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INITIAL BOUNDARY VALUE PROBLEMS FOR A
CLASS OF THIRD ORDER

OPERATOR-DIFFERENTIAL EQUATIONS WITH
VARIABLE COEFFICIENTS

Abstract

In the paper on a positive axis we consider initial boundary value problems
for a class of operator-differential equations whose principal part undergoes dis-
continuity. Here obtaining upper estimation of the norm of the intermediate
derivatives operators by the principal part of the considered equations we find
sufficient conditions of regular soliability of the considered initial boundary value
problems.

Let H be a separable Hilbert space, A be a selfadjoint positive-definite operator
in H (A = A∗ > cE, c > 0, E is a uniqueoperator).

We denote by L2 (R+;H) a Hilbert space of all vector-functions determined in
R+ = [0; +∞) with values from H that have the finite norm

‖f‖L2(R+;H) =
(∫ +∞

0
‖f (t)‖2H dt

)1/2

.

Then we determine the following Hilbert spaces:

W 3
2 (R+;H) =

{
u (t) /

d3u (t)
dt3

∈ L2 (R+;H) , A3u (t) ∈ L2 (R+;H)
}
,

0

W 3
2 (R+;H) =

{
u (t) /u (t) ∈W 3

2 (R+;H) ,
dsu (0)
dts

= 0, s = 0; 1; 2
}
,

0

W 3
2 (R+;H; i) =

{
u (t) /u (t) ∈W 3

2 (R+;H) ,
diu (0)
dti

= 0
}

with norm

‖u‖W 3
2 (R+;H) =

(∥∥∥∥d3u

dt3

∥∥∥∥2

L2(R+;H)

+
∥∥A3u

∥∥2

L2(R+;H)

)1/2

,

where i is a fixed integer, and i may take only one of the values: i = 0; 1; 2 (on
spaces L2 (R+;H) and W 3

2 (R+;H) in detail see [1; ch. 1]).
Here and in sequel the derivatives are understood in the sense of theory of dis-

tributions.
Under L (X,Y ) we will understand a set of linear bounded operators acting

from the Hilbert space X to another Hilbert space Y , and L∞ (R+;B) is a set of B
- valued essentially bounded operator functions in R+, where B is a Banach space.

Now let’s consider the following third order operator differential equation:

Q

(
d

dt

)
u (t) ≡ d3u (t)

dt3
+ ρ (t)A3u (t) +A1 (t)

d2u (t)
dt2

+
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+A2 (t)
du (t)
dt

= f (t) , t ∈ R+ (1)

at fulfillment the initial boundary condition

diu (0)
dti

= 0, (2)

where i is a fixed integer that can take only one of the values: i = 0; 1; 2; f (t) ∈
L2 (R+;H) , u (t) ∈ W 3

2 (R+;H) , Ak (t) (k = 1; 2) are linear, generally speaking,
unbounded operators determined almost for all t ∈ R+, but ρ (t) = α, if 0 ≤ t ≤ T
and ρ (t) = β if T < t < +∞, moreover, α and β are positive, generally speaking,
unequal numbers and for definiteness we will assume α ≤ β.

Definition 1. If the vector function u (t) ∈ W 3
2 (R+;H) satisfies equation (1)

almost everywhere in R+, it will be said to be a regular solution of equation (1).
Definition 2. If for any f (t) ∈ L2 (R+;H) there exists a regular solution of

equation (1), that satisfies initial boundary condition (2) in the sense

lim
t→0

∥∥∥∥A3−i−1/2d
iu (t)
dti

∥∥∥∥ = 0

and there holds the inequality

‖u‖W 3
2 (R+;H) ≤ cons ‖f‖L2(R+;H) ,

we will say that problem (1), (2) is regularly solvable.
Note that problems on solvability for initial boundary value problems (1), (2)

were studied in the case ρ (t) ≡ 1, t ∈ R+ and Ak (t) = Ak (k = 1; 2) , t ∈ R+ in
the papers [2], [3] and for i = 0 in the case when only Ak (t) = Ak (k = 1; 2) , t ∈
R+ in the paper [4]. The case i = 0 with variable operator coefficients in the
perturbed part of the equation was considered in the paper [5]. Here alongside
with the case i = 0 we study the remaining two cases of initial boundary value
problems on an semi-axis R+ for the equation(1): i = 1 and i = 2. Besides,
we state a new approach, to the estimation of the norms of intermediate derivatives
operators, participating in the perturbed part through the main part of equation (1)

in subspaces
0

W 3
2 (R+;H; i) (i = 0; 1; 2) that leads to improvement of the estimations

known before and thereby admits to obtain new theorems on regular solvability of
initial boundary value problems of the form (1), (2) in the cases i = 1 and i = 2 but
in the case i = 0 to improve the results of [4], [5].

