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NON-AXIALLY-SYMMETRIC PROBLEMS OF
ELASTICITY THEORY FOR TRANSVERSALLY
ISOTROPIC HOLLOW SPHERE

Abstract

The non-azially-symmetrical problem of elasticity theory for transversally
isotropic hollow sphere is considered. Due to spherical symmetry the general
boundary value problem is broken up into two problems, one of which exactly
coincides with axially symmetric boundary value problem of hollow sphere, the
second one with boundary value problem of pure torsion of hollow sphere.

Let’s consider the transversally isotropic spherical layer in spherical coordinate
System

i <r<ry 01(p) <0<02(p), 0<¢<2m

The shell is made of transversally isotropic material.

The spherical parts of layer’s boundary we call the face, and the remaining
boundary part we call the lateral surface.

Let’s give here the complete system of equations describing the spacial stress-
strain state of spherical layer. The equilibrium equations in stresses in the absence
of body forces, in spherical coordinate system, have the form:
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A;j, G, G are material constants, u,, ug, u, are components of displacement vector.
Substituting (1.3), (1.2) in (1.1), after simple computations we get:
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Let’s suppose, that from the face side on the layer there acts the load
Or = Qq("k) (07 90) y Tro = Q7("k) (9’ gp) y Tre = q7(1k) (07 90) at r=ryg (k =1, 2) . (1'5)

WEe’ll not revise now the boundary conditions character on lateral face, however,
we’ll consider them so that the layer is in equilibrium.

Following [1,2,3], let’s break up the two-dimensional vector field 7 = (ug,u,) in
potential and vortex part. Supposing

_OF r oY o 8£_ %
_T@—i_sinﬂ%’ uw_sinﬁﬁgo "0 (16)

Ug

Substituting (1.6) in equation (1.4) and boundary condition (1.5), respectively,
we obtain

Li(u, F)=0 (1.7)

aé;L2 (ur, F) + ShllMiLg (¥) =0 (1.8)
g F)+ g La0) =0 (19)

My (ur, F)l,—,, = ¢t (6, ) (1.10)
P+ G M) =4l 00) (1)
g e P M) a0, (112

where
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Relations (1.8), (1.9) are identically satisfied, if we put
0 0
Lo (ur, F) = —w, Ly (F) = sin@W, (1.13)
where the function x (7,0, ¢) satisfies the equation
Apx (r,0,¢) = 0. (1.14)
Now {qff;), qf"l:p)] is represented in the form
o _ 00 1 ooa” 1 0g”  og” (1.15)
ro 00 sinf Op e = Gng Oy a0 - )

Then initial boundary value problem (1.4), (1.5) is decomposed into two problems

ox
Li(up, F)=0, Lg(up, F)=—-= 1.16
1 (ur, F) 2 (ur, F) 90 (1.16)

(k)
_ _ o 0e

[Ml (uT?F)]rzrk - q1(“ )7 [MQ (uT?F)]r:rk - q2 - 890 (117)
Ly (F) = siDHZz (1.18)

), o g0e"
(M3 (up, F)],—,, =q3 +sinf 50 (1.19)

where e(¥) (0, ) are arbitrary functions satisfying the equation Age® (6, ¢) = 0.

Validity of representation (1.6) is explicitly discussed in the paper [3] and there is
no need to discuss it here. In the same place it is shown, that not loosing generality,
we can always put x = 0, e®) = 0.
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2. The nonhomogeneous solutions we call particular solutions of equilibrium
equation (1.4) satisfying boundary conditions (1.5) on the face layer. For construc-
tion of nonhomogeneous solutions we can use various methods. One of the known
methods is the following: the domain V = [ri, 73] - [01 (¢), 02 (¢)] - [0, 27] contin-
ues up to closed spherical layer Vo = [r1,79] - [0,7] - [0,27], and the load ¢*) =

{CI£ ), Q£9)7 qﬁJ} given on the fase S*), in a sufficiently arbitrary way, continues on

the closed spherical surfaces Sék) (r =rg). We denote by pk) — {P(k) Pfg), PT(ZZ)}

the external forces given on S(()k). Here for (6,¢) € S®*), Pr(k) = qﬁk), Pfg) = q( ),
( )

PT(ZZ) = qr(,’fo) and moreover, it is necessary that the external forces Prgk), Pr(g), o
satisfy equilibrium conditions. Let’s express the two-dimensional field {Pfg ), PT(ZZ)}

of external stress in the form of

P _ oPF) L1 op) w 1 orY opP
) sinf Op ’ " sinf Oy 00
Let’s expand the functions Pi(k) 0,9) (i =1,2,3), [Pl(k) = P,Sk)] in series on spher-

ical functions in the following form

Z Z Pl(flfmyrfm (0,)°

n=0m=—n

here R(m)n are the known constants

2r
Pl(:m = // k) " (cos @) cos mep sin @dfdyp, m <0
2T
mm = ) // k) ™ (cos 0) sinmep sin dfdp, m >0
HY WK

y(m)

