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WEIGHTED INEQUALITY FOR SOME SUBLINEAR

OPERATORS IN LEBESGUE SPACES,

ASSOCIATED WITH THE LAPLACE-BESSEL

DIFFERENTIAL OPERATORS

Abstract

In this paper, the author establish some general theorem for the boundedness
of sublinear operators, associated with the Laplace-Bessel differential operator

∆Bn =
n∑

k=1

∂2

∂x2
k

+Bn, Bn = ∂2

∂x2
n

+ γ
xn

∂
∂xn

, γ > 0, on a weighted Lebesgue space.

The conditions of these theorem are satisfied by many important operators in
analysis. Sufficient condition on weighted function ω is given so that certain
sublinear operator is bounded on the weighted Lebesgue spaces Lp,ω,γ(Rn

+).

1. Introduction

The singular integral operators that have been considered by Mihlin [10] and Calderon
and Zygmund [5] are playing an important role in the theory Harmonic Analysis
and in particular, in the theory partial differential equations. Klyuchantsev [8] and
Kipriyanov and Klyuchantsev [9] have firstly introduced and investigated by the
boundedness in Lp-spaces of multidimensional singular integrals, generated by the

Laplace-Bessel differential operator ∆Bn =
n∑

k=1

∂2

∂x2
k

+ Bn, Bn = ∂2

∂x2
n

+ γ
xn

∂
∂xn

, γ > 0

(Bn singular integrals). Aliev and Gadjiev [3] and Gadjiev and Guliyev [4] have
studied the boundedness of Bn singular integrals in weighted Lp-spaces with radial
and general weights consequently. The maximal functions, singular integrals, po-
tentials and related topics associated with the Laplace-Bessel differential operator
∆Bn which is known as an important differential operator in analysis and its ap-
plications, have been the research areas many mathematicans such as K. Stempak
[15], I. Kipriyanov and M. Klyuchantsev [8, 9], L. Lyakhov [12, 13], A.D. Gadjiev
and I.A. Aliev [2, 3], V.S. Guliyev [6, 7] and others.

In the paper, we shall prove the boundedness of some sublinear operators, gen-
erated by the Bn Bessel differential operators on a weighted Lp spaces. Sufficient
conditions on weighted function ω is given so that certain sublinear operator is
bounded from the weighted Lebesgue spaces Lp,ω,γ(Rn

+) into Lp,ω,γ(Rn
+). We point
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out that the condition (1) (see below). The condition (1) is satisfied by many inter-
esting operators in harmonic analysis, such as the Bn singular integrals (for example,
see [8, 9]), Bn Hardy–Littlewood maximal operators (see also, [6, 7] and [15]) and
so on.

2. Notations and Background

Suppose that Rn is the n-dimensional Euclidean space, x = (x1, . . . , xn), ξ =
(ξ1, . . . , ξn) are vectors in Rn, (x, ξ) = x1ξ1 + . . . + xnξn, |x| = (x, x)1/2. Let
Rn

+ = {x = (x1, . . . xn) : xn > 0}, γ > 0, E(x, r) = {y ∈ Rn
+ : |x − y| < r},

Σ+ = {x ∈ Rn
+ : |x| = 1}.

For measurable set E ⊂ Rn
+ let |E|γ =

∫
E

xγ
ndx, then |E(0, r)|γ = ω(n, γ)rn+γ ,

where ω(n, γ) = |E(0, 1)|γ .

An almost everywhere positive and locally integrable function ω : Rn
+ → R will

be called a weight. We shall denote by Lp,ω,γ(Rn
+) the set of all measurable function

f on Rn
+ such that the norm

‖f‖Lp,ω,γ(Rn
+) ≡ ‖f‖p,ω,γ;Rn

+
=

∫
Rn

+

|f(x)|pω(x)xγ
ndx


1/p

, 1 ≤ p < ∞

is finite. For ω = 1 the space Lp,ω,γ(Rn
+) is denoted by Lp,γ(Rn

+), and the norm
‖f‖Lp,ω,γ(Rn

+) by ‖f‖Lp,γ(Rn
+).

The operator of generalized shift (Bn shift operator) is defined by the following
way (see [8], [11]):

T yf(x) = Cγ

π∫
0

f
(
x′ − y′,

√
x2

n − 2xnyn cos αn + y2
n

)
sinγ−1 αdα,

where Cγ = π−
1
2 Γ

(
γ + 1

2

)
Γ−1(γ).

Note that this shift operator is closely connected with Bn Bessel’s singular dif-
ferential operators (see [8], [11]).