First of all let’s consider the main part of equation (1)

Q0

(
d

dt
;A
)
u (t) ≡ d3u (t)

dt3
+ ρ (t)A3u (t) = f (t) ,

where f (t) ∈ L2 (R+;H). Let’s denote by Q
(i)
0 an operator acting from the space

0

W 3
2 (R+;H; i) to L2 (R+;H) in the following way:

Q
(i)
0 u (t) ≡ Q0

(
d

dt
;A
)
u (t) , u (t) ∈

0

W 3
2 (R+;H; i) .
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Then the following theorem is true.
Theorem 1. The operator Q

(i)
0 realizes an isomorphism from the space

0

W 3
2 (R+;H; i) to L2 (R+;H).
Notice that the case i = 0 was proved in the paper [4] and found its generalization

in [5]. The cases i = 1 and i = 2 are proved similarly.

Now we denote by Q
(i)
1 an operator acting from the space

0

W 3
2 (R+;H; i) to

L2 (R+;H) in the following way:

Q
(i)
1 u (t) ≡ A1 (t)

d2u (t)
dt2

+A2 (t)
du (t)
dt

, u (t) ∈
0

W 3
2 (R+;H; i) .

It holds the following theorem.
Theorem 2. Let A = A∗ > cE, c > 0 and Ak (t)A−k ∈ L∞ (R+;L (H,H))

(k = 1; 2) .

Then the operator Q
(i)
1 is a bounded operator from the space

0

W 3
2 (R+;H; i) to

the space L2 (R+;H).

Proof. Since for any vector function u (t) ∈
0

W 3
2 (R+;H; i)∥∥∥Q(i)

1 u
∥∥∥

L2(R+;H)
≤

2∑
k=1

sup
t

∥∥∥A3−k (t)A−3+k
∥∥∥

H→H

∥∥∥∥A3−k d
ku

dtk

∥∥∥∥
L2(R+;H)

,

we apply the known theorem on intermediate derivatives [1; ch. 1] and from the
inequality obtain ∥∥∥Q(i)

1 u
∥∥∥

L2(R+;H)
≤ const ‖u‖W 3

2 (R+;H) .

The theorem is proved.

Theorem 1 implies that
∥∥∥Q(i)

0 u
∥∥∥

L2(R+;H)
is a norm in the space

0

W 3
2 (R+;H; i),

equivalent to the initial norm ‖u‖W 3
2 (R+;H). Since it is known that the operators of

intermediate derivatives

A3−k d
k

dtk
:

0

W 3
2 (R+;H; i) → L2 (R+;H) (k = 1, 2)

are continuous [1; ch. 1], the norms of these operators may be estimated by∥∥∥Q(i)
0 u
∥∥∥

L2(R+;H)
. But we first study some properties of polynomial operator bundles

that we shall need in our further investigations.
Let qk = 22/3βk/3

3α
3−k
3

, k = 1; 2.

We consider the following operator bundles that depend on the parameter
γ ∈

[
0; q−1

k

)
, k = 1; 2 :

Qk (λ; γ;A) =
1
β

(iλ)6E + αA6 − γ (iλ)2k A6−2k, k = 1; 2.

The typical polynomials responding to them will have the following forms:

Qk (λ; γ;σ) =
1
β

(iλ)6 + ασ6 − γ (iλ)2k σ6−2k, k = 1; 2,
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where σ ∈ σ (A) is a spectrum of the operator A.
The following lemma is true.
Lemma 1. Let γ ∈

[
0; q−1

k

)
, k = 1; 2. The polynomial operator bundles

Qk (λ; γ;A) , k = 1; 2, are invertible on an imaginary axis and they admit the fol-
lowing representations:

Qk (λ; γ;A) = Fk (λ; γ;A)Fk (−λ; γ;A) , k = 1; 2,

moreover

Fk (λ; γ;A) =
3∏

n=1

(
1
6
√
β
λE − 6

√
αω

k,n
(γ)A

)
≡

≡ 1√
β
λ3E + d1,k (γ)λ2A+ d2,k (γ)λA2 +

√
αA3,

where Reωk,n (γ) < 0, n = 1; 2; 3, and the numbers d1,k (γ) , d2,k (γ) satisfy the
following systems of equations:

