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THE PROBLEMS OF OPTIMAL CONTROL BY

PARABOLIC EQUATIONS COEFFICIENTS

Abstract

For the problems of optimal control by parabolic equations coefficients the
questions of correctness of their statement have been investigated, sufficient
conditions for aim functional differentiability have been found, formula for its
gradient has been obtained, and necessary condition of optimality has been
determined.

The problems of optimal control by coefficients of mathematical physics have
great theoretical and applied significance [1]-[3]. By investigating the correctness
of these problems statement and receiving necessary conditions of optimality there
arises a series of difficulties connected with theirs nonlinearity and nonconvexity [1],
[4]-[6].

In the given paper a problem of optimal control by parabolic equations coeffi-
cients provided, that these coefficents are found in the spaces W 1

p and Ls ,where
p and s are some finite numbers, has been investigated.Earlier, such problems has
been studied in the papers [1], [4]-[6] and in others, in cases, when coefficients of
parabolic equations are found in the spaces W 1

∞ and L∞.
For the below considered optimal control problem the questions of correctness of

its statement have been investigated, sufficient conditions for aim functional differen-
tiability have been found, formula for its gradient has been obtained, and necessary
condition of optimality has been determined.

1. Problem statement.
Let Ω be a bounded domain of n-dimensional Euclidean space Rn, S be a bound-

ary of the domain Ω, which is assumed to be continuous by Lipschitz, x = (x1, ..., xn)
be an arbitrary point of domain Ω, T > 0 be a given number, 0 ≤ t ≤ T ,

QT = Ω× (0, T ), ST = S × [0, T ]. The functional spaces C
(
QT

)
, LS (QT ),

◦
W 1

2 (Ω),
◦
W 1,0

2 (QT ),
◦
V

1,1/2
2 (QT ), W 1,1

p (QT ),
◦
W 1,1

2 (QT ), W 2,1
2 (QT ) used below are intro-

duced, for example in [7, ch.I, §1, pp.12-17]. Moreover, everywhere below by M we
denote positive constants that don’t depend on admissible controls and on evaluated
quantities.

Let’s consider controlled process described by the equation of parabolic type

∂u

∂t
−

n∑
α=1

∂

∂xα

(
kα (x, t)

∂u

∂xα

)
+ q (x, t)u = f (x, t) , (x, t) ∈ QT , (1.1)

where f ∈ L2 (QT ) is the given function, kα (x, t)
(
α = 1, n

)
, q (x, t) are control

functions.
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Let for equation (1.1) the following boundary condidions be given:

u|ST
= 0, u|t=0 = ϕ (x) , x ∈ Ω, (1.2)

where ϕ ∈W 1
2 (Ω) is the known function.

Suppose, that control ν = (k1 (x, t) , ..., kn (x, t) , q (x, t)) is found on the following
set of admissible controls:

V =
{
ν = (k1, ...kn, q) ∈ B ≡

[
W 1,1

p (QT )
]n × LS (QT ) :

0 < να ≤ kα (x, t) ≤ µα,
◦
∀ (x, t) ∈ QT ,

∥∥∥∥∂ka

∂xi

∥∥∥∥
Lp(QT )

≤ d
(α)
i ,

∥∥∥∥∂ka

∂t

∥∥∥∥
Lp(QT )

≤ dα,
(
α, i = 1, n

)
, ‖q‖LS(QT ) ≤ ρ

}
, (1.3)

where νa, µα, dα, d(α)
i , p > 0

(
α, i = 1, n

)
, s, p are given numbers, with s > 2 at

n ≤ 2, s ≥ n+ 2
2

at n ≥ 3, p ≥ n+ 2 at n ≥ 1, symbol
◦
∀ denotes ”almost for all ”.

Let’s consider the problem on minimization of functional

J (ν) = β0 ‖u|t=T − u0‖2
L2(Ω) + β1 ‖u− u1‖2

L2(QT ) (1.4)

on the solutions u = u (x, t) = u (x, t; ν) of boundary value problem (1.1), (1.2),
which correspond to all admissible controls ν ∈ V , where β0, β1 ≥ 0, β0 + β1 > 0
are given numbers, u0 ∈ L2 (Ω), u1 ∈ L2 (QT ) are the known functions.

