Fakhraddin A. NAMAZOV

THE INVERSE SCATTERING PROBLEM FOR A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS ON A SEMI-AXIS WITH THE SAME INCIDENT WAVES

Abstract

In the paper we study the inverse scattering problem for the system $n \ge 3$ of ordinary differential equations on a semi-axis with n-1 same velocities

1. The scattering problem. On a semi-axis $x \ge 0$ let's consider the system $n \ge 3$ of the first order ordinary differential equations of the form

$$-i\frac{dy_{k}(x)}{dx} + \sum_{j=1}^{n} \left(\xi_{k} - \xi_{j}\right) c_{kj}(x) y_{j}(x) = \lambda \xi_{k} y_{k}(x),$$

$$k = 1, 2, ..., n; \quad x \ge 0, \quad \xi_{1} = \xi_{2} = ... = \xi_{n-1} > 0 > \xi_{n}.$$
(1)

The inverse scattering problem on a semi-axis for a system of Dirac equations in self-adjoint case was studied in the papers [1,2,5], in the self-adjoint case in the paper [4], on the axis - in [3]. The inverse scattering problem on the axis for a system of first order system of equations was studied in the papers [6-10], on a semi-axis for $\xi_k \neq \xi_j$ ($k \neq j$) (in particular cases) - in [11] and in other papers. When n = 3, the inverse scattering problem was investigated in [12].

It is assumed coefficients of system (1) are complex-valued, measurable, bounded functions and satisfy the coefficients

$$|c_{kj}(x)| \le ce^{-\varepsilon x}, \quad \varepsilon > 0, \quad c = const.$$
 (2)

Let's consider on the semi-axis n-1 the problem: the k-th problem is in funding the solution of system (1) on the given asymptotics

$$\lim_{x \to +\infty} y_j^k(x,\lambda) e^{i\lambda\xi_j x} = A_j, \quad j = 1, 2, ..., n-1,$$
(3)

and satisfying the boundary condition

$$y_n^k(0,\lambda) = y_k^k(0,\lambda), \quad k = 1, 2, ..., n-1,$$
(4)

The joint consideration of these n-1 problems is said to be the scattering problem for system (1) on a semi-axis.

Theorem 1. Let the coefficients of system (1) satisfy conditions (1) and λ be a real number (Im $\lambda = 0$). Then there exists a unique bounded solution of the scattering problem on a semi-axis for a system of equations (1).

Proof. The scattering problem is equivalent to the following system of integral equations

$$y_j^k(x,\lambda) = A_j e^{i\lambda\xi_j x} + i \int_x^{+\infty} \sum_{p=1}^n \left(\xi_j - \xi_p\right) c_{jp}(\tau) y_j^k(\tau) e^{i\lambda\xi_j(x-\tau)} d\tau,$$

j = 1, 2, ..., n - 1

$$y_n^k(x,\lambda) = B_k e^{i\lambda\xi_n x} + i \int_x^{+\infty} \sum_{p=1}^n \left(\xi_n - \xi_p\right) c_{np}(\tau) y_p^k(\tau) e^{i\lambda\xi_n(x-\tau)} d\tau,$$
(5)

where

$$B_{k} = A_{k} + i \int_{x}^{+\infty} \left[\sum_{p=1}^{n} \left(\xi_{k} - \xi_{p} \right) c_{kp}(\tau) y_{k}^{k}(\tau) e^{-i\lambda\xi_{k}\tau} d\tau - \left(\xi_{n} - \xi_{p} \right) c_{np}(\tau) y_{p}^{k}(\tau) e^{-i\lambda\xi_{n}\tau} \right] d\tau, \quad k = 1, 2, ..., n - 1.$$

The existence and uniqueness of the solution of a system of equations (5) in the class of bounded functions follows from the sequential approximation method. The theorem is proved.