1) for k = 1 2) for k = 2{
d2

1,1 (γ)− 2d2,1(γ)√
β

= 0,
2
√
αd1,1 (γ)− d2

2,1 (γ) = γ;

{
2d2,2(γ)√

β
− d2

1,2 (γ) = γ,

2
√
αd1,2 (γ)− d2

2,2 (γ) = 0.
(3)

Proof. Let λ = iξ, ξ ∈ R = (−∞; +∞). Then t is clear that for the typical
polynomials we have be following relations:

Qk (λ; γ;σ) = Qk (iξ; γ;σ) = σ6

(
1
β

(
ξ2

σ2

)3

+ α

)1− γ

(
ξ2

σ2

)k

1
β

(
ξ2

σ2

)3
+ α

 ≥

≥ σ6

(
1
β

(
ξ2

σ2

)3

+ α

)1− γ sup
ξ2

σ2≥0

(
ξ2

σ2

)k

1
β

(
ξ2

σ2

)3
+ α

 , k = 1; 2.

Because of

sup
ξ2

σ2≥0

(
ξ2

σ2

)k

1
β

(
ξ2

σ2

)3
+ α

= qk, k = 1; 2,

we get
Qk (iξ; γ;σ) > 0 (4)

for γ ∈
[
0; q−1

k

)
, k = 1; 2. It follows from (4) that the polynomials Qk (λ; γ;σ)

have no roots on an imaginary axis for γ ∈
[
0; q−1

k

)
, k = 1; 2 . Obviously each

of typical polynomials Qk (λ; γ;σ) for σ ∈ σ (A) has exactly three roots from the left
half plane. Since these polynomials are homogeneous with respect to the arguments
λ and σ we can represent them in the following forms:

Qk (λ; γ;σ) = Fk (λ; γ;σ)Fk (−λ; γ;σ) , k = 1; 2, (5)

where Fk (λ; γ;σ)
3∏

n=1

(
1
6√β
λ− ω

k,n
(γ) 6

√
ασ
)
≡ 1√

β
λ3 + d1,k (γ)λ2σ+
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d2,k (γ)λσ2 +
√
ασ3, moreover, Reωk,n (γ) < 0, k = 1; 2; 3, and the numbers

d1,k (γ) , d2,k (γ) satisfy the following systems of equations obtained from relations
(5) by comparing coefficients at the equal powers

1) for k = 1 2) for k = 2{
d2

1,1 (γ)− 2d2,1(γ)√
β

= 0,
2
√
αd1,1 (γ)− d2

2,1 (γ) = γ;

{
2d2,2(γ)√

β
− d2

1,2 (γ) = γ,

2
√
αd1,2 (γ)− d2

2,2 (γ) = 0.
In sequel, using spectral expansion of the operator A we get the proof of the

lemma from equality (5). The lemma is proved.
Now, let’s formulate the theorem that plays an essential part in further investiga-

tions an indicates importance of study of spectral properties of polynomial bundles
Qk (λ; γ;A) and Fk (λ; γ;A) , k = 1; 2 introduced earlier.

Theorem 3. Let γ ∈
[
0; q−1

k

)
. Then for any u (t) ∈ W 3

2 (R+;H) it is valid the
equality ∥∥∥∥ 1

β

d3u

dt3
+
√
αA3u

∥∥∥∥2

L2(R+;H)

− γ
∥∥∥∥A3−k d

ku

dtk

∥∥∥∥2

L2(R+;H)

=

=
∥∥∥∥Fk

(
d

dt
; γ;A

)
u

∥∥∥∥2

L2(R+;H)

+ (Gk (γ)ψ,ψ)H3 , (6)

where H3 =
3
⊕

m=1
H,

Gk (γ) =


√
αd2,k (γ)

√
αd1,k (γ) 0

√
αd1,k (γ) d1,k (γ) d2,k (γ) d2,k(γ)√

β

0 d2,k(γ)√
β

d1,k(γ)√
β

 ,

ψ =
(
ψp = A3−p−1/2d

pu (0)
dtp

)2

p=0

.