Under solution of boundary value problem (1.1), (1.2) at each ν ∈ V we under-
stand the function u = u (x, t; ν) from V

1,1/2
2 (QT ) satisfying the identity∫

QT

(
−u∂η

∂t
+

n∑
α=1

ka
∂u

∂xα

∂η

∂xα
+ quη

)
dxdt =

∫
Ω

ϕ (x) η (x, 0) dx+
∫

QT

fηdxdt, (1.5)

for all η = η (x, t) from
◦
W 1,1

2 (QT ) ,equal zero at t = T .
At accepted estimates from the results of the paper [7, ch.III, §4, p.189] it follows

that at each ν ∈ V , boundary value problem (1.1), (1.2) has a unique solution from
◦
V

1,1/2
2 (QT ). Moreover, solution of problem (1.1), (1.2) from

◦
V

1,1/2
2 (QT ) belongs

also to the space W 2,1
2,0 (QT ) = W 2,1

2 (QT ) ∩
◦
W 1,0

2 (QT ) , satisfies equation (1.1) at
∀ (x, t) ∈ QT , equals ϕ (x) at t = 0 and it holds the estimation [7, ch.III, §6, pp.203-
212]

‖u‖
W 2,1

2 (QT )
≤M

[
‖f‖L2(QT ) + ‖ϕ‖W 2

2 (QT )

]
. (1.6)

2. Correctness of problem statement
Let’s show, that problem (1.1)-(1.4) has at least one solution.
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Theorem 2.1. Let the conditions accepted at the statement of problem (1.1)-

(1.4), where s >
n+ 2

2
at n ≥ 3, be fulfilled. Then functional (1.4) is wekly con-

tinuous on V , the set V∗ = {ν∗ ∈ V : J (ν∗) = J∗ = inf {J (ν) : ν ∈ V }} of optimal
controls of problem (1.1)-(1.4) is nonempty, weakly compact in B and any mini-
mizing sequence

{
ν(m)

}
weakly converges in B to the set V .

Proof. Let’s show that functional (1.4) is weakly continuous on V . Let ν =
(k1, ..., kn, q) ∈ V be some element,

{
ν(m) =

(
k

(m)
1 , ..., k

(m)
n , q(m)

)}
⊂ V be an arbi-

trary sequence, such that

ν(m) → ν is weakly in B, (2.1)

as m→∞.
Let u(m) = u(m) (x, t) = u

(
x, t; ν(m)

)
be a solution of problrm (1.1), (1.2) from

W 2,1
2,0 (QT ) at ν = ν(m). From (1.6) it follows that∥∥∥u(m)

∥∥∥
W 2,1

2 (QT )
≤ const (m = 1, 2, ...) . (2.2)

Moreover, it is known, that the embedding W 1,1
p (QT ) → C

(
QT

)
is compact at

p > n + 1, the embedding W 2,1
2,0 (QT ) → L2 (Ω) is compact at any n [7, ch.II, §2,

p.78], and the embedding W 2,1
2,0 (QT ) → Lr (QT ) is compact at 1 ≤ r <

2 (n+ 2)
n− 2

, if

n ≥ 3 [8, ch.I, §2, p.39] for any finite r ≥ 1, if n = 2 and at r = ∞, if n = 1 [8, ch.I,
§1, p.33]. Therefore, from (2.1) and (2.2) it follows, that from

{
ν(m), u(m)

}
we can

extract such a subsequence that we again denote by
{
ν(m), u(m)

}
, that

k(m)
α → kα

(
α = 1, n

)
is weakly in W 1,1

p (QT ) and strongly in C
(
QT

)
, (2.3)

q(m) → q is weakly in LS (QT ) , (2.4)

u(m) → u is weakly in W 2,1
2,0 (QT ) and strongly in Lr (QT ) , (2.5)

u(m)
∣∣∣
t=T

→ u|t=T strongly in L2 (Ω) , (2.6)

where u = u (x, t) is some function from W 2,1
2,0 (QT ), r = ∞, if n = 1, r ≥ 1 is any

finite number, if n = 2 and 1 ≤ r <
2 (n+ 2)
n− 2

, if n ≥ 3.

