Akbar B. ALIEV, Anar A. KAZIMOV

THE ASYMPTOTIC BEHAVIOR OF WEAK SOLUTION OF CAUCHY PROBLEM FOR A CLASS SOBOLEV TYPE SEMILINEAR EQUATION

Abstract

Cauchy problem for a class Sobolev type semi linear equation is considered. The existence and uniqueness of weak solution are proved and the behavior of weak solutions as $t \to +\infty$ are investigated. The considered class of equations in particular includes the semi linear wave equations with dissipation.

In this paper we consider the following Cauchy problem in $[0, \infty) \times \mathbb{R}^n$.

$$u_{tt}(t,x) + (-1)^k \Delta^k u_{tt}(t,x) + (-1)^l \Delta^l u(t,x) + (-1)^k \Delta^k u_t + u_t = f(u(t,x)),$$

$$t \in [0, \infty), \ x \in \mathbb{R}^n, \tag{1}$$

$$u(0,x) = u_0(x), \ u_t(0,x) = u_1(x), \ x \in \mathbb{R}^n,$$
 (2)

where Δ is a Laplace operator, $u_t = \frac{\partial u}{\partial t}$, $u_{tt} = \frac{\partial^2 u}{\partial t^2}$, but f is differentiable function which will be defined below.

In case when k = 0 and $f(u) = -|u|^{p-1}u + f_1(u)$, where

 $|f_1(u)| \le c \left(1 + |u|^{p-1}\right)$, $u \in R$ the corresponding problem was investigated in different papers. The expound of these results and list of references are given in [1]. The corresponding problem was investigated at paper [2] in case when k = 0 and l = 1, n = 1, 2, 3 $f(u) = |u|^{p-1}u$ where at $n = 1, 2, 1 + \frac{2}{n} \le p < +\infty$ and at n = 3, 2

In paper [2] proved that for any small data the corresponding Cauchy problem has global weak solutions and also obtained the order of decreasing to zero as $t \to \infty$ of weak solutions.

In this work me investigate the similar problem for equation (1) in the following considerations.

- 1^0 . $k \le l$.
- 2^{0} . The function $f(\cdot)$ defined at some interval $(-a,a) \subset R$ and continuous differentiable;
 - 3^0 . For any $u \in (-a, a)$

$$|f(u)| \le c |u|^p$$
, $|f'(u)| \le c |u|^{p-1}$,

where at $n \leq 2(l-k)$, a > 0 and $\frac{2(l-k)}{n} + 1 \leq p < \infty$, and at n > 2(l-k), $a = \infty$ and 2 .

Let $U_{\delta} \subset \mathcal{H} = \left[W_2^{l-k}(\mathbb{R}^n) \cap L_1(\mathbb{R}^n)\right] \times \left[L_2(\mathbb{R}^n) \cap L_1(\mathbb{R}^n)\right]$ be the sehere of radius $\delta > 0$ i.e.

$$U_{\delta} = \left\{ (u, v) : (u, v) \in H \ \|u\|_{W_{2}^{l-k}(\mathbb{R}^{n})} + \|u\|_{L_{1}(\mathbb{R}^{n})} + \|u\|_{L_{1}(\mathbb{$$

 $24 \ \underline{\hspace{0.3cm} [A.B.Aliev,\ A.A.Kazimov]}$

$$+ \|v\|_{L_2(\mathbb{R}^n)} + \|v\|_{L_1(\mathbb{R}^n)} < \delta \right\}.$$

Theorem. Let conditions 1^0-3^0 be satisfied. Then there exists $\delta_0 > 0$ such that for any $(u_0, u_1) \in U_{\delta_0}$ the problem has a unique solution $u \in C([0, \infty), W_2^{l-k}(\mathbb{R}^n)) \cap$ $C^{1}([0,\infty), L_{2}(\mathbb{R}^{n}))$ and the following estimations are fulfilled:

$$\sum_{|\alpha|=l-k} \|D^{\alpha} u(t,\cdot)\|_{L_{2}(\mathbb{R}^{n})} \le c_{0} R_{0} \left[1+t\right]^{-\left(\frac{l-k}{2l}+\frac{n}{4l}\right)}$$

