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ON CLOSE BASES FROM SUBSPACES

Abstract
Some problems of close criterian bases from subspaces of Banach spaces are

considered in the paper. Basicity tests are given and some sufficient conditions
of basicity of close systems from subspaces that contain the earlier known results
consering systems of elements, are cited.

Introduction

By studying spectral properties of linear operators by means of Riesz projectors we
have to study basis properties of systems from subspaces.

We can say that problems of bases from the elements of Banach spaces have been
well studied and many monographs devoted to these problems [1,2]. Naturally, there
are many methods to establish the basicity of concrete systems. Use of closeness in
this or other sense is one of these methods. These problems were studied and treated
for ordinary systems, for example, in the papers [1-6]. To the author’s mind such
problems for systems from subspaces have not been sufficiently researched. Some
results are cited in the monograph [7] (Hilbert case) and [2] (Banach case).

It should be noted that in all these papers the closeness of subspaces is deter-
mined by means of appropriate projection or unit balls of these subspaces. We
have defined the notion of generating operator of a subspace and closeness is given
through it. This allows to get many analogies of theorems for systems.

The present work is devoted to the above-noted problems in Banach spaces.
Some results obtained in the paper are new even in Hilbert case. Let’s give some
designation and notion that we’ll need in future. Notice that some notion and facts
connected with theorem 1 are in the book [2]. For explicitness we state the part
concerning projectors.

1. Basic notion and facts

B is a Banach space with norm;
L (B) is algebra of bounded operators from B to B;
Π (B) ⊂ L (B) is a set of projectors;
R (B) ⊂ L (B) is a class of all finitedimensional operators;
L [M ] is a linear span of the set M ;
M̄ is closure of the set M in B;
Let {Bn}n∈N ⊂ B be a sequence.
Definition 1. {Bn}n∈N is said to be complete in B, if L

[
{Bn}n∈N

]
= B.

Definition 2. {Bn}n∈N is said to be minimal in B, if

Bn ∩ L
[
{Bk}k 6=n

]
= {0} , ∀n ∈ N,

Definition 3. {Bn}n∈N is said to be basis in B if for

∀x ∈ B, ∃! {xn}n∈N : xn ∈ Bn, ∀n ∈ N : x =
∑

n

xn.
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It is obvious that completeness and minimality follows from basicity.
Let {Bn}n∈N be a basis in B.

Let’s consider the space B̂ =
{

x̂ = {xn }n∈N : xn ∈ Bn, ∀n ∈ N ∧ ∃
∑
n

xn

}
with

norm ‖x̂‖B̂ = supm

∥∥∥∥ m∑
l

xn

∥∥∥∥. By ordinary operations of addition and multiplication,

B̂ turns into normed space.
Let {x̂n}n∈N be a sequence fundamental in B̂: ‖x̂m − x̂n‖B → 0, m, n →∞. It

is clear that
(
x̂n = {xn

k}k∈N

)
‖xn‖ ≤ 2 ‖x̂‖B̂ ,∀n ∈ N

Thus
‖xm

k − xn
k‖ ≤ 2 ‖x̂m − x̂n‖B̂ → 0, m, n →∞

for ∀k ∈ N . Then xn
k → xk, n → ∞. It follows from Bn = Bn that xk ∈ Bk for

∀k ∈ N . Let ε > 0 be an arbitrary number. Then ∃n0:

‖x̂m − x̂n‖B̂ < ε, ∀m,n ≥ n0.

Thus ∥∥∥∥ l∑
k=1

(xm
k − xn

k)
∥∥∥∥ ≤ ε, ∀m,n ≥ n0; ∀l ∈ N, (1)

Here, passing to limit as n →∞, we have:∥∥∥∥ l∑
k=1

(xm
k − xk)

∥∥∥∥ ≤ ε, ∀m ≥ n0; ∀l ∈ N. (2)

Let

Sm
l =

l∑
k=1

xm
k , Sl =

l∑
k=1

xk

We have:

‖Sl+p − Sl‖ =
∥∥Sl+p − Sm

l+p

∥∥ +
∥∥Sm

l+p − Sm
l

∥∥ + ‖Sm
l − Sl‖

It follows from (2)

‖Sl+p − Sl‖ ≤ 2ε +
∥∥Sm

l+p − Sm
l

∥∥ , ∀m ≥ n0; ∀l, p ∈ N.

