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AEROELASTIC VIBRATIONS AND STABILITY OF
A CONICAL SHELL STREAMLINED BY GAS

FLOW WITH HIGH SUPERSONIC SPEED

Abstract

Many papers have been devoted to the panel flutter of shells [1-4], it is used
the piston theory formula for pressure of the aerodynamical interactions between
the flow and a shell. Inadequacy of such an approach is discussed in papers [5-
7]; results of these studies were used in [8-9] for new statements of problems
on the flutter of conical shells. In the proposed work, in elaborations of results
of [6], it is considered a problem on the truncated conical shell flutter, it is
adduced data on evaluative computations and comparison them with analogous
ones, obtained by the piston theory.

In a lot of papers on panel flutter of shells [1-4] the piston theory formula for
pressure of the aerodynamical interactions between flow and shell is used. Insuf-
ficiency of such an approach has been discussed in the papers [5-7], the results of
these investigations have been used in [8-9] for new statements of the filter problems
of conical shells. In the suggested paper in development of the results of [6], the
flutter problem of truncated conical shell have been considered, the data of evalua-
tion computations and their comparison with analogous ones obtained by the piston
theory are cited.

1. Relation of gas dynamics. Consider a circular cone streamlined by su-
personic speed without attack angle. Origin of rectangular system of coordinates
is an vertex, the axis x is directed in velocity vector. In nondeformed state the
equation generating z1 = kx, k = tgα, α is a semi-opening angle; assume α2 << 1.
Shell occupies one part of the cone x1 ≤ x ≤ x2, denote by w (x, t) its bending in
axisymmetric case, and we’ll have

x1 ≤ x ≤ x2, z = kx− w (x, t) (1.1)

In accordance with law of plane sections [10], gas state after shock wave is de-
termined from the solution of a plane piston problem which moves by the law

z̄ (t) = kvt− w (vt, t)

where v is flow speed. The solution of this problem has been obtained in [6] by
small parameter method [11] at additional suggestion |w (x, t) / (kx)| << 1 however
it [6] hasn’t been analyzed this analysis is cited below. We write the expression for
pressure on the shell
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here: ρ0, p0, a0 is density, pressure and sound speed in nondisturbed flow, χ is ex-
ponent of polytrop, ε = (χ− 1) / (χ+ 1) ; speed of shock wave D is found from the
quadratic equation εDa (D) + 2vtgα = 2D, a (D) = 1 + 2a2

0/
(
(χ− 1)D2

)
, which

after notation u0 = Mtgα, u = D/a0 = Mtgβ is led to the following one

(3 + χ)u2 − 2 (γ + 1)u0u− 2 = 0 (1.3)

By passing to Euler coordinate system it should be assumed x = vt, x1 = vt1,
ẇ = ∂w/∂t+ v∂w/∂x.

Estimate the order of addends in (1.2), We’ll have subsequently

ερ0D =
w (vt, t)

t
=
w (x, t)
x

ερ0Dv =
w (x, t)
kx

kερ0Dv;

ερ0D
1
t2

t∫
0

w (ξ, t) dξ = ερ0D
1
t2
w
(
t̃, t
)
(t− t1) =

= kερ0Dv
w (x̃, t) (x− x1)

kx
, x1 ≤ x̃ ≤ x;

ερ0D
1
t4

t∫
0

ξ2w (ξ, t) dξ =
1
3
ερ0Dv

w
(≈
x, t
) (
t3 − t31

)
t4

=

=
1
3
kερ0Dv

w
(≈
x, t
)

kx

(
1− x3

1

≈
x

3

)
;

The integrals are computed by the mean value theorem. Since |w/ (kx) | << 1
and k ∼ ε, we conclude that written addends are of order ε2 or higher, therefore we
can neglect them.

As is known from (1.2) ∆p consists of sum of quasistatic and dynamic compo-
nents q0 and q1. Assuming w = w0 (x) + w1 (x, t), we obtain
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We estimate the orders of quantities of addends in the second parenthesis of (1.5)
attached mass of shell

ρ0Dx

2v
· 1
ρh

∼ ρ0kvl

2vρh
=
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2ρh
, l = x2 − x1;

compare the second addend with the third one(
2v
∂2w1

∂t∂x

)
: v2∂

2w1

∂x2
∼ 2vw1

t0l

l2

v2w1
=

2l
t0v

∼ C0h

vl

here C2
0 = E/ρ, E is a Young module of material of shell.