Let’s show. that u = u (x, t) = u (x, t; ν). It is clear, that the function u(m) (x, t),
m = 1, 2, ... satisfies the identity∫

QT

(
−u(m)∂η

∂t
+

n∑
α=1

k(m)
α

∂u(m)

∂xα

∂η

∂xα
+ q(m)u(m)η

)
dxdt =

=
∫
Ω

ϕ (x) η (x, 0) dx+
∫

QT

fηdxdt, (2.7)
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for all η = η (x, t) from
◦
W 1,1

2 (QT ) equal zero at t = T .
Moreover, the equality∫

QT

n∑
α=1

k(m)
α

∂u(m)

∂xα

∂η

∂xα
dxdt =

∫
QT

n∑
α=1

(
k(m)

α − kα

)
×

×∂u
(m)

∂xα

∂η

∂xα
dxdt+

∫
QT

n∑
α=1

kα
∂u(m)

∂xα

∂η

∂xα
dxdt. (2.8)

is true.
From (2.2) and (2.3) it follows, that the first item in the right hand side of

equality (2.8) tends to zero as m → ∞. Therefore, passing to the limit in (2.8) as
m→∞ and using (2.5) we have∫

QT

n∑
α=1

k(m)
α

∂u(m)

∂xα

∂η

∂xα
dxdt→

∫
QT

n∑
α=1

kα
∂u

∂xα

∂η

∂xα
dxdt. (2.9)

Now, let’s show that ∫
QT

q(m)u(m)ηdxdt→
∫

QT

quηdxdt, (2.10)

as m→∞. It is clear, that the equality∫
QT

q(m)u(m)ηdxdt =
∫

QT

q(m)
(
u(m) − u

)
ηdxdt+

∫
QT

q(m)uηdxdt, (2.11)

is true.
Using inequality (1.8) from [7, ch. II, §I, p.75] and the condition

∥∥q(m)
∥∥

LS(QT )
≤

ρ, we have∣∣∣∣∣∣∣
∫

QT

q(m)
(
u(m) − u

)
ηdxdt

∣∣∣∣∣∣∣ ≤
∥∥∥q(m)

∥∥∥
LS(QT )

∥∥∥u(m) − u
∥∥∥

L 2s
s−2

(QT )
‖η‖L2(QT ) ≤

≤ ρ
∥∥∥u(m) − u

∥∥∥
L 2s

s−2
(QT )

‖η‖L2(QT ) . (2.12)

Since, at n ≥ 3 from the condition s >
n+ 2

2
it follows, that

2s
s− 2

<
2 (n+ 2)
n− 2

,

passing to the limit in (2.12) as m → ∞ and using (2.5) we get, that he first
item in the right hand side of equality (2.11) tends to zero as m → ∞. Moreover,
from embedding theorem [8, ch.I, §1, p.33, §2, p.39] and from condition s > 2 at

n ≤ 2, s >
n+ 2

2
at n ≥ 3 it follows, that if u ∈ W 2,1

2,0 (QT ), η ∈
◦
W 1,1

2 (QT ), then

uη ∈ L s
s−2

(QT ). Therefore passing on to the limit in (2.11) at m→∞ and using
(2.4) we obtain correctness of relations (2.10).
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Now, passing to the limit in (2.7) as m → ∞ and using (2.5), (2.9), (2.10) we
get, that the function u = u (x, t) satisfies identity (1.5). From here and since the
function u = u (x, t) is in element of the space W 2,1

2,0 (QT ) it follows that the function

u = u (x, t) satisfies equation (1.1)
◦
∀ (x, t) ∈ QT and boundary conditions (1.2). It

means, that u = u (x, t) = u (x, t; ν).
Thus, it is established, that by fulfilling (2.1) from the sequence

{
ν(m), u(m)

}
we

can extract a subsequence, that we again denote by
{
ν(m), u(m)

}
for which relations

(2.3)-(2.6) are true, where u = u (x, t; ν). Using uniqueness of solution of problem
(1.1), (1.2) it is easy to show, that these relations are true for the whole of sequence{
ν(m), u(m)

}
too.