$$||u(t,\cdot)||_{L_2(\mathbb{R}^n)} \le c_0 R_0 (1+t)^{-\frac{n}{4l}},$$

$$||u_t(t,\cdot)||_{L_2(\mathbb{R}^n)} \le c_0 R_0 (1+t)^{-\gamma},$$

where $c_0 > 0$, $\gamma = \min \left\{ 1 + \frac{n}{4l}, \frac{pn}{4l} \right\}$, $R_0 = \|u_0\|_{W_2^{l-k}(R^n)} + \|u_0\|_{L_1(R^n)} + \|u_1\|_{L_2(R^n)} + \|u_0\|_{L_1(R^n)} + \|u_0\|_{L_2(R^n)} +$ $||u_1||_{L_1(\mathbb{R}^n)}$.

Let's introduce the functional space $H = W_2^{l-k}\left(R^n\right) \times L_2\left(R^n\right)$ with inner product

$$\left\langle w^1, w^2 \right\rangle = \int\limits_{R^n} \nabla^{l-k} u^1 \nabla^{l-k} u^2 dx + \int\limits_{R^n} v^1 v^2 dx,$$

where $\nabla^s = \Delta^{[s/2]}$ if s is even, $\nabla^s = \nabla \Delta^{[s+1/2]}$ if s is odd.

The problem (1)-(2) reduced to the Cauchy problem in Hilbert space H

$$w' = Aw + F(w), (3)$$

$$w\left(0\right) = w_0,\tag{4}$$

by substitution $v_1 = u$, $v_2 = u_t$, where

$$w = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \quad w_0 = \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}, \quad G = \left(I + (-1)^k \Delta^k\right)^{-1},$$

$$A = \begin{pmatrix} 0 & I \\ (-1)^{l+1} G \Delta^l & G \end{pmatrix}, \quad D(A) = W_2^{2(l-k)} \left(R^n\right) \times W_2^{l-k} \left(R^n\right),$$

$$F(w) = \begin{pmatrix} 0 \\ G f\left(v_1\right) \end{pmatrix},$$

The operator A generates the strong continuous semi-group in Hilbert space H. The operator – function $w \to F(w)$ acts from U_{δ} to H and satisfies local lipshitz shy condition in the sense:

$$||F(w^1) - F(w^2)|| \le c(||w^1||, ||w^2||) \cdot ||w^1 - w^2||,$$

where $\|\cdot\| = \langle \cdot, \cdot \rangle$, $c(\cdot, \cdot) \in C(R_+^2, R_1)$, $R_1 = [0, \infty)$.

Hence, for the problem (3)-(4) the conditions of the theorem on local solvability are satisfied (see [3]).

[The asymptotic behavior]

Thus for any $(u_0, u_1) \in \mathcal{H}$ there exists T' > 0 such that the problem (1)-(2) has a unique weak solution $u \in C\left([0, T'); W_2^{l-k}(R)\right) \cap C^1\left([0, T'); L_2\left(R^n\right)\right)$. It is known that, if

$$E(t) = \|u(t,\cdot)\|_{W_{2}^{l-k}(\mathbb{R}^{n})} + \|u(t,\cdot)\|_{L_{2}(\mathbb{R}^{n})} \le c \qquad c = const > 0$$
 (5)

then $T' = \infty$.

Now, we prove that apriori estimation (5) is valid for small initial datas. Let's define the following functional

$$E_{1}(t) = \frac{1}{2} \|u_{t}(t,\cdot)\|_{L_{2}(R^{n})} + \frac{1}{2} \sum_{|\alpha|=l-k} \|D^{\alpha}u(t,\cdot)\|_{L_{2}(R^{n})} + \frac{1}{2} \|u(t,\cdot)\|_{L_{2}(R^{n})}.$$

It follows from the embedding theorem that

$$c^{-1}E_{1}(t) \le E(t) \le cE(t),$$
 (6)

where c > 0 is a constant.

