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ON GENERALIZATION OF A CLASS OF THE
FIRST PASSAGE TIME OF RANDOM WALK FOR

THE LINEAR BOUNDARY

Abstract

In the paper we obtained the integral limit theorems for one closs of the first
passage times of random walk for the linear boundary.

1. Introduction. Let ξn, n ≥ 1 be a sequence of independent identically
distributed random variable with finite mean ν = Eξ1 and let the Borel function
∆ (x), x ∈ (−∞,∞) be given. Assume

Sn =
n∑

k=1

ξk, Sn =
1
n

Sn, Tn = n∆ (Sn)

τ = τa = inf {n ≥ 1 : Tn ≥ fa (n)} , (1)

where fa (t), a > 0, t > 0 is some family of nonlinear boundaries there we’ll assume
that inf {�} = ∞.

A series of first passage time in theory of boundary crossing problems for random
walks has form (1). For example, assuming in (1) ∆ (x) = x, we obtain the following
first passage time

ta = inf {n ≥ 1 : Sn ≥ fa (n)}

which was investigated in the papers [1], [2], [3].
For fa (t) = a from (1) we have the following form of the first passage time

ν = inf
{
n ≥ 1 : n∆

(
S̄n

)
≥ a

}
,

to whose investigation a lot papers ([4], [5]) were devoted.
Note that statistics in the form of Tn = n∆

(
S̄n

)
arises in testing statistic hy-

potheses, at that τa is the number of observations (sample size) (see [5]).
In the present paper we study the integral limit theorems for τa at some suppo-

sitions for the functions ∆ (x) and nonlinear boundary fa (t). Note that the similar
problems for ta have been studied in the paper [3] and for the first passage time νa

in the papers [4], [5] and [6].

2. Conditions and notation. We’ll assume that the function ∆ (x) is positive,
twice continuous-differentiable with respect to x ∈ (−∞,∞), moreover µ = ∆ (ν) >
0 and ∆′ (ν) 6= 0.

For the boundary fa (t) we’ll assume that it satisfies the following conditions:
1) for each a the function fa (t) increases monotonically, is continuously differ-

entiable for t > 0, moreover fa (t) ↑ ∞, a →∞.

2) n = n (a) → ∞, a → ∞. Thus
1
n

fa (n) → µ and fa (n) → θ for some

θ ∈ [0, µ).



90
[A.G.Gadjiev, F.G.Ragimov]

Transactions of NAS of Azerbaijan

3) For each a the function f ′a (t) weakly oscillates at infinity, i.e.

f ′a (n)
f ′a (m)

→ 1 at
n

m
→ 1, n →∞.

Denote by Na = Na (µ) a solution of the equation fa (n) = nµ which exists
for sufficiently large a [3]. We also denote by Φ (x) and Gα (x) standard normal
distribution and stable distribution with the exponent α ∈ (0, 2], respectively.

3. Formulation of the basic results.
Theorem 1. Let ξn, n ≥ 1 be a sequence of independent identically distributed

random variables with σ2 = Dξ2 < ∞, ν = Eξ1 and let above mentioned conditions
be satisfied for function ∆ (x) and boundary fa (t).

Then
lim

a→∞
P
(
τa −Na ≤

rx

λ

√
Na

)
= Φ(x) , r =

∣∣∆′ (ν)
∣∣σ,

where λ = µ− θ.
Corollary 1. Let the conditions of the theorem be fulfilled and n = n (a) → ∞

as a →∞ such that
cn =

fa (n)− nµ

r
√

n
= O (1) .

Then
lim

a→∞
[P (τa ≤ n)− Φ (−cn)] = 0.

Theorem 1 admits the following generalization;
Theorem 2. Let ξn, n ≥ 1 be a sequence of independent identically distrib-

uted random variables with E|ξ1| < ∞, for which there exists normalizing constant
A (n) > 0 such that

lim
n→∞

P (Sn − nv ≤ xA (n)) = Gα (x) , α ∈ (1, 2].

Then

lim
a→∞

P

(
τa −Na

|∆′ (v) |A ([Na])
≤ x

)
= 1−Gα (−λx) ,

where [ ] is a sign of an entire part.
Note that without loss of generality as a sequence A (n) we can assume A (n) =

n1/αLn, where L (x), x > 0 is some slowly varying function at infinity [8].
Corollary 2. Let the conditions of theorem 2 be satisfied also as n = n (a) →∞,

a →∞ such that
cn =

fa (n)− nµ

|∆′ (ν) |A (n)
= O (1) .

Then
lim

a→∞
[P (τa ≤ n)−Gα (−cn)] = 0.