Now using (2.5), (2.6) from (1.4) we obtain, that J
(
ν(m)

)
→ J (ν) as m→∞,

i.e. the functional J (ν) is weakly continuous on V . Moreover, the set V defined
by relation (1.3) is a convex closed bounded set in reflexive banach space B. Then
from Weirstrass theorem [9, ch. I, §3, pp.49-51] it follows the problem statement.
Theorem 2.1 is proved.

Now let’s consider the problem on minimization of functional

Iγ (ν) = J (ν) + γ ‖ν − ω‖2
B (2.13)

on the set V defined by relation (1.3), under condition (1.1), (1.2), where γ ≥ 0 is
given number, ω ∈ B is given element, the functional J (ν) is defined by formula
(1.4). This problem is called problem (1.1)-(1.3), (2.13).

Theorem 2.2. Let the conditions of theorem 2.1 be fulfilled, and γ ≥ 0. Then
for each ω ∈ B problem (1.1)-(1.3) has at least one solution. If γ > 0, then there
exists a dense subset G of the space B, such that for each ω ∈ G problem (1.1)-(1.3),
(2.13) has a unique solution.

Proof. The functional Iγ (ν) is a sum of weakly continuous functional J (ν)
on V and the weakly semicontinuous below functional γ ‖ν − ω‖2

B, (γ ≥ 0). Hence,
the functional Iγ (ν) is weakly semicontinuous below on V . Then from Weirstrass
theorem [9, ch. I, §3, pp.49-51] it follows that at γ ≥ 0 problem (1.1)-(1.3), (2.13)
has at least one solution.

Now, let γ > 0. The functional J (ν) is continuous by the norm of the space
B and is bounded below on V , the space B is uniformly convex, and the set V is
closed and bounded on B. Then by virtue of the known theorem [10], there exists a
dense subset G of the space B such that for any ω ∈ G at γ > 0 problem (1.1)-(1.3),
(2.13) has the unique solution. Theorem 2.2 is proved.

3. Differentiability of functional and necessary condition of optimality.
For proving differentiability of functional (1.4) we intoduce the following problem

on determination of a function ψ = ψ (x, t) = ψ (x, t; ν) from the conditions

∂ψ

∂t
+

n∑
α=1

∂

∂xα

(
kα (x, t)

∂ψ

∂xα

)
− q (x, t)ψ =



140
[R.K.Tagiyev]

Transactions of NAS of Azerbaijan

= 2β1 [u (x, t; ν)− u1 (x, t)] , (x, t) ∈ QT , (3.1)

ψ|ST
= 0, ψ|t=T = −2β0 [u (x, T ; ν)− u0 (x)] , x ∈ Ω, (3.2)

where u (x, t; ν) is the solution of problem (1.1), (1.2).
Under solution of boundary value problem (3.1), (3.2), at each ν ∈ V , we’ll

understand generalized solution of this problem from
◦
V

1,1/2
2 (QT ) [7, ch.3, §1, pp.