By conditions (2) from (5) we get

$$\lim_{x \to +\infty} y_n^k(x,\lambda) e^{i\lambda\xi_n x} = B_k, \quad (k = 1, 2, ..., n-1).$$
(6)

By theorem 1, to each vector $A = (A_1, A_2, ..., A_{n-1})^t$ there correspond the solution of system (5). By (6) these n-1 solutions determine vector $B - (B_1, B_2, ..., B_{n-1})^t$. The matrix $S(\lambda) = ||S_{ij}(\lambda)||_{i,j=1}^{n-1}$ transferring the vector A to B will be said to be the scattering matrix for system (1) on the semi-axis

$$S(\lambda)A = B. \tag{7}$$

Later on, for simplicity we'll take $\xi_1 = \ldots = \xi_{n=1} = -1, \ \xi_n = 1.$

2. Transformation operators. We can express the bounded solution of system (1) on a semi-axis by the following vector-function:

$$g^{1}(x,\lambda) = \left\{ y_{1}(0,\lambda) e^{i\lambda x}, ..., y_{n-1}(0,\lambda) e^{i\lambda x}, y_{n}(0,\lambda) e^{-i\lambda x} \right\},$$

$$g^{k}(x,\lambda) = \left\{ A_{1}e^{i\lambda x}, ..., A_{k-1}e^{i\lambda x}, y_{k}(0,\lambda) e^{i\lambda x}, ...$$

$$..., y_{n-1}(0,\lambda) e^{i\lambda x}, y_{n}(0,\lambda) e^{-i\lambda x} \right\}$$

$$k = 2, 3, ..., n;$$

$$g^{n+1}(x,\lambda) = \left\{ A_{1}e^{i\lambda x}, ..., A_{n-1}e^{i\lambda x}, Be^{-i\lambda x} \right\},$$

$$g^{n+k}(x,\lambda) = \left\{ y_{1}(0,\lambda) e^{i\lambda x}, ..., A_{n-1}e^{i\lambda x}, Be^{-i\lambda x} \right\}$$

$$k = 2, ..., n - 1;$$

$$g^{2n}(x,\lambda) = \left\{ y_{1}(0,\lambda) e^{i\lambda x}, ..., y_{n-1}(0,\lambda) e^{i\lambda x}, Be^{-i\lambda x} \right\},$$
(8)

Lemma 1. Let the coefficients of the system of equations (1) be bounded functions and satisfy conditions (2). Then for each bounded solution it holds the integral representation

$$y_p(x,\lambda) = g_p^1(x,\lambda) + \sum_{j=1}^n \int_{-x}^x G_{pj}^1(x,\tau) e^{i\lambda\tau} d\tau y_j(0,\lambda), \qquad (9)$$

 $\frac{166}{[F.A.Namazov]}$

Transactions of NAS of Azerbaijan _____

+

As of Azerbaijan [The inverse scattering problem]

$$y_{p}(x,\lambda) = g_{p}^{k}(x,\lambda) +$$

$$\int_{-\infty}^{x} \sum_{j=1}^{n} G_{pj}^{1}(x,\tau) g_{j}^{k}(\tau,\lambda) d\tau, (2 \le k \le n-1), \qquad (10)$$

$$y_{p}(x,\lambda) = g_{p}^{n}(x,\lambda) +$$

$$+\int_{-\infty}^{x}\sum_{j=1}^{n-1}G_{pj}^{n}\left(x,\tau\right)g_{j}^{n}\left(\tau,\lambda\right)d\tau+\int_{-\infty}^{x}G_{pn}^{n}\left(x,\tau\right)g_{n}^{n}\left(\tau,\lambda\right)d\tau,$$
(11)

$$y_{p}(x,\lambda) = g_{p}^{n+1}(x,\lambda) + \int_{x}^{+\infty} \sum_{j=1}^{n-1} G_{pj}^{n+1}(x,\tau) g_{j}^{n+1}(\tau,\lambda) d\tau + \int_{-\infty}^{-x} G_{pn}^{n+1}(x,\tau) g_{n}^{n+1}(\tau,\lambda) d\tau,$$
(12)

$$y_{p}(x,\lambda) = g_{p}^{n+k}(x,\lambda) + \int_{x}^{+\infty} \sum_{j=1}^{n-1} G_{pj}^{n+k}(x,\tau) g_{j}^{n+k}(\tau,\lambda) d\tau + \int_{-x}^{+\infty} G_{pn}^{n+k}(x,\tau) g_{n}^{n+k}(\tau,\lambda) d\tau, \qquad (k=2,...,n-1);$$

$$y_{n}(x,\lambda) = g_{n}^{2n}(x,\lambda) +$$
(13)

$$+ \int_{x}^{+\infty} \sum_{j=1}^{n-1} G_{pj}^{2n}(x,\tau) g_{j}^{2n}(\tau,\lambda) d\tau + \int_{x}^{+\infty} G_{pn}^{n}(x,\tau) g_{n}^{2n}(\tau,\lambda) d\tau, \qquad (14)$$

The proof of this lemma is carried out similar to the paper [11].