n

HQ_ 21em  (n+m)! S 2 at m=0
Cn—m)! 2n4+17 " 1 at m<O0

Then the functions u, F', 1, by which displacement vector components

OF 1a¢> u_r<1 OF aw)
o=

90 " sinog snfdp 90

ur:rU,ue:r<

are defined, can be found in the series form

o) n

(r,0,¢) = Z Z U, ( ™) (8, )

n=0m=-—n

o0 n

(r,0,¢) = Z Z Fpn (r) Y, (8, )

n=0m=-—n
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w(r,0,0) =Y > Uy ()Y, (0,9),
n=0m=-n
here Y™ (0,¢) = P (cos ) cosmep if m < 0, and v, (0,¢) = P (cos ) sinmep
it m > 0. The function P]* are adjoined Legendre functions of order m. By or-

thogonality of erm) (0,¢) the initial boundary value problem is divided into two
sequences of independent one dimensional boundary value problems with respect to
the functions unm, Frnm, Yam-

1.

byprul, + 4byull  + % [2 (b11 + b12 — bog — ba3) —n(n + 1)] wp—

n(n+1 2019 —bygy —bog — 1
- ( . ) (b12 + 1) F/lm + 12 22r 23 an -0
b b b 3 2Gg — 1
(bl2+1)u%m+ 2t 22:_ 2+ Unm+TF7/1,m+ [ 0 Z(n—i_ )]an:O
Boundary conditions
117400+ B3t = b1 (0+1) Fo, ., = Pio |
[’U,nm + rF?ém]r:rk = PQ(n?m

I1.
PO 44T+ G2~ (n+1)] Dy = 0 }

[, — p{¥)

nm]r:rk 3nm

For solving obtained problems we can use various methods including numerical,
for example, sweep method.
Described construction technique of nongomogeneous solutions is sufficiently uni-
versal and doesn’t depend on various parameters of shell including its thickness.
However, if relative thickness of a shell is small, and the load given on faces is
sufficiently smooth, then for nonhomogeneous solutions construction it is expediently
to use the first iterative process of asymptotic method [4] that is simple and allows
faster to achieve ultimate aim.
Let’s introduce a new radial variable £ connected with r by relation
1 T 1. r
=—In—

=-In—, ¢
f €n7"0 2 1

, o =+/rir2, £€[-1,1]. (2.1)

Later on we suppose the functions qijE (1 = 1,2,3) with regard to ¢ have the order
O (1).

Representation of the vector field 7 = (ug, u,) in form of (1.6) reduces to parti-
tion of stressed state. By index 1 above we denote a stress tensor part corresponding
to potential problem, and by index 2 the one’s to vortex problem.

O',g,l) = G1€_1 [bll(gz +e (b11 + 2b12) U+ €b12AOF:| s 0'5.2) =0

0
aél) =G ! [51282 + € (b1 + bag + boz) ut

O0*F oF bes O*F
boao—5 +b t0— —
+6(22802 T hacot 5, +sin298§02>]’
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2
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e T T ingop \ 0¢ re dEDO
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Potential problem (1.16), (1.17) was studied in detail in [5]. Therefore we in-
vestigated more simple vortex problem. In case of vortex problem, boundary value
problem (1.18), (1.19) in variables &, 6, ¢ is written in the form

N (Ao, &) =" +3e¢ +Go (Mg +2)1p =0

@Mg:ﬂ =q; <. (2.3)

By primes we denote derivatives with respect to &.
Solution of (2.3) we find in the form

P =1 (T/fo + ety + Py + ) (2.4)

Coefficients of expansion of (2.4) are defined by integration on & of recurrence
system obtained after substitution (2.4) in (2.3). Let’s adduce relations defining
three terms of expansion (2.4)

a 3 qf +q3
Ao+ ) e — — B At Ny, — 2. B T30
I q;_—i_qfﬂ_
Yo = past+ BB e 1 B0, ) (25)
+ —
+ _
(A0+2)E(97<P)=—%—2%, a3 =q3 +q;.

Formalae (2.5) enable to write in asymptotic expansions the stresses aé2), aff ), Téi)

2 (2

in three terms of expansion, and 7, 774 in one.

2 0
B e e [0(5, ,so)]

8@69 sin 6
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00
2
7—(2) = —G1€_1 g (679790)

h Opdg
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2
@ _g 11 9
Tro € Sing 0pOE

o (&,0,0)

1 a5 +a3
0 (£,0,¢) =Py + ey +&° 5Q3§2+%§+E(9,S@)

From formulae (2.6) it follows, that the stresses Uéz), ag), Téi) , with respect to &,

have the order O (6_1), and T%), 7'7(30) the order O (1).

3. The homogeneous solution we call any solution of equilibrium equation (1.4)
satisfying no stresses condition on faces.

As we noted above, systems of homogeneous solutions for potential problem were
constructed in [5].

Therefore we pass to asymphtotic analysis of vortex homogeneous problem.