Take δ > 0 and ε < δ
4 . For each fixed m ≥ n0 (ε), by virtue of convergence of

series
∞∑

k=1

xm
k , we take l0 ∈ N so that for ∀l ≥ l0 and ∀p ∈ N the inequality

∥∥Sm
l+p − Sm

l

∥∥ <
δ

2
.

would hold.
As a result

‖Sl+p − Sl‖ < δ, ∀l ≥ l0, ∀p ∈ N.
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So Sl converges in B, i.e. x̂ = {xk}k∈N ∈ B̂. It follows from (2) that ‖x̂m − x̂‖B̂ <

ε, ∀m ≥ n0, i.e. ‖x̂m − x̂‖B̂ → 0, m →∞. Thus, B̂ is a Banach space.
It is clear that to each x̂ ∈ B̂ there corresponds x ∈ B : x = Ax̂ =

∑
n

xn,

x̂ = {xn}n ∈ N . This operator is linear and in a one-to-one manner maps B̂ onto
B. Moreover:

‖Ax̂‖ = ‖x‖ =
∥∥∥∥∑

n
xn

∥∥∥∥ ≤ sup
m

∥∥∥∥ m∑
1

xn

∥∥∥∥ = ‖x̂‖ . (3)

Then, by Banach theorem A−1 ∈ L
(
B, B̂

)
, i.e.

‖x̂‖B̂ =
∥∥A−1x

∥∥
B̂
≤ c ‖x‖ . (4)

It follows from the uniqueness of expansion that for ∀n ∈ N , ∃Pn : B → Bn :
xn = Pnx. Obviously, Pn is a linear operator. But again it follows from uniqueness
of expansion that if x ∈ Bn, then Pkx = δnkx. Let In : Bn → Bn be a unit
operator. Thus, P 2

n = Pn, and moreover PnPk = δnkPn. Consequently, each basis

{Bn}n∈N generates projectors
{

Pn : L
(

Pn ⊂ Bn, KerPn ⊃ L
[
{Bk}k 6=n

])}
that

x =
∑
n

Pnx.

It is obvious that Pn/Bk
= δnkIn, where P/M is contraction of the operator P

on M . Allowing for inequalities (3), (4) we have:

‖Pnx‖ = ‖xn‖ =
∥∥∥∥ n∑

1
xk −

n−1∑
1

xk

∥∥∥∥ ≤ 2 ‖x̂‖ ≤ 2c ‖x‖ .

Thus, the projectors {Pn}n∈N are uniformly bounded.
The following theorem is true.
Theorem 1. A sequence from subspaces {Bn}n∈N ⊂ B forms a basis in B if

and only if there exists generating sequence of projectors {Pn}:
1) {Bn}n∈N is complete in B;
2) PiPj = δijPi;

3)
∥∥∥∥ m∑

1
Pnx

∥∥∥∥ ≤ M ‖x‖ , ∀m ∈ N .

Definition 4. A sequence of operators {Tn}n∈N ⊂ L (B) will be said to be
generating for {Bn}n∈N ⊂ B if Tn (B) = Bn, ∀n ∈ N ..

Definition 5. A sequence of operators {Tn}n∈N ⊂ L (B) will be said to be qs-
system (in the case of basicity qs-basis), if

∞∑
n=1

‖Tnx‖q ≤ M q ‖x‖q , ∀x ∈ B.

Definition 6. A sequence
{
T l

n

}
n∈N

⊂ L (B), l = 1, 2 is said to be p-close, if

∞∑
n=1

∥∥T 1
n − T 2

n

∥∥p
< +∞,
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and vps-close, if

∞∑
n=1

∥∥(
T 1

n − T 2
n

)
x
∥∥p

vp
n < Mp ‖x‖p , ∀x ∈ B,

where v = {vn : vn > 0, n ∈ N} is a sequence.
Definition 7. {Tn}n∈N ⊂ L (B) is said to be vs-system, if

∞∑
n=1

‖Tn‖q v−q
n < +∞,

where {vn : vn > 0, n ∈ N} ≡ v is a sequence.