Let $\nu_0(t,x)$ be the solution of the problem

$$\nu_{0tt}(t,x) + (-1)^k \Delta^k \nu_{0tt}(t,x) + (-1)^l \Delta^l \nu_0(t,x) + (-1)^k \Delta^k \nu_{0t}(t,x) +$$

$$+\nu_{0t}(t,x) = 0, \quad t \in [0,\infty), \quad x \in \mathbb{R}^n,$$
(7)

$$\nu_0(0,x) = u_0(x), \quad \nu_{0t}(0,x) = u_1(x), \quad x \in \mathbb{R}^n,$$
 (8)

and $\hat{\nu}_1(t,\xi)$ be a solution of the problem

$$\hat{\nu}_{1tt}(t,\xi) + |\xi|^{2k} \hat{\nu}_{1tt}(t,\xi) + |\xi|^{2l} \hat{\nu}_{1}(t,\xi) + |\xi|^{2k} \hat{\nu}_{1t}(t,\xi) + \hat{\nu}_{1t}(t,\xi) = 0$$
 (9)

$$\hat{\nu}_1(t,\xi) = 0 \quad \hat{\nu}_1(t,\xi) = 1$$
 (10)

where $\hat{\nu}_1(t,\xi)$ is the Fourier transformation of function $\nu_1(t,x)$.

The solution of the problem (1)-(2) can be presented in the following form

$$u(t,x) = \nu_0(t,x) + \int_0^t \nu_1(t-\tau,x) f(u(\tau,x)) d\tau.$$
 (11)

As in the paper [4] we can prove that, for the functions $\nu_0(t,x)$ and $\nu_1(t,\xi)$ the following estimations are valid

$$\|D_{t}^{i}D_{x}^{\alpha}\nu_{0}(t,x)\|_{L_{2}(R^{n})} \leq c\left[1+t\right]^{-\left(i+\frac{|\alpha|}{2l}+\frac{n}{4l}\right)} \times$$

$$\times \left[\|u_{0}\|_{W_{2}^{|\alpha|+(l-k)i}(R^{n})} + \|u_{0}\|_{L_{1}(R^{n})} + \|u_{1}\|_{W_{2}^{|\alpha|+(l-k)(i-1)}(R^{n})} + \|u_{1}\|_{L_{1}(R^{n})}\right], \quad (12)$$

$$\|D_{t}^{i}D_{x}^{\alpha}\left(\nu_{1}(t,x)*\varphi(x)\right)\|_{L_{2}(R^{n})} \leq$$

$$\leq c\left[1+t\right]^{-\left(i+\frac{|\alpha|}{2l}+\frac{n}{4l}\right)} \left[\|\varphi\|_{W_{2}^{|\alpha|+(l-k)(i-1)}(R^{n})} + \|\varphi\|_{L_{1}(R^{n})}\right] \quad (13)$$

 $26 \ \underline{\hspace{1cm} [A.B.Aliev,\ A.A.Kazimov]}$

where

$$u_0 \in W_2^{|\alpha| + (l-k)i}(R^n) \cap L_1(R^n), \quad u_1 \in W_2^{|\alpha| + (l-k)(i-1)}(R^n) \cap L_1(R^n)$$

$$\varphi \in W_2^{|\alpha| + (l-k)(i-1)}(R^n) \cap L_1(R^n), \quad c = const > 0.$$

By substituting i = 0 and $|\alpha| = l - k$ into (11)-(13) we get

$$\|D_{x}^{\alpha}u(t,\cdot)\|_{L_{2}(R^{n})} \leq c(1+t)^{-d_{1}} \left[\|u_{0}\|_{W_{2}^{l-k}(R^{n})} + \|u_{0}\|_{L_{1}(R^{n})} + \right.$$

$$+ \|u_{1}\|_{L_{2}(R^{n})} + \|u_{1}\|_{L_{1}(R^{n})} \right] + c \int_{0}^{t} (1+t-\tau)^{-d_{1}} \times$$

$$\times \left[\|f(u(\tau,\cdot))\|_{L_{1}(R^{n})} + \|f(u(\tau,\cdot))\|_{L_{1}(R^{n})} \right] d\tau, \tag{14}$$

where $d_1 = \frac{l-k}{2l} + \frac{n}{4l}$.