N (Ag, &) =" + 3ey)’ + €2Go (Ao +2) 9 =0

Ve =0 (3.1)
After separation of variables using the following representation of solution
P (£,0,0) =a(§)V(0,¢) (3.2)

with regard to the function a (§) we obtain self-adjoint spectral problem of the form

N <i — 2% 5) a(€)=0 a (£1) = 0. (3.3)

Putting ¢3 = 0 in formulae (2.5) we get homogeneous solutions corresponding the
first iterative process of vortex problem. To these solutions there correspond two

3
eigenvalues zyp = £—. To the lasts there corresponds the same eigenfunction agg (§) =

¢ = const. Other group is formed by the countable set of eigenvalues of the form
z=¢c Yi(yo +evy+..),  t=1,2,.. (3.4)
where 7, in its turn are the nonzero eigenvalues of the spectral problem

Ty = Govg, Ty = { =g, ¥ (£1) = 0} (3.5)

1
3
Y1t = _TGO /7/)615 “ Yo dE.
-1
The corresponding eigenfunctions have the form

Yy =thy =y + O (%), Yy = Z Lim®om,
o’
(3.6)

1 1
3
w-wmﬁz@mzmz/w-¢m%
_/1 0t 0 GO (,}%m _ 73,:) J 0t 0
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To the eigenvalues 2y there corresponds the following elementary solution of
equilibrium equation

0o _ 0c™ OV - an)

Yy
uf £ 9%0

(20) =
uT - 0’ 69 )

-— = —c1roe

sinf Oy 1o

where Yj (6, ¢) is spherical function satisfying the equation (A + 2) Yy (6, ¢) = 0.
To the other eigenvalues there corespond the elementary vortex solutions of the

form
roect dY;

sin 0 %
e MVt
ot~

Let’s give the characteristic of deflected mode of vortex problem. In compliance with

two groups of eigenvalues of spectral problem (3.1) the stress tensor is transformed
to the form

ul =0, ul® = [ho + ey, + O (¢2)] (3.7)

u<(p2tz) = — [ + vy, + O (€%)] roe

(@) 520) 4 5(22), (3.8)

IS]

3
The stress tenzor 2(20) corresponds to the eigenvalues zy = :|:§ and its compo-

nents are defined by the formulae

o) = 3 =72 = 0
o = —o9 = 2GC 85;@ [%Si(z’ 9“’)] (3.9)
el (AOYO B 282Ygég, w))
o = —o? = 2GGyy, (€) aj;p [Yksi(z’f)] (3.10)
A I NAGERCL
G g P
oo = Gy (€) (Aoyo - ;;YO @ w))

Uk (§) = Yox (§) + ey (§)
Yo (0) = AoPi (cos @) + BoQ1 (cosf), Pj(cosf) = cosb
1+ cosf

1
Q1 (cosb) = icosmnl —osg L

Let’s explain the view of stressed state of vortex problem.
The equilibruim conditions of layer have the form
72 T2

27?/7'&;, (r,01) 7 sin® 01 dr = 27r/7'9¢ (r,02) 7% sin® Oadr. (3.11)

1 1
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Consider the relation of homogeneous solutions of vortex problem with the torque
My, of stresses acting in section 6 = const.
We have

]
A@pzzﬂgﬁeﬁ?/rwxge)éﬁdg (3.12)
1

Let the stresses 79, be represented in the form

= 1 dYy, (0
Top = Téi?) + Gy ZGOwk (&) [<z,% - 4) Y (6) — 2cot 6§ ;0( ) . (3.13)
k=1
The summand Téif]) corresponds to the eigenvalues zy = :I:g and has the form
G
Téz?) = [AgP; (cos @) + BoQ1 (cosb)]. (3.14)

Other part of the stresses 74, is defined by the eigenfunctions v and by the
eigenvalues zj, of spectral problem (3.5).

Let’s transform expressions for Mj,, with taking into account (3.13), (3.14).

We have

1
My, = 271§ BoMo + 27 sin® 0G; [(Zﬁ - i) Yk (0) — 2 cot edYZZG(H)} /¢k (&) e*tde
“1
2
My = Gesde = 221, (3.15)

Starting directly from spectral problem (3.1), we show that in each summand of
sum in formula (3.15) the multiplier

1

/ by (€) ¥€dg = 0 (3.16)

-1
vanishes; multiplying the both parts of the equation
Wk + 3e), — Go (27 — 9/4) by = 0

on £3%¢ integrating in the range [—1, 1], we get

1 1 1
[t +ne [ greta =2 (2 -9/ [un(o e
el ) el

The left hand side of the last equality vanishes. We can easily see it with the
help of integration by parts and using the boundary condition ¢’ (+1) = 0, whence
it follows equality (3.16).

Thus for My, we obtain

Mkp = 27T7“8BOM0
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The stressed state corresponding to zeros of the second group of vortex problem,
is self-balanced in each section 6 = const.

Thus, the general problem of elasticity theory for spherical layer is dismem-
bered in two ones. However, solutions of these problems are connected through the
boundary conditions on lateral face. Therefore, by satisfying boundary condition
on lateral face there arise the problems, chiefly connected with nonorthogonality of
homogeneous solutions. As it shown in [5], solutions of potential problem posses the
property of generalized orthogonality, the solutions of vortex problem are orthog-
onal. But slutions of different groups don’t posses these properties. Therefore, in
general case the boundary value problem is reduced to solution of infinite sytems of
linear algebraic equations as in axially-symmetric case.
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