2. Basic results

Lemma 1. Let F ∈ L (B) be a Fredholm operator and {Bn}n∈N ⊂ B. If
{FBn}n∈N is complete B, then {Bn}n∈N is also complete in B and F is boundedly
inverse.

Lemma 2. Let a sequence of projectors {Pn}n∈N ∈ L (B) form a qs-basis in
B, dim Pn (B) < +∞, ∀n ∈ N and {Tn}n∈N ∈ L (B) p-close to {Pn}n∈N , where
1≤ p < +∞, 1

p + 1
q = 1. Then the expression

Fx ≡
∑
n≥1

TnPnx (5)

generates a Fredholm operator.
Proof. Let’s consider (m > n):∥∥∥∥ m∑

n
TkPkx

∥∥∥∥ ≤ ∥∥∥∥ m∑
n

(TkPk − Pk) x

∥∥∥∥ +
∥∥∥∥ m∑

n
Pkx

∥∥∥∥ =
∥∥∥∥ m∑

n
(Tk − Pk) Pkx

∥∥∥∥ +
∥∥∥∥ m∑

n
Pkx

∥∥∥∥ ≤
≤

(
m∑
n
‖Pk − Tk‖p

)1/p (
m∑
n
‖Pkx‖q

)1/q

+
∥∥∥∥ m∑

n
Pkx

∥∥∥∥ → 0, n,m →∞

Thus, series (5) converges in B. Moreover Fx = (I + T ) x, where

T =
∑
n≥1

(TnPn − Pn) x, I ∈ L (B)

is on identity operator. Let

Fm =
m∑

n=1
(TnPn) Pnx.

Obviously, Fm is a finite-dimensional operator for ∀m ∈ N . We have

‖(T − Fmx)‖ =
∥∥∥∥ m∑

m+1
(Tn − Pn) Pnx

∥∥∥∥ ≤ ( ∞∑
m+1

‖Tn − Pn‖p

)1/p ( ∞∑
m+1

‖Pnx‖q

)1/q

≤

≤ M

( ∞∑
m+1

‖Pn − Tn‖p

)1/p

‖x‖ , ∀x ∈ B.
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Thus

‖T − Fm‖ ≤ M

( ∞∑
m+1

‖Tn − Pn‖p

)1/p

→ 0, m →∞.

So T is completely continuous and by virtue of that F is a Fredholm operators.
The lemma is proved.
The following lemmas are proved similarly.
Lemma 3. Let Π (B) ⊃ {Pn}n∈N , dim Pn (B) < +∞, ∀n ∈ N and {Pn}n∈N

form qs-basis in B. If {Tn}n∈N ∈ L (B) :
∞∑

n=1
‖Tn − I‖p < +∞, then expression (5)

generates a Fredholm operator.
In fact ∥∥∥∥ m∑

n
TkPkx

∥∥∥∥ ≤ ∥∥∥∥ m∑
n

(TkPk − Pk) x

∥∥∥∥ +
∥∥∥∥ m∑

n
Pkx

∥∥∥∥ =

=
∥∥∥∥ m∑

n
(Tk − I) Pkx

∥∥∥∥ +
∥∥∥∥ m∑

n
Pkx

∥∥∥∥ ≤
≤

(
m∑
n
‖Pk − I‖p

)1/p (
m∑
n
‖Pkx‖q

)1/q

+
∥∥∥∥ m∑

n
Pkx

∥∥∥∥ .

Further reasoning is conducted similar to the proof of lemma 2.
Lemma 4. Let {Pn}n∈N ⊂ Π (B), {Tn}n∈N ⊂ L (B) : TnPn = Tn (or Tn =

PnTn) ∀n ∈ N ; dim Pn (B) < +∞, ∀n ∈ N . Then if {Pn}n∈N is a basis in B and∑
n≥1

‖Tn − Pn‖ < +∞, then

Fx =
∑
n≥1

Tnx

generates a Fredholm operator. This follows from the relation

‖
∑

Tnx‖ = ‖
∑

TnPnx‖ ≤
∑
‖Tn − Pn‖ ‖x‖+ ‖

∑
Pnx‖ .

