∂r
+

+
b22

r2

(
∂2uθ

∂θ2 + cot θ
∂uθ

∂θ
− uθ

sin2 θ

)
+

2 (G0 − 1)
r2

uθ+

+
G0

r2 sin2 θ

∂2uθ

∂ϕ2
+
b23 +G0

r2 sin θ
∂2ur

∂θ∂ϕ
− b22 +G0

r2 sin θ
cot θ

∂uϕ

∂ϕ
= 0

bij =
Aij

G1
, G0 =

G

G1
.

Let’s suppose, that from the face side on the layer there acts the load

σr = q(k)
r (θ, ϕ) , τ rθ = q(k)

r (θ, ϕ) , τ rϕ = q(k)
r (θ, ϕ) at r = rk (k = 1, 2) . (1.5)

We’ll not revise now the boundary conditions character on lateral face, however,
we’ll consider them so that the layer is in equilibrium.

Following [1,2,3], let’s break up the two-dimensional vector field v = (uθ, uϕ) in
potential and vortex part. Supposing

uθ = r
∂F

∂θ
+

r

sin θ
∂ψ

∂ϕ
, uϕ =

r

sin θ
∂F

∂ϕ
− r

∂ψ

∂θ
. (1.6)

Substituting (1.6) in equation (1.4) and boundary condition (1.5), respectively,
we obtain

L1 (ur, F ) = 0 (1.7)

∂

∂θ
L2 (ur, F ) +

1
sin θ

∂

∂ϕ
L3 (ψ) = 0 (1.8)

1
sin θ

∂

∂ϕ
L2 (ur, F ) +

∂

∂θ
L3 (ψ) = 0 (1.9)

M1 (ur, F )|r=rk
= q(k)

r (θ, ϕ) (1.10)[
∂

∂θ
M2 (ur, F ) +

1
sin θ

∂

∂ϕ
M3 (ψ)

]
r=rk

= q
(k)
rθ (θ, ϕ) (1.11)[

1
sin θ

∂

∂θ
M2 (ur, F )− ∂

∂ϕ
M3 (ψ)

]
r=rk

= q(k)
rϕ (θ, ϕ) , (1.12)

where

L1 (u, F ) = b11
∂2ur

∂r2
+

2b11
r

∂ur

∂r
+

2
r2

(b12 − b22 − b23)ur+
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+
1
r2

∆0ur +
[
(b12 + 1)

∂

∂r
+

2b12 − b22 − b23
r

]
∆0F

L2 (ur, F ) =
b12 + 1
r

∂ur

∂r
+
b22 + b23 + 2

r2
ur + r

∂2F

∂r2
+ 4

∂F

∂r
+

+
2G0

r
F +

b22
r

∆0F

L3 (ψ) = r
∂2ψ

∂r2
+ 4

∂ψ

∂r
+

2G0

r
ψ +

G0

r
∆0ψ

M1 (ur, F ) = b11
∂ur

∂r
+

2b11
r
ur + b12∆0F

M2 (ur, F ) =
ur

r
+ r

∂F

∂r

M3 (ψ) = r
∂ψ

∂r
, ∆0 =

∂2

∂θ2 + cot θ
∂

∂θ
+

1
sin2 θ

+
1

sin2 θ

∂2

∂ϕ2
.

Relations (1.8), (1.9) are identically satisfied, if we put

L2 (ur, F ) = −∂χ (r, θ, ϕ)
∂ϕ

, L3 (F ) = sin θ
∂χ (r, θ, ϕ)

∂θ
, (1.13)

where the function χ (r, θ, ϕ) satisfies the equation

∆0χ (r, θ, ϕ) = 0. (1.14)

Now
[
q
(k)
rθ , q

(k)
rϕ

]
is represented in the form

q
(k)
rθ =

∂q
(k)
2

∂θ
+

1
sin θ

∂q
(k)
3

∂ϕ
, q(k)

rϕ =
1

sin θ
∂q

(k)
2

∂ϕ
− ∂q

(k)
3

∂θ
. (1.15)

Then initial boundary value problem (1.4), (1.5) is decomposed into two problems

L1 (ur, F ) = 0, L2 (ur, F ) = −∂χ
∂ϕ

(1.16)

[M1 (ur, F )]r=rk
= q(k)

r , [M2 (ur, F )]r=rk
= q

(s)
2 − ∂e(k)

∂ϕ
(1.17)

L3 (F ) = sin θ
∂χ

∂θ
(1.18)

[M3 (ur, F )]r=rk
= q

(k)
3 + sin θ

∂e(k)

∂θ
, (1.19)

where e(k) (θ, ϕ) are arbitrary functions satisfying the equation ∆0e
(k) (θ, ϕ) = 0.