160-163]. If in relations (3.1), (3.2) instead of the variable t we take a new inde-
pendent variable τ = T − t, we get boundary value problem of (1.1), (1.2) type.
Then from the results of the papers [7, ch. III, §2, p.189] it follows , that problem

(3.1), (3.2), at each ν ∈ V , has a unique solution from
◦
V

1,1/2
2 (QT ). Moreover, if

u0 ∈
◦
W 1

2 (Ω), then u (· , T ; ν)− u0 (·) ∈
◦
W 1

2 (Ω) [11, ch.III, §2, p.160] and therefore
solution of problem (3.1), (3.2) belongs to the space W 2,1

2,0 (QT ), satisfies equation

(3.1)
◦
∀ (x, t) ∈ QT , equals −2β0 [u (x, T ; ν)− u0 (x)] at t = T and the estimation [7,

ch.III, §6, pp.203-212]

‖ψ‖
W 2,1

2 (QT )
≤M

[
β0 ‖u (x, T ; ν)− u0 (x)‖W 1

2 (Ω) + β1 ‖u (x, t; ν)− u1 (x, t)‖L2(QT )

]
is true.

Then taking into account here the inequality

‖u (x, T ; ν)‖W 1
2 (Ω) ≤M ‖u‖

W 2,1
2 (QT )

from [11, ch.III, §2, p.160] and estimations (1.6) we get

‖ψ‖
W 2,1

2 (QT )
≤M

[
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω) + β0 ‖u0‖W 1
2 (Ω) + β1 ‖u1‖L2(QT )

]
. (3.3)

Now we also introduce the following boundary value problems on definition of
the functions θi = θi (x, t) = θi (x, t; ν)

(
i = 1, n

)
from the conditions

−
n∑

α=1

∂2θi

∂x2
α

− ∂2θi

∂t2
+ θi =

∂u

∂xi

∂ψ

∂xi
, (x, t) ∈ QT , (3.4)

∂θi

∂ν

∣∣∣∣
ST

= 0,
∂θi

∂t

∣∣∣∣
t=0

=
∂θi

∂t

∣∣∣∣
t=T

= 0, x ∈ Ω,
(
i = 1, n

)
, (3.5)

where u = u (x, t; ν), ψ = ψ (x, t; ν) are the solutions of problem (1.1), (1.2) and
(3.1), (3.2) respectively, ν is exterior normal to the boundary S.

Boundary value problem (3.4), (3.5) is Neuman problem for elliptical equation
(3.4) in the domain QT . Under solution of problem (3.4), (3.5), at each ν ∈ V , we’ll
understand the function θi = θi (x, t) from W 1,1

2 (QT ) ; satisfying the identity∫
QT

(
n∑

α=1

∂θi

∂xα

∂η

∂xα
+
∂θi

∂t

∂η

∂t
+ θiη

)
dxdt =

∫
QT

∂u

∂xi

∂ψ

∂xi
ηdxdt,

(
i = 1, n

)
(3.6)
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for all η = η (x, t) from W 1,1
2 (QT ).

Lemma 3.1. Let the conditions of theorem 1.1 be fulfilled and 1 ≤ n ≤ 4,

u0 ∈
◦
W 1

2 (Ω). Then boundary value problem (3.4), (3.5), at each ν ∈ V , is uniquely
solvable in W 1,1

2 (QT ) and the estimation

‖θi‖W 1,1
2 (QT )

≤M
[
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω)

] [
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω) +

+β0 ‖u0‖W 1
2 (Ω) + β1 ‖u1‖L2(QT )

] (
i = 1, n

)
(3.7)

is true.
Proof. As it follows from the results of the paper [12, ch.III, §6, pp.200-202],

for proving unique solvability of boundary value problem (3.4), (3.5) it suffices to
show, that

∂u

∂xi

∂ψ

∂xi
∈ L 2n̂

n̂+2
(QT )

(
i = 1, n

)
, (3.8)

where n̂ = n+ 1 at n ≥ 2, n̂ = 2 + ε, ε > 0 at n = 1.
Using inequality (1.7) from [7, ch.II, §1, p.75] and condition 1 ≤ n ≤ 4 we get∥∥∥∥ ∂u∂xi

∂ψ

∂xi

∥∥∥∥
L 2n̂

n̂+2
(QT )

≤
∥∥∥∥ ∂u∂xi

∥∥∥∥
L 2(n̂+2)

n̂

(QT )