4. Proof of the basic results. We first note that by virtue of conditions for
the function ∆ (x) we have

Tn = Zn + εn, n ≥ 1
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where
Zn = n∆ (ν) + n∆′ (ν)

(
Sn − ν

)
,

εn =
n

2
∆” (νn)

(
Sn − ν

)2
and νn is an intermediate point between ν and Sn, n ≥ 1.

It is obvious Zn, n ≥ 1 is one-dimensional random walk with the step

Xi = ∆ (ν) + ∆′ (ν) (ξi − ν) , i ≥ 1,

i.e.
Zn = X1 + ... + Xn, EX1 = ∆ (ν) > 0.

The following concept is very important in theory of boundary crossing problems
for random walks with perturbation [5].

Definition. They say that a sequence of random variables ηn, n ≥ 1 is slowly
changing if the following conditions are satisfied

1
n

max {|η1| , |η2| , ..., |ηn|}
P→ 0, n →∞ (2)

and for any γ > 0 there exists δ = δ (γ) > 0 such that

P

{
max

1≤k≤nδ

∣∣ηn+k − ηn

∣∣ ...γ

}
→ 0, n →∞. (3)

Observe that (2) holds if ηn
n → 0 w.p.1 as n →∞ and (3) holds if ηn converges

to a finite w.p.1 as n →∞.
For the proof of the theorem we’ll need the following lemmas.
Lemma 1. By fulfilling the condition of the theorem the sequence εn, n ≥ 1 is

slowly changing.
Proof. We should show that the convergences (2) and (3) are satisfied for the

sequence εn, n ≥ 1.
It’s easy to see that convergence (2) is satisfied, since ∆” (νn) a.e→ ∆” (ν) and by

virtue of strong law of large numbers

εn

n
=

1
2
∆” (νn)

(
Sn − ν

) a.e→ 0

as n →∞.
Further we note that the sequence

ηn =
(
Sn − ν

)2(Sn − nν
√

n

)2

, n ≥ 1,

as is shown in [5], is uniformly continuous in probability, i.e. for it (3) is satisfied.
Then it follows from lemma 1.4 from the paper [5, p.10] that for the sequence

εn, n ≥ 1, relation (3) is also satisfied.
Remark 1. For validity of lemma 1 it suffices to assume that the function

∆ (x) is positive and twice continuously differentiable at some neighbourhood of
(ν − ε, ν + ε) , ε > 0. Really, we assume

An =
{
ω :
∣∣Sn − ν

∣∣ < ε
}

,
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Zn = n∆ (ν) + n∆′ (ν)
(
Sn − ν

)
and

εn = Tn − Zn, n ≥ 1

Then the sequence εnJAn , n ≥ 1 varies slowly and εnJAn

a.e→ 0, n → ∞, since
JAn

a.e→ 0. Here JA is the indicator of the event A.
Lemma 2. Let the conditions of the theorem be fulfilled. Then in terms of

convergence almost sure as a →∞ we have
1) τa →∞; 2) τa

Na
→ 1 3) A(τa)

A([Na]) → 1.
Proof. It is easy to see that

P (τa > n) = P

(
max

1≤k≤n
(Tn − fa (n)) < 0

)
≥ P

(
max

1≤k≤n
Tn < fa (t)

)
.

Hence it follows that for all n ≥ 1

lim
a→∞

P (τa > n) = 1

Taking into account that the process τa increases as a function of a, statement
1) follows from the last equation.

Further, by definition of τa we have

Tτa−1

τa
≤ fa (τa)

τa
≤ Tτa

τa

Zτa−1 + ετa

τa
≤ fa (τa)

τa
≤ Tτa + ετa

τa

By virtue of the strong law of large numbers

Zn

n

a.e→ µ and
εn

n

a.e→ 0

as n → ∞. Therefore, from the first part of lemma 2 and from the Richter lemma
[7] we obtain that

fa (τa)
τa

a.e→ µ, a →∞.

Denote
∆ (a) =

fa (τa)
τa

− fa (Na)
Na

.

It is easy to see that

∆ (a) =
λa (νa)

νa

Na − τa

νa

where λa (t) = fa (t)− tf ′a (t) and νa is an intermediate point between τa and na.
Taking into account that ∆ (a) a.e→ 0 and

λa (ν0)
ν2

a

a.e→ µ− θ > 0 at a →∞

we obtain
δa =

na − τa

νa

a.e→ 0 at a →∞
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Hence, statement 2) of the proved lemma 2 follows. Statement 3) of lemma 2
follows from statement 2).

Proof of theorem 1. Let

τ∗a =
τa −Na√

Na
, χa = Tτa − fa (τa) .