Proof. Now let’s define the space D3 (R+;H) a set of infinitely differentiable
functions with values in D

(
A3
)

having a compact support in R+. Since the space
D3 (R+;H) is dense in W 3

2 (R+;H) (see [1; ch. 1]), it suffices to prove the theorem
for vector-functions u (t) ∈ D3 (R+;H). Then∥∥∥∥Fk

(
d

dt
; γ;A

)
u

∥∥∥∥2

L2(R+;H)

=
1
β

∥∥∥∥d3u

dt3

∥∥∥∥2

L2(R+;H)

+ d2
1,k (γ)

∥∥∥∥Ad2u

dt2

∥∥∥∥2

L2(R+;H)

+

+d2
2,k (γ)

∥∥∥∥A2du

dt

∥∥∥∥2

L2(R+;H)

+ α
∥∥A3u

∥∥2

L2(R+;H)
+

+2
d1,k (γ)√

β
Re
(
d3u

dt3
, A

d2u

dt

)
L2(R+;H)

+

+2
d2,k (γ)√

β
Re
(
d3u

dt3
, A2du

dt

)
L2(R+;H)

+ 2
√
α√
β

Re
(
d3u

dt3
, A3u

)
L2(R+;H)

+

+2d1,k (γ) d2,k (γ) Re
(
A
d2u

dt2
, A2du

dt

)
L2(R+;H)

+
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+2
√
αd1,k (γ) Re

(
A
d2u

dt2
, A3u

)
L2(R+;H)

+ 2
√
αd2,k (γ) Re

(
A2du

dt
,A3u

)
L2(R+;H)

and here applying integration by parts we have∥∥∥∥Fk

(
d

dt
; γ;A

)
u

∥∥∥∥2

L2(R+;H)

=
1
β

∥∥∥∥d3u

dt3

∥∥∥∥2

L2(R+;H)

+ α
∥∥A3u

∥∥2

L2(R+;H)
+

+
(
d2

1,k (γ)− 2
d2,k (γ)√

β

)∥∥∥∥Ad2u

dt2

∥∥∥∥2

L2(R+;H)

+

+
(
d2

2,k (γ)− 2
√
αd1,k (γ)

) ∥∥∥∥A2du

dt

∥∥∥∥2

L2(R+;H)

−
d1,k (γ)√

β
‖ψ2‖

2− (7)

−2
d2,k (γ)√

β
Re (ψ2, ψ1)− 2

√
α√
β

Re (ψ2, ψ0) +

+
(√

α√
β
− d1,k (γ) d2,k (γ)

)
‖ψ1‖

2 − 2
√
αd1,k (γ) Re (ψ1, ψ0)−

√
αd2,k (γ) ‖ψ0‖

2 .

If we calculate
∥∥∥ 1√

β
d3u
dt3

+
√
αA3u

∥∥∥2

L2(R+;H)
similar to∥∥Fk

(
d
dt ; γ;A

)
u
∥∥2

L2(R+;H)
, we find∥∥∥∥ 1√
β

d3u

dt3
+
√
αA3u

∥∥∥∥2

L2(R+;H)

=

=
1
β

∥∥∥∥d3u

dt3

∥∥∥∥2

L2(R+;H)

+ α
∥∥A3u

∥∥2

L2(R+;H)
− 2

√
α√
β

Re (ψ2, ψ0) +
√
α√
β
‖ψ1‖

2 . (8)

Taking into account (8) in (7) by lemma 1 we get the truth of equality (6). The
theorem is proved.

The following one follows from theorem 3.

Corollary 1. If u (t) ∈
0

W 3
2 (R+;H) and γ ∈

[
0; q−1

k

)
, then∥∥∥∥ 1√

β

d3u

dt3
+
√
αA3u

∥∥∥∥2

L2(R+;H)

−γ
∥∥∥∥A3−k d

ku

dtk

∥∥∥∥2

L2(R+;H)

=
∥∥∥∥Fk

(
d

dt
; γ;A

)
u

∥∥∥∥2

L2(R+;H)

. (9)

Obviously, the norms ‖u‖W 3
2 (R+;H) and

∥∥∥ 1√
β

d3u
dt3

+
√
αA3u

∥∥∥
L2(R+;H)

are equivalent

in the spaces
0

W 3
2 (R+;H) and

0

W 3
2 (R+;H; i).

Let’s calculate the numbers:

a0,k = sup

0 6=u∈
0

W 3
2 (R+;H)

∥∥∥∥A3−k d
ku

dtk

∥∥∥∥
L2(R+;H)

∥∥∥∥ 1√
β

d3u

dt3
+
√
αA3u

∥∥∥∥−1

L2(R+;H)

,

ai,k = sup

0 6=u∈
0

W 3
2 (R+;H;i)

∥∥∥∥A3−k d
ku

dtk

∥∥∥∥
L2(R+;H)

∥∥∥∥ 1√
β

d3u

dt3
+
√
αA3u

∥∥∥∥−1

L2(R+;H)

.
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First we calculate a0,k.
Lemma 2. The numbers a0,k = q

1/2
k , k = 1; 2.