∥∥∥∥ ∂ψ∂xi

∥∥∥∥
L n̂(n̂+2)

2(n̂+1)

(QT )

≤

M

∥∥∥∥ ∂u∂xi

∥∥∥∥
L 2(n+2)

n

(QT )

∥∥∥∥ ∂ψ∂xi

∥∥∥∥
L 2(n+2)

n

(QT )

(
i = 1, n

)
. (3.9)

According to lemma 3.3 from [7, ch.II, §3, p.95] for any function u ∈ W 1,1
2 (QT )

the inequality ∥∥∥∥ ∂u∂xi

∥∥∥∥
L 2(n+2)

n

(QT )

≤M ‖u‖
W 2,1

2 (QT )

(
i = 1, n

)
(3.10)

is true.
Then taking into consideration (3.10) and analogous inequality for the function

ψ in (3.9), we obtain∥∥∥∥ ∂u∂xi

∂ψ

∂xi

∥∥∥∥
L 2n̂

n̂+2
(QT )

≤M ‖u‖
W 2,1

2 (QT )
‖ψ‖

W 2,1
2 (QT )

,
(
i = 1, n

)
. (3.11)

Hence, it folllows relation (3.8). Therefore problem (3.4), (3.5) has a unique solution
from W 1,1

2 (QT ) and the estimation [12, ch.III, §6, pp.200-202]

‖θi‖W 1,1
2 (QT )

≤
∥∥∥∥ ∂u∂xi

∂ψ

∂xi

∥∥∥∥
L 2n̂

n̂+2
(QT )

,
(
i = 1, n

)
.

is true.
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Here taking into account (3.11), and then (1.6) and (3.3) we obtain (3.7). Lemma
3.1 is proved.

Theorem 3.1. Let the conditions of lemma 3.1 be fulfilled, and p ≥ n + 2.
Then functional (1.4) is continuously differentiable by Freshe on V and its gradient
has the form

J ′ (ν) = (θ1, ..., θn, uψ) . (3.12)

Proof. Let δν = (δk1, ..., δkn, δq) ∈ B be an increment of control on element
ν ∈ V , such that ν+δν ∈ V . Then solution of problem (1.1), (1.2) gets the increment
δu = δu (x, t) = u (x, t; ν + δν) − u (x, t; ν). From conditions (1.1), (1.2) it follows
that the function δu is the solution from W 2,1

2,0 (QT ) of the following boundary value
problem:

∂δu

∂t
−

n∑
α=1

∂

∂xα

(
(kα + δkα)

∂δu

∂xα

)
+ (q + δq) δu =

=
n∑

α=1

∂

∂xα

(
δkα

∂u

∂xα

)
− δqu, (x, t) ∈ QT , (3.13)

δu|t=0 = 0, x ∈ Ω, δu|ST
= 0. (3.14)

As it follows from [7, ch.III, §6, pp.203-212] for the solution of problem (3.13),
(3.14) the estimation

‖δu‖
W 2,1

2 (QT )
≤M

[(
n∑

α=1

∥∥∥∥δkα
∂2u

∂x2
α

∥∥∥∥
L2(QT )

+
∥∥∥∥∂δkα

∂xα

∂u

∂xα

∥∥∥∥
L2(QT )

)
+

+ ‖δqu‖L2(QT )

]
. (3.15)

Now let’s estimate the summands included in the right hand side of estimation
(3.15). Using boundedness of the embedding W 1,1

p (QT ) → C
(
QT

)
at p > n + 1

[7, ch.II, §2, p.78], inequality (1.7) from [7, ch.II, §3, p.75], estimations (3.10) and
condition p ≥ n+ 2, we get∥∥∥∥δkα

∂2u

∂x2
α

∥∥∥∥
L2(QT )

+
∥∥∥∥∂δkα

∂xα

∂u

∂xα

∥∥∥∥
L2(QT )

≤

≤ ‖δkα‖C(QT )

∥∥∥∥ ∂2u

∂x2
α

∥∥∥∥
L2(QT )