Further substituting i = 1 and $|\alpha| = 0$ into (11)-(13) we get the following inequality

$$\|u_{t}(t,\cdot)\|_{L_{2}(R^{n})} \leq c (1+t)^{-d_{2}} \left[\|u_{0}\|_{W_{2}^{l-k}(R^{n})} + \|u_{0}\|_{L_{1}(R^{n})} + \|u_{0}\|_{L_{1}(R^{n})} + \|u_{1}\|_{L_{2}(R^{n})} + \|u_{1}\|_{L_{1}(R^{n})} \right] + c \int_{0}^{t} (1+t-\tau)^{-d_{2}} \times \left[\|f(u(\tau,\cdot))\|_{W_{2}^{l-k}(R^{n})} + \|f(u(\tau,\cdot))\|_{L_{1}(R^{n})} \right] d\tau,$$

$$(15)$$

where $d_2 = 1 + \frac{n}{4l}, \ c > 0.$

Similarly, substituting i = 1 and $|\alpha| = 0$ into (11)-(13) we get also

$$||u_{t}(t,\cdot)||_{L_{2}(R^{n})} \leq c (1+t)^{-d_{3}} \left[||u_{0}||_{L_{2}(R^{n})} + ||u_{0}||_{L_{1}(R^{n})} + ||u_{1}||_{L_{2}(R^{n})} + ||u_{1}||_{L_{1}(R^{n})} \right] + c \int_{0}^{t} (1+t-\tau)^{-d_{3}} \times \left[||f(u(\tau,\cdot))||_{W_{2}^{-(l-k)}(R^{n})} + ||f(u(\tau,\cdot))||_{L_{1}(R^{n})} \right] d\tau,$$

$$(16)$$

where $d_3 = \frac{n}{4l}$

From the conditions 3^0 it follows that

$$||f(u)||_{L_{2}(R^{n})} + ||f(u)||_{L_{1}(R^{n})} \le c \left(||u||_{L_{2n}(R^{n})}^{p} + ||u||_{L_{n}(R^{n})}^{p} \right)$$

$$(17)$$

$$\|\nu\|_{W_2^{-(l-k)}(\mathbb{R}^n)} \le c_1 \|\nu\|_{L_2(\mathbb{R}^n)} \tag{18}$$

therefore

$$||f(u)||_{W_{2}^{-(l-k)}(\mathbb{R}^{n})} \le c_{2} ||u||_{L_{2p}(\mathbb{R}^{n})}^{p} \tag{19}$$

[The asymptotic behavior]

At the next step we will use the multiplicate inequality

$$||u||_{L_q(R^n)} \le c ||u||_{W_2^m(R^n)}^{\theta} \cdot ||u||_{L_2(R^n)}^{1-\theta},$$
 (20)

where q > 2, $0 < \theta \le 1$ and at n > 2m, $2 < q < \frac{2n}{n-2m}$ (see [5]).

In the other side

$$||u||_{W_2^m(R^n)} \le c \left(\sum_{|\alpha|=m} ||D_x^{\alpha} u||_{L_2(R^n)} + ||u||_{L_2(R^n)} \right)$$
(21)

c > 0 (see [5])

From (20)-(21) we get

$$||u||_{L_{q}(R^{n})} \le c \sum_{|\alpha|=m} ||D^{\alpha}u||_{L_{2}(R^{n})}^{\theta} \cdot ||u||_{L_{2}(R^{n})}^{1-\theta} + c ||u||_{L_{2}(R^{n})}$$
(22)

Taking into account 2^0 from (22) we get

$$\left\Vert f\left(u\right) \right\Vert _{W_{2}^{-\left(l-k\right) }\left(R^{n}\right) }+\left\Vert f\left(u\right) \right\Vert _{L_{2}\left(R^{n}\right) }\leq$$

$$\leq c_1 \left[\sum_{|\alpha|=m} \|D^{\alpha}u\|_{L_2(R^n)}^{p\theta_1} \cdot \|u\|_{L_2(R^n)}^{p(1-\theta_1)} + \|u\|_{L_2(R^n)}^p \right], \tag{23}$$

where $\theta_1 = \frac{n}{2(l-k)} \left(1 - \frac{1}{p}\right)$.