Theorem 2. Let the coefficients of system (1) satisfy conditions (2). Then the scattering matrix $S(\lambda)$ admits the analytical factorization

 $_{167}$

and the function $S_{11}(\lambda)$ admits the factorization

$$S_{11}(\lambda) = \left(1 + C_{n,n-}^{n+1}(\lambda) - G_{1,n-}^{n+1}(\lambda)\right)^{-1} \left(1 + G_{11+}^{n+1}(\lambda) - G_{n1+}^{n+1}(\lambda)\right),$$
(16)

$$S_{11}(\lambda) = \left(1 + C_{nn+}^{n+2}(\lambda)\right)^{-1} \left(1 - G_{n1+}^{n+2}(\lambda)\right) \left(1 - G_{nn-}^{n+2}(\lambda)\right) \left(1 + G_{11-}^{n}(\lambda)\right),$$
(17)

where

$$G_{-}(\lambda) = \int_{-\infty}^{0} G(0,t) e^{i\lambda t} dt,$$
$$G_{+}(\lambda) = \int_{0}^{+\infty} G(0,t) e^{i\lambda t} dt.$$

Proof. From integral representation (12), allowing for boundary conditions (4), we have:

Then from definition of scattering matrix (7) we get equality (15). Equality (16) follows from (15). Factorization formula (17) is obtained from representations (11) and (13) (for k = 2). Indeed, from these representations for $A_2 = A_3 = \ldots = A_{n-1} = 0 = 0$ and $y_n^1(0, \lambda) = y_1^1(0, \lambda)$ we have:

$$y_1^1(0,\lambda) = \left(1 - G_{nn-}^n(\lambda)\right)^{-1} \left(1 + G_{11-}^n(\lambda)\right) A_1,$$

$$y_1^1(0,\lambda) = \left(1 - G_{n1+}^{n+2}(\lambda)\right)^{-1} \left(1 + G_{nn+}^{n+2}(\lambda)\right) B_1,$$

Consequently

$$B_{1} = \left(1 + G_{nn+}^{n+2}(\lambda)\right)^{-1} \left(1 - G_{n1+}^{n+2}(\lambda)\right) \left(1 - G_{nn-}^{n}(\lambda)\right)^{-1} \left(1 - G_{11-}^{n}(\lambda)\right) A_{1},$$

i.e.

$$S_{11}(\lambda) = \left(1 + G_{nn+}^{n+2}(\lambda)\right)^{-1} \left(1 - G_{n1+}^{n+2}(\lambda)\right) \left(1 - G_{nn-}^{n}(\lambda)\right)^{-1} \left(1 - G_{11-}^{n}(\lambda)\right).$$

 $168 _ [F.A.Namazov]$

The theorem is proved.

3. The inverse scattering problem. The inverse scattering problem for system (1) is in the restoration of coefficients of equations by the known scattering matrix $S(\lambda)$ of the problem on a semi-axis.

The inverse scattering problem on a semi-axis is reduced the inverse problem for system (1) on the axis with additional condition that the coefficients equal zero for x < 0.

Theorem 3. Let $S(\lambda)$ be the scattering matrix for system (1) with coefficients $c_{kn}(x)$, $c_{nk}(x)$ (k = 1, 2, ..., n - 1) satisfying conditions (2) and the functions det $S(\lambda)$, $1 + G_{nn-}^{n+1}(\lambda) - G_{kn-}^{n+1}(\lambda)$ (k = 1, 2, ..., n - 1) $1 - G_{nn-}^{n}(\lambda)$, $1 + G_{11-}^{n}(\lambda)$, $1 - G_{n1+}^{n+2}(\lambda)$, $1 + G_{nn+}^{n+2}(\lambda)$ have no zero (the zeros of the problem are absent).