+
∥∥∥∥∂δkα

∂xα

∂u

∂xα

∥∥∥∥
Ln+2(QT )

∥∥∥∥ ∂u∂xα

∥∥∥∥
L 2(n+2)

n

(QT )

≤

≤M ‖δkα‖W 1,1
p (QT )

‖u‖
W 2,1

2 (QT )

(
α = 1, n

)
. (3.16)

Moreover, it is known, that the embedding W 2,1
2 (QT ) → Lr (QT ) is bounded at

any finite r ≥ 1, if n ≤ 2 and at any r ≤ 2 (n+ 2)
n− 2

, if n ≥ 3 [8, ch.I, §2, p.39].

Therefore, using inequality (1.7) from [7, ch.II, §1, p.75] and taking into account,

that s > 2 at n ≤ 2 and s >
n+ 2

2
at n ≥ 3, we get

‖δqu‖L2(QT ) ≤ ‖δq‖Ls(QT ) ‖u‖L 2s
s−2

(QT ) ≤M ‖δq‖Ls(QT ) ‖u‖W 2,1
2 (QT )

. (3.17)
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Then taking into account (3.16), (3.17) in (3.15) and using (1.6) we obtain the
estimation

‖δu‖
W 2,1

2 (QT )
≤M

[
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω)

]
‖δν‖B . (3.18)

Now, consider increment of the functional J (ν). Using formula (1.4), we get

δJ (ν) = J (ν + δν)− J (ν) = 2β0

∫
Ω

[u (x, T ; ν)− u0 (x)] δu (x, T ) dx+

+2β1

∫
Ω

[u (x, T ; ν)− u1 (x, t)] δu (x, t) dxdt+ β0 ‖δu (x, T )‖2
L2(Ω) + β1 ‖δu‖

2
L2(QT ) .

Using conditions (3.1), (3.2) and (3.13), (3.14) this expression can be represented
as

δJ (ν) =
∫
Ω

(
n∑

i=1

∂u

∂xi

∂ψ

∂xi
δki + uψδq

)
dxdt+R (δν) , (3.19)

where

R (δν) =
∫
Ω

(
n∑

i=1

∂δu

∂xi

∂ψ

∂xi
δki + δuψδq

)
+β0 ‖δu (x, T )‖2

L2(Ω)+β1 ‖δu‖
2
L2(Ω) . (3.20)

Putting η = δki in (3.6) and taking into consideration the obtained equality in
(3.19), we get

δJ (ν) =
∫

QT

[
n∑

i=1

(
∂θi

∂xα

∂δki

∂xα
+
∂θi

∂t

∂δki

∂t
+ θiδki

)
+ uψδq

]
dxdt+R (δν) , (3.21)

Now, let’s estimate the remainder term R (δν). Using Cauchy-Bunyakovskii
inequality, inequality (1.7) from [7, ch.II, §1, p.75], boundedness of the embeddings
W 1,1

p (QT ) → C
(
QT

)
, W 2,1

2 (QT ) → L 2s
s−2

(QT ) at p > n + 1, s > 2 [7, ch.II, §1,
p.78], [8, ch.I, §2, p.39] and estimations (3.18), (3.3) we have∣∣∣∣∣∣∣

∫
QT

n∑
α=1

(
∂δu

∂xα

∂ψ

∂xα
δkα + δuψδq

)
dxdt

∣∣∣∣∣∣∣ ≤

≤
n∑

α=1

‖δkα‖C(QT )

∥∥∥∥∂δu∂xα

∥∥∥∥
L2(QT )

∥∥∥∥ ∂ψ∂xα

∥∥∥∥
L2(QT )

+

+ ‖δq‖Ls(QT ) ‖δu‖L 2s
s−2

(QT ) ‖ψ‖L2(QT ) ≤M ‖δu‖
W 2,1

2 (QT )
‖ψ‖

W 2,1
2 (QT )

‖δν‖B ≤

≤M
[
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω)