Validity of representation (1.6) is explicitly discussed in the paper [3] and there is
no need to discuss it here. In the same place it is shown, that not loosing generality,
we can always put χ = 0, e(s) = 0.
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2. The nonhomogeneous solutions we call particular solutions of equilibrium
equation (1.4) satisfying boundary conditions (1.5) on the face layer. For construc-
tion of nonhomogeneous solutions we can use various methods. One of the known
methods is the following: the domain V = [r1, r2] · [θ1 (ϕ) , θ2 (ϕ)] · [0, 2π] contin-
ues up to closed spherical layer V0 = [r1, r2] · [0, π] · [0, 2π], and the load q(k) ={
q
(k)
r , q

(k)
rθ , q

(k)
rϕ

}
given on the fase S(k), in a sufficiently arbitrary way, continues on

the closed spherical surfaces S(k)
0 (r = rk). We denote by P (k) =

{
P

(k)
r , P

(k)
rθ , P

(k)
rϕ

}
the external forces given on S

(k)
0 . Here for (θ, ϕ) ∈ S(k), P (k)

r = q
(k)
r , P (k)

rθ = q
(k)
rθ ,

P
(k)
rϕ = q

(k)
rϕ and moreover, it is necessary that the external forces P (k)

r , P (k)
rθ , P (k)

rϕ

satisfy equilibrium conditions. Let’s express the two-dimensional field
{
P

(k)
rθ , P

(k)
rϕ

}
of external stress in the form of

P
(k)
rθ =

∂P
(k)
2

∂θ
+

1
sin θ

∂P
(k)
3

∂ϕ
, P (k)

rϕ =
1

sin θ
∂P

(k)
2

∂ϕ
− ∂P

(k)
3

∂θ
.

Let’s expand the functions P (k)
i (θ, ϕ) (i = 1, 2, 3),

[
P

(k)
1 = P

(k)
r

]
in series on spher-

ical functions in the following form

P
(k)
i (θ, ϕ) =

∞∑
n=0

n∑
m=−n

P
(k)
inmY

(m)
n(θ,ϕ),

here P (k)
inm are the known constants

P
(k)
inm =

1∥∥∥Y (m)
n

∥∥∥2

2π∫
0

π∫
0

P
(k)
i (θ, ϕ)Pm

n (cos θ) cosmϕ sin θdθdϕ, m ≤ 0

P
(k)
inm =

1∥∥∥Y (m)
n

∥∥∥2

2π∫
0

π∫
0

P
(k)
i (θ, ϕ)Pm

n (cos θ) sinmϕ sin θdθdϕ, m > 0

∥∥∥Y (m)
n

∥∥∥2
=

2πεm
(n−m)!

(n+m)!
2n+ 1

; εm =
{

2 at m = 0
1 at m < 0

Then the functions u, F , ψ, by which displacement vector components

ur = rU , uθ = r

(
∂F

∂θ
+

1
sin

∂ψ

∂ϕ

)
, uϕ = r

(
1

sin θ
∂F

∂ϕ
− ∂ψ

∂θ

)
are defined, can be found in the series form

u (r, θ, ϕ) =
∞∑

n=0

n∑
m=−n

umn (r)Y (m)
n (θ, ϕ)

F (r, θ, ϕ) =
∞∑

n=0

n∑
m=−n

Fmn (r)Y (m)
n (θ, ϕ)
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u (r, θ, ϕ) =
∞∑

n=0

n∑
m=−n

Ψmn (r)Y (m)
n (θ, ϕ) ,

here Y (m)
n (θ, ϕ) = Pm

n (cos θ) cosmϕ if m ≤ 0, and Y
(m)
n (θ, ϕ) = Pm

n (cos θ) sinmϕ
if m > 0. The function Pm

n are adjoined Legendre functions of order m. By or-
thogonality of Y (m)

n (θ, ϕ) the initial boundary value problem is divided into two
sequences of independent one dimensional boundary value problems with respect to
the functions unm, Fnm, Ψnm.