Thus, the scattering matrix on the axis

$$\begin{pmatrix} 1 + G_{11+}^{n+1}(\lambda) & G_{12+}^{n+1}(\lambda) \dots G_{1,n-1+}^{n+1}(\lambda) & G_{1n-1}^{n+1}(\lambda) \\ G_{21+}^{n+1}(\lambda) & 1 + G_{22+}^{n+1}(\lambda) \dots G_{2,n-1+}^{n+1}(\lambda) & G_{2n-1}^{n+1}(\lambda) \\ \dots & \dots & \dots \\ G_{n1+}^{n+1}(\lambda) & G_{n2+}^{n+1}(\lambda) \dots G_{n,n-1+}^{n+1}(\lambda) & 1 + G_{nn-1}^{n+1}(\lambda) \end{pmatrix}$$
(18)

is uniquely determined by the elements of scattering matrix $S(\lambda)$ and factorization elements.

Proof. From relation (15) by the Riemann Hilbert problem we find the factorization multipliers

$$G_{nn-}^{n+1}(\lambda) - G_{kn-}^{n+1}(\lambda) = g_{kn-}(\lambda),$$

$$G_{k1+}^{n+1}(\lambda) - G_{n1+}^{n+1}(\lambda) = g_{k1+}(\lambda), \qquad G_{k2+}^{n+1}(\lambda) - G_{n2+}^{n+1}(\lambda) = g_{k2+}(\lambda),$$

$$G_{k,n-1+}^{n+1}(\lambda) - G_{n,n-1+}^{n+1}(\lambda) = g_{k,n-1+}(\lambda), \qquad k = 1, 2, ..., n-1.$$
(19)

Their total number is (n-1)n. From (19) we have:

$$G_{kn-}^{n+1}(\lambda) = G_{nn-}^{n+1}(\lambda) - g_{kn-}(\lambda),$$

$$G_{n1+}^{n+1}(\lambda) = G_{11+}^{n+1}(\lambda) - g_{11+}(\lambda),$$

$$G_{k1+}^{n+1}(\lambda) = G_{11+}^{n+1}(\lambda) + g_{k1+}(\lambda) - g_{11+}(\lambda), \quad k = 2, ..., n-1 \qquad (k \neq 1, n),$$

$$G_{n2+}^{n+1}(\lambda) = G_{22+}^{n+1}(\lambda) - g_{22+}(\lambda), \qquad (20)$$

$$G_{k2+}^{n+1}(\lambda) = G_{22+}^{n+1}(\lambda) + g_{k2+}(\lambda) - g_{22+}(\lambda), \quad k = 1, 3, ..., n-1 \qquad (k \neq 2, n),$$

.....

$$G_{n,n-1+}^{n+1}(\lambda) = G_{n-1,n-1+}^{n+1}(\lambda) - g_{n-1,n-1-}(\lambda),$$

$$G_{k,n+}^{n+1}(\lambda) = G_{n-1,n-1+}^{n+1}(\lambda) + g_{k,n-1+}(\lambda) - g_{n-1,n-1+}(\lambda),$$

Taking these values into account in equality (12), we get

$$k \in \{1, 2, ..., n\} \setminus \{n - 1, n\}.$$
$$y_1(0, \lambda) = \left(1 + G_{11+}^{n+1}(\lambda)\right) A_1 + \left(G_{22+}^{n+1}(\lambda) + g_{12+}(\lambda) - g_{22+}(\lambda)\right) A_2 + ... + g_{12+}(\lambda) + g_{12+}(\lambda) - g_{22+}(\lambda)$$

$$170 \underline{\qquad} Transactions of NAS of Azerbaijan + \left(G_{n-1,n-1+}^{n+1}(\lambda) + g_{1,n-1+}(\lambda) - g_{n-1,n-1+}(\lambda)\right) A_{n-1} + \left(G_{nn-}^{n+1}(\lambda) - g_{1n-}(\lambda)\right) B_{n-1}$$