Similarly,

$$||f(u)||_{L_1(R^n)} \le c_2 \left[\sum_{|\alpha|=m} ||D^{\alpha}u||_{L_2(R^n)}^{p\theta_2} \cdot ||u||_{L_2(R^n)}^{p(1-\theta_2)} + ||u||_{L_2(R^n)}^p \right], \tag{24}$$

where $\theta_2 = \frac{n}{l-k} \left(\frac{1}{2} - \frac{1}{p} \right)$.

Taking into account (19), (23) and (24) in the (14)-(16) we have the following estimation

$$||D_x^{\alpha} u(t,\cdot)||_{L_2(\mathbb{R}^n)} \le c (1+t)^{-d_1} R_0 + c_4 \int_0^t (1+t-\tau)^{d_1} \phi(\tau) d\tau, \quad |\alpha| = l-k \quad (25)$$

$$||u(t,\cdot)||_{L_2(\mathbb{R}^n)} \le c (1+t)^{-d_2} R_0 + c_5 \int_0^t (1+t-\tau)^{d_2} \phi(\tau) d\tau,$$
 (26)

$$||u(t,\cdot)||_{L_2(\mathbb{R}^n)} \le c (1+t)^{-d_3} R_1 + c_6 \int_0^t (1+t-\tau)^{d_3} \phi(\tau) d\tau, \tag{27}$$

where

$$R_0 = \|u_0\|_{W_2^{l-k}(R^n)} + \|u_0\|_{L_1(R^n)} + \|u_1\|_{L_2(R^n)} + \|u_1\|_{L_1(R^n)},$$

 $28 - \frac{1}{[A.B.Aliev, A.A.Kazimov]}$

$$R_{1} = \|u_{0}\|_{L_{2}(R^{n})} + \|u_{0}\|_{L_{1}(R^{n})} + \|u_{1}\|_{W_{2}^{-(l-k)}(R^{n})} + \|u_{1}\|_{L_{1}(R^{n})},$$

$$\phi(t) = \sum_{|\alpha|=l-k} \|D^{\alpha}u(t,\cdot)\|_{L_{2}(R^{n})}^{p\theta_{1}} \cdot \|u(t,\cdot)\|_{L_{2}(R^{n})}^{p(1-\theta_{1})} +$$

$$+ \sum_{|\alpha|=l-k} \|D^{\alpha}u(t,\cdot)\|_{L_{2}(R^{n})}^{p\theta_{2}} \cdot \|u(t,\cdot)\|_{L_{2}(R^{n})}^{p(1-\theta_{2})} + \|u(t,\cdot)\|_{L_{2}(R^{n})}^{p}.$$

Denote

$$R_{1}(t) = (1+t)^{d_{1}} \sum_{|\alpha|=l-k} \|D^{\alpha}u(t,\cdot)\|_{L_{2}(\mathbb{R}^{n})}, \quad R_{2}(t) = (1+t)^{d_{2}} \|u_{t}(t,\cdot)\|_{L_{2}(\mathbb{R}^{n})},$$

$$R_3(t) = (1+t)^{d_3} \|u(t,\cdot)\|_{L_2(\mathbb{R}^n)}$$

From (25)-(27) we get

$$R_1(t) \le c_7 R_0 + c_8 (1+t)^{d_1} \int_0^t (1+t-\tau)^{-d_1} \psi(\tau) L(\tau) d\tau, \tag{28}$$

$$R_2(t) \le c_9 R_0 + c_{10} (1+t)^{d_2} \int_0^t (1+t-\tau)^{-d_2} \psi(\tau) L(\tau) d\tau, \tag{29}$$

$$R_3(t) \le c_{11}R_1 + c_{12}(1+t)^{d_3} \int_0^t (1+t-\tau)^{-d_3} \psi(\tau) L(\tau) d\tau, \tag{30}$$

where

$$\psi(\tau) = (1+\tau)^{(\theta_1 p d_1 + (1-\theta_1) p d_3)} + (1+\tau)^{(\theta_2 p d_1 + (1-\theta_2) p d_3)} + (1+\tau)^{-p d_3},$$

$$L(\tau) = R_1^{\theta_1 p}(\tau) R_3^{(1-\theta_1) p}(\tau) + R_1^{\theta_2 p}(\tau) R_3^{(1-\theta_2) p}(\tau) + R_3^{p}(\tau).$$

At the next step we will use the following statement.