I.

b11ru
′′
nm + 4b11u

′′
nm + 1

r [2 (b11 + b12 − b22 − b23)− n (n+ 1)]um−

−n (n+ 1)
r

[
(b12 + 1)F ′nm +

2b12 − b22 − b23 − 1
r

Fnm

]
= 0

(b12 + 1)u′nm +
b12 + b22 + b23 + 3

r
unm + rF ′′nm +

[2G0 − n (n+ 1)]
r

Fnm = 0


Boundary conditions

[b11ru
′
nm + 3b11unm − b12n (n+ 1)Fnm]r=rk

= P
(k)
1nm

[unm + rF ′nm]r=rk
= P

(k)
2nm

}
.

II.
rΨ′′

nm + 4Ψ′
nm + G0

r [2− n (n+ 1)]Φnm = 0
[rΨ′

nm]r=rk
= P

(k)
3nm

}
.

For solving obtained problems we can use various methods including numerical,
for example, sweep method.

Described construction technique of nongomogeneous solutions is sufficiently uni-
versal and doesn’t depend on various parameters of shell including its thickness.

However, if relative thickness of a shell is small, and the load given on faces is
sufficiently smooth, then for nonhomogeneous solutions construction it is expediently
to use the first iterative process of asymptotic method [4] that is simple and allows
faster to achieve ultimate aim.

Let’s introduce a new radial variable ξ connected with r by relation

ξ =
1
ε

ln
r

r0
, ε =

1
2

ln
r2
r1
, r0 =

√
r1r2, ξ ∈ [−1, 1] . (2.1)

Later on we suppose the functions q±i (i = 1, 2, 3) with regard to ε have the order
O (1).

Representation of the vector field ν = (uθ, uϕ) in form of (1.6) reduces to parti-
tion of stressed state. By index 1 above we denote a stress tensor part corresponding
to potential problem, and by index 2 the one’s to vortex problem.

σ(1)
r = G1ε

−1

[
b11

∂u

∂ξ
+ ε (b11 + 2b12)u+ εb12∆0F

]
, σ(2)

r ≡ 0

σ
(1)
θ = G1ε

−1

[
b12

∂u

∂ξ
+ ε (b12 + b22 + b23)u+

+ε
(
b22

∂2F

∂θ2 + b23 cot θ
∂F

∂θ
+

b23

sin2 θ

∂2F

∂ϕ2

)]
,
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σ
(2)
θ = 2G

∂2

∂ϕ∂θ

(
ψ

sin θ

)
= −σ(2)

ϕ

σ(1)
ϕ = G1ε

−1

[
b12

∂u

∂ξ
+ ε (b12 + b22 + b23)u+ (2.2)

+ε
(
b23

∂2F

∂θ2 + b22 cot θ
∂F

∂θ
+

b22

sin2 θ

∂2F

∂ϕ2

)]
τ (1)

rϕ = G1ε
−1 1

sin θ
∂

∂ϕ

(
∂F

∂ξ
+ εu

)
, τ (2)

rϕ = −G1ε
−1 ∂

2ψ

∂ξ∂θ

τ
(1)
rθ = G1ε

−1 ∂

∂θ

(
∂F

∂ξ
+ εu

)
, τ (2)

rϕ = G1ε
−1 1

sin θ
∂2ψ

∂ϕ∂ξ

τ
(1)
θϕ = G

∂2

∂ϕ∂θ

(
F

sin θ

)
, τ

(2)
θϕ = G

(
∆0ψ − 2

∂2ψ

∂θ2

)
.

Potential problem (1.16), (1.17) was studied in detail in [5]. Therefore we in-
vestigated more simple vortex problem. In case of vortex problem, boundary value
problem (1.18), (1.19) in variables ξ, θ, ϕ is written in the form

N (∆0, ε) = ψ′′ + 3εψ′ + ε2G0 (∆0 + 2)ψ = 0

ψ′
∣∣
ξ=±1

= q±3 · ε. (2.3)

By primes we denote derivatives with respect to ξ.
Solution of (2.3) we find in the form

ψ = ε−1
(
ψ0 + εψ1 + ε2ψ2 + ...

)
(2.4)

Coefficients of expansion of (2.4) are defined by integration on ξ of recurrence
system obtained after substitution (2.4) in (2.3). Let’s adduce relations defining
three terms of expansion (2.4)

(∆0 + 2)ψ0 = − q3
G0

, (∆0 + 2)ψ1 = −3
2
· q

+
3 + q−3
G0

ψ2 =
1
2
q3ξ

2 +
q+3 + q−3

2
ξ + E (θ, ϕ) (2.5)

(∆0 + 2)E (θ, ϕ) = −q
+
3 + q−3
2G0

− 2q3, q3 = q+3 + q−3 .