$$y_{k}(0,\lambda) = \left(G_{11+}^{n+1}(\lambda) + g_{k1+}(\lambda) - g_{11+}(\lambda)\right)A_{1+} \\ + \left(G_{22+}^{n+1}(\lambda) + g_{k2+}(\lambda) - g_{22+}(\lambda)\right) + \dots + \\ + \left(G_{n-1,n-1+}^{n+1}(\lambda) + g_{k,n-1+}(\lambda) - g_{n-1,n-1+}(\lambda)\right)A_{n-1+} \\ + \left(G_{nn-}^{n+1}(\lambda) - g_{kn-}(\lambda)\right)B,$$
(21)

$$y_{n}(0,\lambda) = \left(G_{11+}^{n+1}(\lambda) - g_{11+}(\lambda)\right)A_{1} + \left(G_{22+}^{n+1}(\lambda) - g_{22+}(\lambda)\right)A_{2} + \dots + \left(G_{n-1,n-1+}^{n+1}(\lambda) - g_{n-1,n-1+}(\lambda)\right)A_{n-1} + \left(1 - G_{nn-}^{n+1}(\lambda)\right)B.$$

.....

1. Let $A_2 = ... = A_{n-1} = 0$. We get from (21)

$$y_1^1(0,\lambda) = \left(1 + G_{11+}^{n+1}(\lambda)\right) A_1 + \left(G_{nn-}^{n+1}(\lambda) - g_{1n-}(\lambda)\right) B_1,$$

and from representations (19)

$$y_1^1(0,\lambda) = \left(1 - G_{nn-}^n(\lambda)\right)^{-1} \left(1 + G_{11-}^{n+1}(\lambda)\right) A_1 \equiv \left(1 + \bar{G}_{11-}^n(\lambda)\right) A_1.$$

Comparing the last two equalities we have

$$1 + G_{11-}^{n+1}(\lambda) - \left(G_{nn-}^{n+1}(\lambda) - g_{1n-}(\lambda)\right)S_{11}(\lambda) = 1 + \bar{G}_{11-}^{n}(\lambda)$$

or

$$G_{11+}^{n+1}(\lambda) + \left(G_{nn-}^{n+1}(\lambda) - g_{1n-}(\lambda)\right)S_{11}(\lambda) = \bar{G}_{11-}^{n}(\lambda).$$
(22)

Since

$$S_{11}(\lambda) = (1 + g_{1n-}(\lambda))^{-1} (1 + g_{11+}(\lambda)), \qquad (23)$$

it follows from (22)

$$G_{11+}^{n+1}(\lambda) + \left(G_{nn-}^{n+1}(\lambda) - g_{1n-}(\lambda)\right) \left(1 + g_{1n-}(\lambda)\right)^{-1} \times \left(1 + g_{11+}(\lambda)\right) = \bar{G}_{11-}^{n}(\lambda).$$
(24)

Here $\bar{G}_{11-}^{n}(\lambda)$ is found from factorization (17) and $g_{1n-}(\lambda)$, $g_{11+}(\lambda)$ from (23). From (24) we have:

$$G_{11+}^{n+1}(\lambda) \left(1 + g_{11+}(\lambda)\right)^{-1} + \left(G_{nn-}^{n+1}(\lambda) - g_{1n-}(\lambda)\right) \left(1 + g_{1n-}(\lambda)\right)^{-1} = \bar{G}_{11-}^{n}(\lambda) \left(1 + g_{11+}(\lambda)\right)^{-1}.$$
(25)

Solving this equation we find

$$G_{11+}^{n+1}(\lambda) = \left[\bar{G}_{11-}^{n}(\lambda)\left(1+g_{11+}(\lambda)\right)\right]_{+}\left(1+g_{11+}(\lambda)\right),$$

$$G_{nn-}^{n+1}(\lambda) = g_{1n-}(\lambda) + \left[\bar{G}_{11-}^{n}(\lambda)\left(1+g_{11+}(\lambda)\right)\right]_{-}\left(1+g_{1n-}(\lambda)\right).$$
(26)