Lemma 5. Let {Pn}n∈N ⊂ Π (B) be vp-basis in B, {Tn}n∈N ⊂ L (B) is vqs-
close to {Pn}n∈N and dim Pn (B) < +∞ or dim Tn (B) < +∞ for ∀n ∈ N . Then

the expression
(

1
p + 1

q = 1
)

Fx =
∑
n≥1

PnTnx (6)

generates a Fredholm operator.
Indeed, ∥∥∥∥ m∑

n
PnTnx

∥∥∥∥ ≤ ∥∥∥∥ m∑
n

(PkTk − Pk) x

∥∥∥∥ +
∥∥∥∥ m∑

n
Pkx

∥∥∥∥ =

=
∥∥∥∥ m∑

n
Pk (Tk − Pk) x

∥∥∥∥ +
∥∥∥∥ m∑

n
Pkx

∥∥∥∥ ≤
≤

(
m∑
n

∥∥v−1
k Pk

∥∥p
)1/p (

m∑
n
‖vk (Tk − Pk) x‖q

)1/q

+
∥∥∥∥ m∑

n
Pkx

∥∥∥∥ .

Further reasoning is obvious.
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Lemma 6. Let {Pn}n∈N ⊂ Π (B) form vp-basis in B, {Tn}n∈N ⊂ L (B) satisfy∥∥∥∥ m∑
n

vk (Tk − I) x

∥∥∥∥q

≤ M q ‖x‖q ,

for ∀x ∈ B, ∀m ∈ N . Then expression (6) generates a Fredholm operator.
Before we give the main theorem, introduce one more definition.
Definition 8. A sequence of operators {Tn}n∈N is said to be dBn-invariant, if

dim TnBn = dim Bn, ∀n ∈ N .
Theorem 2. Let {Pn}n∈N ⊂ Π (B) form ps-basis in B, {Tn}n∈N ⊂ L (B) be

q-close to {Pn}n∈N

(
1
p + 1

q = 1
)

and {Pn}n∈N ⊂ R (B) or {Tn}n∈N ⊂ R (B). If
{TnPn}n∈N is complete (minimal and dBn-invariant), then it also forms a basis in
B isomorphic to {Pn}n∈N .

Proof. Let’s consider operator (5). By lemma 2 it is of Fredholm property.
It is obvious that FBn = TnBn,∀n ∈ N , where Bn = Pn (B). Thus, it suffices to
prove basicity of {FBn}n∈N . If {TnPn}n∈N is complete in B, then by lemma 1 F
is boundedly inverse and consequently {FBn}n∈N is a basis in B. Let {FBn}n∈N

be minimal and dBn-invariant for each n, take a basis {xn
k}

kn

k=1 in Bn. It follows
from dBn-invariance that {Fxn

k}
kn

k=1 is linearly independent for each n ∈ N . Let F
be irreversible. Then KerF 6= 0. Take x 6= 0 : x ∈ KerF . It follows from x 6= 0
that ∃n0 ∈ N : Pn0x 6= 0. We have: 0 = Fx =

∑
n≥1

FPnx or FPn0x = −
∑

n6=n0

FPnx.

Expand Pn0x in basis
{
xn0

k

}
⊂ Bn0 : Pn0x =

kn0∑
k=1

akx
n0
k . From minimality {FBn}n∈N

we get FPn0x = 0. On the other hand it follows from Pn0x 6= 0 that ∃k0 : ak0 6= 0.

Then Fxn0
k0

= − 1
ak0

∑
k 6=k0

akFxn0
k i.e. the system

{
Fxn0

k0

}n0

k=1
is linearly dependent.

We get contradiction. As a result F is boundedly inverse.
The theorem is proved.
Remark. It is obvious that in a similar way using lemmas 1-6 we can give other

sufficient conditions for basicity of close systems.
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