] [
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω) +

+β0 ‖u0‖W 1
2 (Ω) + β1 ‖u1‖L2(QT )

]
‖δν‖2

B .
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Hence, from boundedness of the embedding W 2,1
2 (QT ) → L2 (QT ) [8, ch.I, §2,

p.39] and from (3.18) it follows that for the remainder term R (δν) defined by equality
(3.20) the estimation

|R (δν)| ≤M
[
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω)

] [
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω) +

+β0 ‖u0‖W 1
2 (Ω) + β1 ‖u1‖L2(QT )

]
‖δν‖2

B .

is true.
Then, hence and from (3.21) it follows that functional (1.4) is differentiable by

Freshe on V and for its gradient equality (3.12) is true.
It remains to show, that ν → J ′ (ν) is a continuous mapping from V into B∗,

where B∗ is a space conjugate to B. Let δψ = ψ (x, t; ν + δν) − ψ (x, t; ν), δθi =
θi (x, t; ν + δν)−θi (x, t; ν)

(
i = 1, n

)
be an increment of solutions of problems (3.1),

(3.2) and (3.4), (3.5), respectively. Reasoning by analogy as estimation (3.18) for
the function δu and estimation (3.7) for the function θi had been obtained, it is easy
to show that fot the functions δψ and δθi

(
i = 1, n

)
the estimations

‖δψ‖
W 2,1

2 (QT )
≤M

[
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω) +

+β0 ‖u0‖W 1
2 (Ω) + β1 ‖u1‖L2(QT )

]
‖δν‖B (3.22)

max
1≤i≤n

‖δψ‖
W 2,1

2 (QT )
≤M

[
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω)

] [
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω) +

+β0 ‖u0‖W 1
2 (Ω) + β1 ‖u1‖L2(QT )

] [
‖δν‖B + ‖δν‖2

B

]
. (3.23)

are true.
Then using equality (3.12) and estimations (1.6), (3.3), (3.18), (3.22), (3.23) we

get the estimations∥∥J ′ (ν + δν)− J ′ (ν)
∥∥

B∗ ≤M
[
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω)

] [
‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Ω) +

+β1 ‖u1‖L2(QT )

] [
‖δν‖B + ‖δν‖2

B

]
,

from which it continuity of J ′ (ν) on V follows. Theorem 3.1 is proved.
Now, let’s formulate necessary condition of optimality for solution of problem

(1.1)-(1.4).
Theorem 3.2. Let the conditions of theorem 3.1 be fulfilled, and

ν∗ = (k1∗ , ..., kn∗ , q∗) ∈ V be optimal control for problem (1.1)-(1.4). Ten for any
control ν = (k1, ..., kn, q) ∈ V the inequality∫

QT

{[
n∑

α=1

θα∗ (x, t) (kα (x, t)− kα∗ (x, t)) +
n∑

n=1

∂θα∗

∂xi

(
∂kα

∂xi
− ∂kα∗

∂xi

)
+
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+
∂θα∗

∂t

(
∂kα

∂t
− ∂kα∗

∂t

)]
+ u∗ (x, t)ψ∗ (x, t) (q (x, t)− q∗ (x, t))

}
dxdt ≥ 0, (3.24)

is fulfilled, where u∗ (x, t), ψ∗ (x, t) and θα∗ (x, t)
(
α = 1, n

)
are solutions of problems

(1.1), (1.2); (3.1), (3.2) and (3.4), (3.5), respectively, at ν = ν∗.
Proof. By theorem 3.1 the functional J (ν) is continuously differentiable by

Freshe on V and for its gradient formula (3.12) is true. The set V defined by
relation (1.3) is convex. Then by virtue of the known theorem [9, ch.I, §2, p.28], on
the element ν∗ ∈ V providing minimum to the functional J (ν) the inequality

< J ′ (ν∗) , ν − ν∗ >B≥ 0

is to be fulfilled for any ν ∈ V . Hence and from (3.12) it follows the validity of
inequality (3.24). Theorem 3.2 is proved.
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