Formalae (2.5) enable to write in asymptotic expansions the stresses σ(2)
θ , σ(2)

ϕ , τ
(2)
θϕ

in three terms of expansion, and τ (2)
rθ , τ (2)

rϕ in one.

σ
(2)
θ = −σ(2)

θ = 2G1G0
∂2

∂ϕ∂θ

[
σ (ξ, θ, ϕ)

sin θ

]

τ
(2)
θϕ = G

(
∆0 − 2

∂2

∂θ2

)
σ (ξ, θ, ϕ) (2.6)

τ (2)
rϕ = −G1ε

−1 ∂2

∂ϕ∂ξ
σ (ξ, θ, ϕ)
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τ
(2)
rθ = G1ε

−1 1
sin θ

∂2

∂ϕ∂ξ
σ (ξ, θ, ϕ)

σ (ξ, θ, ϕ) = ψ0 + εψ1 + ε2
[
1
2
q3ξ

2 +
q+3 + q−3

2
ξ + E (θ, ϕ)

]
.

From formulae (2.6) it follows, that the stresses σ(2)
θ , σ(2)

ϕ , τ
(2)
θϕ , with respect to ε,

have the order O
(
ε−1

)
, and τ (2)

rθ , τ (2)
rϕ the order O (1).

3. The homogeneous solution we call any solution of equilibrium equation (1.4)
satisfying no stresses condition on faces.

As we noted above, systems of homogeneous solutions for potential problem were
constructed in [5].

Therefore we pass to asymphtotic analysis of vortex homogeneous problem.

N (∆0, ε)ψ = ψ′′ + 3εψ′ + ε2G0 (∆0 + 2)ψ = 0

ψ′
∣∣
ξ=±1

= 0. (3.1)

After separation of variables using the following representation of solution

ψ (ξ, θ, ϕ) = a (ξ)V (θ, ϕ) (3.2)

with regard to the function a (ξ) we obtain self-adjoint spectral problem of the form

N

(
1
4
− z2, ε

)
a (ξ) = 0 a′ (±1) = 0. (3.3)

Putting q3 = 0 in formulae (2.5) we get homogeneous solutions corresponding the
first iterative process of vortex problem. To these solutions there correspond two

eigenvalues z0 = ±3
2
. To the lasts there corresponds the same eigenfunction a00 (ξ) =

c = const. Other group is formed by the countable set of eigenvalues of the form

zt = ε−1i (γ0t + εγ1t + ...) , t = 1, 2, ... (3.4)

where γ0t in its turn are the nonzero eigenvalues of the spectral problem

Tψ0 = G0γ
2
0ψ, Tψ0 =

{
−ψ′′0, ψ′0 (±1) = 0

}
(3.5)

γ1t = − 3
2G0

1∫
−1

ψ′0t · ψ0tdξ.

The corresponding eigenfunctions have the form

ψ1 = ψ0t = εψ1t +O
(
ε2

)
, ψ1t =

∞∑
m=0
m6=t

ltmψ0m

1∫
−1

ψ0t · ψ0mdξ = δtm, ltm =
3

G0

(
γ2

0m − γ2
0t

) 1∫
−1

ψ′0t · ψ0mdξ.

(3.6)



162
[M.F.Mekhtiyev]

Transactions of NAS of Azerbaijan

To the eigenvalues z0 there corresponds the following elementary solution of
equilibrium equation

u(20)
r ≡ 0, u

(20)
θ = c

r0e
εξ

sin θ
∂Y0

∂ϕ
, u(20)

ϕ = −c1r0eεξ
∂Y0

∂θ
,

where Y0 (θ, ϕ) is spherical function satisfying the equation (∆0 + 2)Y0 (θ, ϕ) = 0.
To the other eigenvalues there corespond the elementary vortex solutions of the

form

u
(22)
rt ≡ 0, u

(22)
θt =

[
ψ0t + εψ1t +O

(
ε2

)] r0eεξ
sin θ

∂Yt

∂ϕ
(3.7)

u
(22)
ϕt = −

[
ψ0t + εψ1t +O

(
ε2

)]
r0e

εξ ∂Yt

∂t
.