By definition of τa we have

Zτ − µτ√
Na

=
fa (τ)− µτ√

Na
+

χa − ετ√
Na

=

=
fa (Na)− µτ√

Na
+

fa (τ)− fa (Na)√
Na

+
χa − ετ√

Na
=

= −µτ∗a + f ′a (νa) τ∗a +
χa − ετ√

Na
= τ∗

(
f ′a (νa)− µ

)
+

χa − ετ√
Na

(4)

where νa is some intermediate point between τa and Na. It follows from the condi-
tions of the proved theorem that

P (Z∗n ≤ x) → Φ (x) , n →∞,

where
Z∗n =

Zn − µn

σ |∆′ (ν)|
√

n
.

Besides, at made suppositions Anscombe theorem [5] is satisfied, by which

P
(
Z∗τa

≤ x
)
→ Φ (x) , a →∞, (5)

holds. Then for obtaining the statement of the theorem from equality (4), it suffices
to show that

χa − ετ√
Na

P→ 0 a →∞. (6)

Really we have

0 ≤ χa = Zτ + ετ − fa (τ) ≤ Zτ + ετ − fa (gr − 1) ≤ Zτ + ετ − Tτ−1 ≤

≤ Zτ + ετ − Zτ−1 − ετ−1 = Xτ + ∆ετ , ∆ετ = ετ − ετ=1. (7)

For proof of (6) we should show that

Xτ√
Na

P→ 0 and
ετ√
Na

P→ 0 a →∞. (8)

It is easy to see that

X∗
n = Z∗n −

√
n− 1

n
Z∗n−1,

where
X∗

n =
Xn − µ

σ |∆′ (ν)|
√

n
.
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According to the paper [5] mentioned above the sequence Z∗n, n ≥ 1 is uniformly
continuous in probability, and by virtue of lemma 1.4 from the paper [5], the sequence
X∗

n, n ≥ 1 is also uniformly continuous in probability.
Taking into account that X∗

n
P→ 0, n → ∞ from the Anscombe theorem [5] we

find
X∗

τ
P→ 0, a →∞.

Further, εn√
n

P→ 0 is easy to be sure that, consequently by the Anscombe theorem
ετ√
τ

P→ 0, a →∞.

Now, taking into account that f ′a (νa) → θ, a → ∞, from (4) we complete the
proof of the theorem.

Proof of corollary 1. We have

P (τa ≤ n) = P

(
λ

r
τ∗a ≤

n−Na√
Na

λ

r

)
.

It follow from the theorem that

P (τa ≤ n)− Φ (bn) → 0, a →∞,

where
bn =

n−Na√
Na

λ

r
.

we prove that
Φ (bn)− Φ (−cn) → 0, a →∞.

Indeed

cn =
fa (n)− nµ

r
√

n
=

fa (n)− fa (Na)− µ (n−Na)
r
√

n
=

=
(n−Na) (f ′a (γa)− µ)

r
√

n
,

where γa is some point between n and Na.
It follows from the condition cn = O (1) that

fa (n)
n

− µ = O

(
1√
n

)
or

fa (γa)
γa

→ µ to a →∞

Therefore as a →∞
cn ∼

(n−Na)√
n

λ

r
= −bn

and
Φ (bn)− Φ (−cn) = Φ′ (δn) (bn + cn) ,

where δn is some point between bn and cn. Taking into account that the function
Φ′(x) is bounded, from the last relation we obtain (9).
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Proof of theorem 2. The proof is conducted by the scheme of the proof of
theorem 1. At that it suffices to note that for the sequence of normalizing sums

Z∗n =
Zn − µn

|∆′ (ν)|A (n)
, n ≥ 1

by virtue of the Moguorodi from the paper [4] the Anscombe theorem is satisfied.
In order to obtain the statement of theroem 2 from equality (4) we should prove

that
Xa − ετ

A (τa)
P→ 0, a →∞.

For this by virtue of (7) it sufficies to show that

Xτ

A (τa)
P→ 0, and

ετ

A (τa)
P→ 0. (9)

The first relation in (9) follows from lemma 1.4 of the paper [5] and from the
equality

X∗
n =

Xn − µ

|∆′ (ν)|A (n)
= Z∗n −

A (n− 1)
A (n)

Z∗n−1,

since
X∗

n
P→ 0, a →∞.

The second relation in (9) follows from the convergence

εn

A (n)
=

1
2
∆” (νn)

(
Sn − nν

A (n)

)2 A (n)
n

P→ 0

and from the fact that εn
A(n) is uniformly continuous in probability.

Proof of corollary 2 is also conducted with the help of reasoning of the proof
of Corollary 1, at that it is necessary to take into account that the density of stable
distribution is bounded.
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