Lemma (see [6]). Let $0 < d \le \eta$. Then

$$(1+t)^{-d} \int_{0}^{t} (1+t-\tau)^{-d} (1+\tau)^{-\eta} d\tau \le c, \tag{31}$$

where c > 0 doesn't depend on t > 0.

If $p > \max \left\{ \frac{l-k}{n} + \frac{3}{2}, 2 \right\}$, then using (31) the (28), (30) we get

$$R_1(t) \le c_7 R_0 + c_{13} \sup_{0 \le \tau \le t} L(\tau),$$
 (32)

$$R_3(t) \le c_9 R_1 + c_{13} \sup_{0 \le \tau \le t} L(\tau),$$
 (33)

Denote by $R\left(t\right)=\sup_{0\leq\tau\leq t}R_{1}\left(t\right)+\sup_{0\leq\tau\leq t}R_{3}\left(t\right)$ and taking into account that $R_{1}\leq$ $c_{14}R_0$ we get from (32)-(33) that

$$R(t) \le cR_0 + cR^p(t), \quad c > 0.$$
 (34)

For a sufficiently small R_0 the function

$$f\left(x\right) = cx^p - x + cR_0$$

has a positive root.

Let M be the smallest positive root of function f(x). Then for sufficiently small R_0 from (34) it follows, that

$$R(t) \le M, \quad t > 0. \tag{35}$$

Hence it follows from (35) that the following asymptotic estimation takes place

$$\sum_{|\alpha\models l-k} \|D^{\alpha}u(t,\cdot)\|_{L_{2}(\mathbb{R}^{n})} \leq c_{0}R_{0}(1+t)^{-d_{1}}, \|u(t,\cdot)\|_{L_{2}(\mathbb{R}^{n})} \leq c_{0}R_{0}(1+t)^{-d_{3}}.$$
(36)

Taking into account the last estimations in (29) we get

$$R_2(t) \le M_1(1+t)^{d_2-\gamma},$$

where $M_1 > 0$ doesn't depend on t > 0.

From this we get the following asymptotic estimation

$$\|u_t(t,\cdot)\|_{L_2(\mathbb{R}^n)} \le c(1+t)^{-\gamma}.$$
 (37)

Thus, taking into account (6), (36) and (37), for the solution of the problem (1)-(2) the apriori estimation (5) is fulfilled.

References

- [1]. Lions J.L. Quelques methods de resolution des problems aux limites non lineaires. Paris, Dunod (1969)
- [2]. Ikehefa R., Miyaoka I., Nakatake I. Decay estimates of solutions for dissipative wave equations in \mathbb{R}^N with lower power nonlinearities. I. Math. Sec. Jap., v.65, No2, 2004, pp.365-372
- [3]. Aliyev A.B. Solvability "in the large" of the Cauchy problem for quasilinear equation of hyperbolic type, Dokl. Akad. Nauk SSSR 240 (2), (1978), pp.249-252
- [4]. Aliev A.B., Kazimov A.A. On behavior of Solution of Cauchy problem for one class Sobolev type equations. Proceedings of IMM of NAS of Azerbaijan v. XXXII (XXX), Baku, 2005, pp.9-16.
- [5].Tribel H., Interpolation theory, Function Spaces Differential operators. Norh-Holland Mathematical library, v.18, Norh-Holland, Amsterdam, 1978.
- [6]. Secal I.E. Dissipation for non-linear relativic equations. Ann Sci Ekole Norm sup. (4), 1, (1968), pp.459-497

Akbar B. Aliev

Institute of Mathematics and Mechanics of NAS of Azerbaijan

9, F. Agayev str., AZ1141, Baku, Azerbaijan

Tel.: (+99412) 439 47 20 (off.)

 $30 \ \underline{} \ [A.B.Aliev, \ A.A.Kazimov]$

Anar A. Kazimov

Nakhchivan State University AZ7000, Nakhchivan, Azerbaijan

Received January 18, 2006; Revised March 28, 2006. Translated by authors.