Similarly, from other equalities (21) for

Transactions of NAS of Azerbaijan

[The inverse scattering problem]

$$A_1 = \dots = A_{k-1} = A_{k+1} = \dots = A_{n-1} = 0$$
 we get

$$y_{k}^{k}(0,\lambda) = \left(1 + G_{kk+}^{n+1}(\lambda)\right) A_{k} + \left(G_{nn-}^{n+1}(\lambda) - g_{kn-}(\lambda)\right) B_{k},$$

and from representations (11)

$$y_k^k(0,\lambda) = \left(1 + \bar{G}_{kk-}^n(\lambda)\right) A_k,\tag{27}$$

where

$$\bar{G}_{kk-}^{n}\left(\lambda\right) = \left(1 - C_{kn-}^{n}\left(\lambda\right)\right)^{-1} \left(1 + G_{kk-}^{n}\left(\lambda\right)\right).$$

Consequently,

$$(1 + G_{kk+}^{n+1}(\lambda)) A_k + (G_{nn-}^{n+1}(\lambda) - g_{kn-}(\lambda)) B_k = (1 + G_{kk-}^n(\lambda)) A_k$$

or

$$G_{kk+}^{n+1}(\lambda) + \left(G_{nn-}^{n+1}(\lambda) - g_{kn-}(\lambda)\right)S_{kk}(\lambda) = G_{k-}^{n}(\lambda)$$

Finally we get

$$G_{kk+}^{n+1}(\lambda) = -\left[\left(G_{nn-}^{n+1}(\lambda) - g_{kn-}(\lambda)\right)S_{kk}(\lambda)\right]_{-} \qquad (k = 2, 3, ..., n-1).$$

The theorem is proved.

The next theorem follows from this theorem.

Theorem 4. Let the coefficients in system (1) be measurable functions and satisfy conditions (2) and the zeros of the problem are absent. Then by the known scattering matrix $S(\lambda)$ the coefficients are uniquely determined.

References

[1]. Gasymov M.G., Levitan B.M. Determination of Dirac's system on scattering phase. Dokl. AN SSSR, 1966, 167, No6, pp.1219-1222. (Russian)

[2]. Gasymov M.G. The inverse scattering problem for a system of Dirac equations of order 2n. Trudy Moskowskogo mat. obsh., 1968, 19, pp.41-112. (Russian)

[3]. Frolov I.G. The inverse scattering problem for Dirac's system on the axis. Dokl. AN SSSR, 1972, 207, No1, pp.44-47. (Russian)

[4]. Nizhnik L.P. Fam Loy Vu. The inverse scattering problem on semi-axis with not self-adjoint potential matrix. Ukr. mat. zhurn., 1974, v.26, No4, pp.469-486. (Russian)

[5]. Maksudov F.G., Veliev S.G. The inverse scattering problem of self-adjoint Dirac operator on the axis. DAN SSSR, 1975, v.225, No6, pp.1263-1266. (Russian)

[6]. Shabat A.B. The inverse scattering problem for a system of differential equations. Func. Analys. and its appl., 1975, v.9, No3, pp.75-79. (Russian)

[7]. Shabat A.B. The inverse problem of scattering problem. Diff. Uravn., 1979, v.15, No10, pp.1824-1834. (Russian)

[8]. Kaup D. The three-wave interaction a non-dispersive phenomenon. Stud. Appl. Math., 1976, v.55, pp.9-44.

171

172 _____ [F.A.Namazov] Transactions of NAS of Azerbaijan

[9]. Caudrey P.J. The inverse spectral problem for a system of three coupled first order equations. Proceedings of the Royal Irish Academy, 1983, v.83A, No1, pp.23-31.

[10]. Beals R., Coifman R.R. Scattering and inverse scattering for first order system. Comm. on pure and Appl. Mah., 1984, v.37, pp.39.

[11]. Iskenderov N.Sh. The inverse scattering problem on a semi-axis for first order differential equations system. Transactions of AS Azerb., 2000, v.XX, No4, pp.97-108.

[12]. Garayev A.P. The inverse scattering problem for linear system on semiaxis. Proceedings of Institute of Mathematics and Mechanics, 2002, v.XVI (XXIV), pp.29-37.

Fakhraddin A. Namazov

Institute of Mathematics and Mechanics of NAS of Azerbaijan 9, F.Agayev str., AZ1141, Baku, Azerbaijan Tel.: (99412) 439 47 20 (off.)

Received January 06, 2006; Revised Aprel 11, 2006. Translated by Nazirova S.H.