Definition 1. A function K defined on Rn
+, is said to be Bn singular kernel in the

space Rn
+ if

i) K ∈ C∞(Rn
+) ;

ii) K(rx) = r−n−γK(x) for each r > 0, x ∈ Rn
+;

iii)
∫

Σ+

K(x)xγ
ndσ(x) = 0 , where dσ is the element of area of the Σ+.
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Definition 2. The weight function ω belongs to the class Ap,γ(Rn
+) for 1 < p < ∞,

if

sup
x∈Rn

+,r>0
|E+(x, r)|−1

γ

∫
E+(x,r)

ω(y)yγ
ndy

|E+(x, r)|−1
γ

∫
E+(x,r)

ω
− 1

p−1 (y)yγ
ndy


p−1

< ∞

and ω belongs to A1,γ(Rn
+), if there exists a positive constant C such that for any

x ∈ Rn
+ and r > 0

|E+(x, r)|−1
γ

∫
E+(x,r)

w
− 1

p−1 (y)yγ
ndy ≤ C ess inf

y∈E+(x,r)
ω(y).

The properties of the class Ap,γ(Rn
+) are analogous to those of the B.Muckenhoupt

classes. In particular, if w ∈ Ap,γ(Rn
+), then w ∈ Ap−ε,γ(Rn

+) for a certain sufficiently
small ε > 0 and w ∈ Ap1,γ(Rn

+) for any p1 > p.
Note that, |x|α ∈ Ap,γ(Rn

+), 1 < p < ∞, if and only if −(n + γ) < α < (n +
γ)(p− 1) and |x|α ∈ A1,γ(Rn

+), if and only if −(n + γ) < α ≤ 0.
First, we establish the boundedness in weighted Lp spaces for a large class of

sublinear operators, generated by the Bn Bessel differential operators.

Theorem 1. Let T be a sublinear operator such that, for any f ∈ L1,γ(Rn
+) with

compact support and x /∈ suppf

|Tf(x)| ≤ c0

∫
Rn

+

T y|x|−n−γ |f(y)| yγ
ndy, (1)

where c0 is independent of f and x. Let ω be a positive function for which there
exists a constant c1 > 0 such that

sup
2k−2≤|x|<2k+1

ω(x) ≤ c1 inf
2k−2≤|x|<2k+1

ω(x), k ∈ Z. (2)

Then the following statement hold:
(a) If T is of strong type Lp,γ(Rn

+), p ∈ (1,∞), a.e. there exists a constant c2,
independent of f , such that for all f ∈ Lp,γ(Rn

+)∫
Rn

+

|Tf(x)|pxγ
ndx ≤ c2

∫
Rn

+

|f(x)|pxγ
ndx

and ω ∈ Ap,γ(Rn
+), then T is of strong type Lp,ω,γ(Rn

+), a.e. there exists a constant
c3, independent of f , such that for all f ∈ Lp,ω,γ(Rn

+)∫
Rn

+

|Tf(x)|pω(x)xγ
ndx ≤ c2

∫
Rn

+

|f(x)|pω(x)xγ
ndx.
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(b) If T is of weak type Lp,γ(Rn
+), p ∈ [1,∞), a.e. there exists a constant c4,

independent of f , such that for all f ∈ Lp,γ(Rn
+)∫

{x∈Rn : |Tf(x)|>λ}

xγ
ndx ≤ c3

λp

∫
Rn

+

|f(x)|pxγ
ndx

and ω ∈ Ap,γ(Rn
+), then T is of weak type Lp,ω,γ(Rn

+), a.e. there exists a constant
c5, independent of f , such that for all f ∈ Lp,ω,γ(Rn

+)∫
{x∈Rn : |Tf(x)|>λ}

ω(x)xγ
ndx ≤ c3

λp

∫
Rn

+

|f(x)|pω(x)xγ
ndx.

Proof. We proof this theorem along the same line as the proof of Theorem 1.
in [14]. Throughout this paper, for k ∈ Z we define

Ek = {x ∈ Rn
+ : 2k−1 ≤ |x| < 2k}

and
E∗

k = {x ∈ Rn
+ : 2k−2 ≤ |x| < 2k+1}.

If ω satisfies (2) and we set

mk = inf{ω(x) : x ∈ E∗
k},

then
ω(x) ∼ mk for every x ∈ E∗

k .

Here the expression A ∼ B means, as usual, that there are constants τ0, τ1

(independent of the main parameters involved) such that τ0 ≤ A/B ≤ τ1. We will
only prove part (b), since the proof of part (a) is similar.

Given f ∈ Lp,ω,γ(Rn
+), we write

|Tf(x)| =
∑
k∈Z

|Tf(x)|χEk
(x) ≤

∑
k∈Z

|Tfk,1(x)|χEk
(x)+

+
∑
k∈Z

|Tfk,2(x)|χEk
(x) ≡ T1f(x) + T2f(x),

where χEk
is the characteristic function of the set Ek, fk,1 = fχE∗

k
and fk,2 = f−fk,1.