At ordinary values of parameters the both relations are quantities of order
10−1 := 10−2; therefore we neglect these addends. The last addend makes sense
of chain efforts in median surface of a shell and can make remarkable influence on
character of vibrations and their stability. Finally from (1.5) we obtain
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2. Statement of the flutter problem. The position of the point on conical
surface is determined by the coordinates s = x/ cosα and θ = ψ sinα, where ψ is a
polar angle. We’ll describe mode of deformation of the shell by the equation [12]

D0∆2w −∆kF − L (w,F ) = q (s, t)

2∆2F + 2Eh∆kw + L (w,w) = 0 (2.1)

where D0 = Eh3/
(
12
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))
is cylindrical rigidity, v is a Poison coefficient, F is

a stress function.
The operators introduced in (2.1) have the form
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Analogously to the representation w = w0 (s)+w1 (s, t) we assume F = F0 (s)+
F1 (s, t). Let’s introduce dimensionless quantities, keeping their previous notation:

s =⇒ s/s2, w0 =⇒ w0/h, F0 =⇒ F0/
(
Eh2s2

)
,

w1 = w1/h, F1 = F1/
(
Eh2s2

)
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Substitute all in (2.1), linerize by perturbations w1, F1 and carry out the obvious
simplifications. For the functions of basic state we obtain
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We complete system (2.2) by hinge support conditions
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For the functions of disturbed state, we obtain
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Assume w1 = w (s) exp (ωt) cosnψ, F1 = Φ (s) exp (ωt) cosnψ ,then from (2.4)
it follows
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here the following notation are introduced
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We add the following boundary conditions to system (2.5):

s = s1, s = 1 : W = 0; W ′′ +
v

s
W ′ = 0 (2.6)

Φ′ =
n2

s2 sin2 α
Φ = 0, Φ′′ = 0. (2.7)

By the conditions of the problem sin2 α << 1, n ≥ 1, s− 1 , therefore instead of
conditions (2.7) we can approximately accept:

s = s1, s = 1 : Φ = 0, Φ′′ = 0 (2.8)

System (2.5)-(2.7) is an eigen-values problem. The movement is stable if Re Ωk <
0, ∀k, is unstable, if at least for one value of k0 there will be Re Ωk0 > 0 ; The domains
of stable and unstable vibrations is separated by parabola of stability A4 (Imλk)

2 =
A2

1 Reλk, whose equation defines the critic values of parameters.
Remark 1. 1) If the critical rate of flatter is defined, then the solution will be

Mcr = Mcr (n) , Mcr (ncr) = min
n
Mcr (n) should be assumed the true critical rate of

flatter. 2) In the domain of stable vibrations the static stability of basic state w0F0

must be checked.

3. Some estimates. In the first point it was taken into account the last addend
in formula (16), which has sense of chain stresses in median surface of shell. In
order to clarify qualitatively influence of this addend, we construct an approximated
solution of problem (2.5), (2.6), (2.8) basing on the following suggestions.

1) Following the results of the paper [4], for the basic state we accept the known
expressions [12]

w0 = 0,
∂2F0

∂s2
= q∗0s · tgα;

1
s
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∂s
=

1
2
q∗0stgα (3.1)

2) For shell of small prolongation and small conicity we can substitute relative
coordinates within shell (in integrals which will be met below) by its some mean
value.

3) We find the solution in Bubnov-Galerkin binomial approximation

W = C1 sinβπy + C2 sin 2βπy; β (1− s1) = 1; 0 ≤ y ≤ 1− s1

Φ = B1 sinβπy +B2 sin 2βπy

at that from the first equation of (2.4) we find
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B11 = (βπ)4 +
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R2
2

+
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4

parameter B22 is obtained from B11 by substitution 2β,R1, R
2
2, ... for B these are

mean values of the quantity s ·sinα, (s · sinα)2,.... The boundary conditions are sat-
isfied in the sense that on end surfaces of the shell the reactive moments proportional
to rotation angle are applied.
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We divide the equation into tgα, denote
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1tgα = A1, ..., A0 = h2/

(
12
(
2− v2

)
s22
)

and carry out the Bubnov-Galrkin procedure, as a result we obtain
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We rewrite this system in the standard form: (Aij − λ∂ij)Cj = 0, it is eas-
ily established the structure of the coefficients Aii = βii − β̄ii (M)M2; A12 =
−A21 = β̄12 (M)M2. Now characteristic equation (3.2) is written in the form:
λ2 − (A22 +A11)λ+A22A11 −A2

12 = 0, for its roots we obtain
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Discriminant of (3.3) is equal to
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)
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]2 − 4β̄12M

4. (3.4)

If M is small, then δ > 0 (3.3) has two different positive roots, vibrations are
stable. By growth of the M discriminant decreases, and at some M0 vanishes, from
(3.4) we find

M2
0 =

β22 − β11

2β̄12 +
(
β̄22 − β̄11

) . (3.5)

At M > M0 the discriminant is negative, and λ are complex-adjoint; at some
M = Mcr > M0, they are on parabola of stability. Numerous calculations of flutter
of plate [13-16] show that Mcr exceeds M0 a little (approximate stability condi-
tion), therefore conclusion which we can make on the basis of (3.5), may be usefull.
(Note that the parameters β̄ij (M) depend on M only by ε · a∗ (u), where ε is a
small parameter of the problem, therefore can be substituted by some mean values(
β̄ij

)
mn

).
The addend at the beginning of item is contained in (3.5) with coefficient A′

3:

β̄22 − β̄11 = 3 (βπ)2
(
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From (3.5) subject to this expression the following obvious inequality follows

M2
0

(
A′

3 6= 0
)
< M2

0

(
A′

3 = 0
)
;

thereby a new important mechanical effect - decrease of critical flutter speed of
conical shell calculated by approximated criterion δ = 0 is discovered.
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