Let’s give the characteristic of deflected mode of vortex problem. In compliance with
two groups of eigenvalues of spectral problem (3.1) the stress tensor is transformed
to the form

σ(2) = σ(20) + σ(22). (3.8)

The stress tenzor σ(20) corresponds to the eigenvalues z0 = ±3
2

and its compo-
nents are defined by the formulae

σ(20)
r = τ

(20)
rθ = τ (20)

rϕ = 0

σ
(20)
θ = −σ(20)

ϕ = 2GC
∂2

∂θ∂ϕ

[
Y0 (θ, ϕ)

sin θ

]
(3.9)

τ
(20)
θϕ = GC

(
∆0Y0 − 2

∂2Y0 (θ, ϕ)
∂θ2

)
σ

(22)
θ = −σ(22)

ϕ = 2GG0ψk (ξ)
∂2

∂θ∂ϕ

[
Yk (θ, ϕ)

sin θ

]
(3.10)

τ
(22)
rθ = ε−1 G1

sin θ
ψ′k (ξ)

∂Yk (θ, ϕ)
∂ϕ

τ (22)
rϕ = ε−1G1ψ

′
k (ξ)

∂Yk (θ, ϕ)
∂ϕ

τ
(22)
θϕ = Gψk (ξ)

(
∆0Y0 −

∂2

∂θ2Y0 (θ, ϕ)
)

ψk (ξ) = ψ0k (ξ) + εψ1k (ξ)

Y0 (θ) = A0P1 (cos θ) +B0Q1 (cos θ) , P1 (cos θ) = cos θ

Q1 (cos θ) =
1
2

cos θ ln
1 + cos θ
1− cos θ

− 1.

Let’s explain the view of stressed state of vortex problem.
The equilibruim conditions of layer have the form

2π

r2∫
r1

τ θϕ (r, θ1) r2 sin2 θ1dr = 2π

r2∫
r1

τ θϕ (r, θ2) r2 sin2 θ2dr. (3.11)
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Consider the relation of homogeneous solutions of vortex problem with the torque
Mkp of stresses acting in section θ = const.

We have

Mkp = 2π sin2 θr30

r2∫
r1

τ θϕ (ξ, θ) e3εξdξ. (3.12)

Let the stresses τ θϕ be represented in the form

τ θϕ = τ
(20)
θϕ +G1

∞∑
k=1

G0ψk (ξ)
[(
z2
k −

1
4

)
Yk (θ)− 2 cot θ

dYk (θ)
dθ

]
. (3.13)

The summand τ (20)
θϕ corresponds to the eigenvalues z0 = ±3

2
and has the form

τ
(20)
θϕ =

G

r
[A0P1 (cos θ) +B0Q1 (cos θ)] . (3.14)

Other part of the stresses τ θϕ is defined by the eigenfunctions ψk and by the
eigenvalues zk of spectral problem (3.5).

Let’s transform expressions for Mkp with taking into account (3.13), (3.14).
We have

Mkp = 2πr30B0M0 + 2πr30 sin2 θGi

[(
z2
k −

1
4

)
Yk (θ)− 2 cot θ

dYk (θ)
dθ

] 1∫
−1

ψk (ξ) e3εξdξ

M0 = Geεξdξ =
2shε
ε

G0. (3.15)

Starting directly from spectral problem (3.1), we show that in each summand of
sum in formula (3.15) the multiplier

1∫
−1

ψk (ξ) e3εξdξ = 0 (3.16)

vanishes; multiplying the both parts of the equation

ψ′′k + 3εϕ′k −G0

(
z2
k − 9/4

)
ψk = 0

on ε3εξ, integrating in the range [−1, 1], we get

1∫
−1

ψ′′kε
3εξdξ + 3ε

1∫
−1

ϕ′kε
3εξdξ = ε2

(
z2
k − 9/4

) 1∫
−1

ψk (ξ) e3εξdξ.

The left hand side of the last equality vanishes. We can easily see it with the
help of integration by parts and using the boundary condition ψ′ (±1) = 0, whence
it follows equality (3.16).

Thus for Mkp we obtain
Mkp = 2πr30B0M0
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The stressed state corresponding to zeros of the second group of vortex problem,
is self-balanced in each section θ = const.

Thus, the general problem of elasticity theory for spherical layer is dismem-
bered in two ones. However, solutions of these problems are connected through the
boundary conditions on lateral face. Therefore, by satisfying boundary condition
on lateral face there arise the problems, chiefly connected with nonorthogonality of
homogeneous solutions. As it shown in [5], solutions of potential problem posses the
property of generalized orthogonality, the solutions of vortex problem are orthog-
onal. But slutions of different groups don’t posses these properties. Therefore, in
general case the boundary value problem is reduced to solution of infinite sytems of
linear algebraic equations as in axially-symmetric case.
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