By the weak type Lp,γ(Rn
+) boundedness of T and (1), on T1, we have

ω({x ∈ Rn
+ : |T1f(x)| > λ}) =

∑
k∈Z

ω({x ∈ Ek : |T1f(x)| > λ})

∼
∑
k∈Z

mk|{x ∈ Ek : |T1f(x)| > λ}| ≤
∑
k∈Z

c4

λp

∫
E∗

k

|f(x)|pmkx
γ
ndx
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∼
∑
k∈Z

c5

λp

∫
E∗

k

|f(x)|pω(x) xγ
ndx.

On T2, we first note that

1
4
(|x|+ |y|) ≤ |x− y| ≤ |x|+ |y|, x ∈ Ek, and y /∈ E∗

k ,

and by (1), we obtain

T2f(x) ≤ c0

∑
k∈Z

∫
Rn

+

T y|x|−n−γ |fk,2(y)|yγ
ndy

 χEk
(x) ≤

≤ c0

∑
k∈Z

 ∫
Rn

+\E∗
k

|x− y|−n−γ |f(y)| yγ
ndy

 χEk
(x) ≤

≤ 4n+γc0

∑
k∈Z

∫
Rn

+

(|x|+ |y|)−n−γ |f(y)| yγ
ndy ≤

≤ 4n+γc0|x|−n−γ

∫
{y∈Rn

+:|y|≤|x|}

|f(y)| yγ
ndy+

+4n+γc0

∫
{y∈Rn

+:|y|>|x|}

|f(y)| |y|−n−γ yγ
ndy ≡

≡ 4n+γc0(A1f(x) + A2f(x)).

Let

Mµf(x) = sup
r>0

µ(E(x, r))−1

∫
E(x,r)

|f(y)|dµ(y).

Here E(x, r) = {y ∈ Rn
+ : |x− y| < r}.

We have

A1f(x) ≤ |x|−n−γ

∫
{y∈Rn

+:|x−y|≤2|x|}

|f(y)| yγ
ndy ≤ 2n+γMµf(x).

It is well known that the maximal function Mµ is weak type (1, 1) and is bounded
on Lp(X, dµ) for 1 < p < ∞ (see [1]). Here we are concerned with the maximal
operator defined by dµ(x) = xγ

ndx. It is clear that this measure satisfies the doubling
condition

µ(E(x, 2r)) ≤ c6µ(E(x, r))

with a constant c6 independent of x and r > 0.
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Therefore A1 satisfies the conclusion of the theorem. By a duality argument, A2

satisfies the same conclusion if p ∈ (1,∞). It remains to show that A2 is of weak
type L1,ω,γ(Rn

+), if ω ∈ A1,γ(Rn
+). Given λ > 0, let

R ≡ Rλ = sup

r > 0 :
∫

{y∈Rn
+ : |y|≥r}

|f(y)||y|−n−γ yγ
ndy > λ/c0

 .

Then
ω({x ∈ Rn

+ : |A2f(x)| > λ}) = ω({x ∈ Rn
+ : |x| ≤ R}) ≤

≤ c0

λ

∫
|y|≥R

|f(y)||y|−n−γ yγ
ndy ω({x ∈ Rn

+ : |x| ≤ R}) ≤

≤ c0

λ

∫
|y|≥R

|f(y)||y|−n−γ ω({x ∈ Rn
+ : |x| ≤ |y|}) yγ

ndy ≤

≤ c

λ

∫
|y|≥R

|f(y)| inf
|x|≤|y|

ω(x) yγ
ndy ≤ c

λ

∫
Rn

+

|f(y)| ω(y) yγ
ndy.

This finishes the proof of Theorem 1.
Let K is a Bn singular kernel and T be the Bn singular integral operator

Tf(x) = p.v.

∫
Rn

+

T yK(x)f(y)yγ
ndy.

Then T satisfies the condition (1). Thus, we have

Corollary 2. Let p ∈ (1,∞), T be the Bn singular integral operator. Moreover, let
ω(x) be weight function on Rn

+ satisfies condition (2) and ω ∈ Ap,γ(Rn
+), then T is

of strong type Lp,ω,γ(Rn
+).

Corollary 3. Let p ∈ [1,∞), T be the Bn singular integral operator. Moreover, let
ω(x) be weight function on Rn

+ satisfies condition (2) and ω ∈ Ap,γ(Rn
+), then T is

of weak type Lp,ω,γ(Rn
+).
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