Proof. In equality (9), passing to limit as γ → q−1
k , we have that for any

vector-function u (t) ∈
0

W 3
2 (R+;H) the following inequality is true∥∥∥∥ 1√

β

d3u

dt3
+
√
αA3u

∥∥∥∥2

L2(R+;H)

≥ q−1
k

∥∥∥∥A3−k d
ku

dtk

∥∥∥∥2

L2(R+;H)

,

and thereby we get

a0,k ≤ q
1/2
k , k = 1; 2.

Now we are to show that here it holds an equality. For this purpose for any

η > 0 it suffices to construct a vector function uη (t) ∈
0

W 3
2 (R+;H), such that the

functional

ε (uη) ≡
∥∥∥∥ 1√

β

d3uη

dt3
+
√
αA3uη

∥∥∥∥2

L2(R+;H)

−
(
q−1
k + η

) ∥∥∥∥A3−k d
kuη

dtk

∥∥∥∥2

L2(R+;H)

< 0.

The construction method of the function uη (t) is similar to the method of the
papers [6], [7].

The lemma is proved.

By
0

W 3
2 (R+;H) ⊂

0

W 3
2 (R+;H; i), then ai,k ≥ a0,k = q

1/2
k , k = 1; 2 . Notice

that for any vector-function u (t) ∈
0

W 3
2 (R+;H; i) and γ ∈

[
0; q−1

k

)
it is fulfilled the

equality ∥∥∥∥ 1√
β

d3u

dt3
+
√
αA3u

∥∥∥∥2

L2(R+;H)

− γ
∥∥∥∥A3−k d

ku

dtk

∥∥∥∥2

L2(R+;H)

=

=
∥∥∥∥Fk

(
d

dt
; γ;A

)
u

∥∥∥∥2

L2(R+;H)

+
(
Gk (γ; i) ψ̃, ψ̃

)
H2
, (10)

where H2 =
2
⊕

m=1
H,Gk (γ; i) is a matrix obtained from Gk (γ) removing the i+ 1-th

column and row, ψ̃ =
(
ψ̃rj

= A3−rj−1/2 drj u(0)
dtrj

)1

j=0
, rj 6= i. The truth of equality

(10) directly follows from theorem 3.
The following lemma show’s that the numbers ai,k, k = 1; 2 may equal q1/2

k ,
k = 1; 2.

Lemma 3. For ai,k = q
1/2
k it is necessary and sufficient the matrix Gk (γ; i) be

positive for any γ ∈
[
0; q−1

k

)
.

Proof. Necessity. Let ai,k = q
1/2
k . The from (10) for any vector-function

u (t) ∈
0

W 3
2 (R+;H; i) and γ ∈

[
0; q−1

k

)
we have∥∥∥∥Fk

(
d

dt
; γ;A

)
u

∥∥∥∥2

L2(R+;H)

+
(
Gk (γ; i) ψ̃, ψ̃

)
H2
≥
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≥
∥∥∥∥ 1√

β

d3u

dt3
+
√
αA3u

∥∥∥∥2

L2(R+;H)

×
(
1− γa2

i,k

)
> 0. (11)

As the polynomial operator bundle Fk (λ; γ;A) for γ ∈
[
0; q−1

k

)
has the form (see

lemma 1)

Fk (λ; γ;A) =
3∏

n=1

(
1
6√β
λE − 6

√
αωk,n (γ)A

)
, where Reωk,n (γ) < 0, n = 1; 2; 3,

the Cauchy problem

Fk

(
d

dt
; γ;A

)
u (t) = 0, (12)

diu (0)
dti

= 0, (13)

drju (0)
dtrj

= A−(3−rj−1/2)ψ̃j , i 6= rj , ψ̃j ∈ H, j = 0; 1, (14)

has a unique solution uγ (t) ∈W 3
2 (R+;H), represented in the form

uγ (t) = e
6√αβωk,1(γ)tAϕ0 + e

6√αβωk,2(γ)tAϕ1 + e
6√αβωk,3(γ)tAϕ2,

where ϕ0, ϕ1, ϕ2 ∈ D
(
A5/2

)
, subjected to unique determination from the conditions

in zero of (13), (14). Thus, writing inequality (11) for the vector-function uγ (t), we

get for γ ∈
[
0; q−1

k

) (
Gk (γ; i) ψ̃, ψ̃

)
H2

> 0.

Sufficiency. If for any γ ∈
[
0; q−1

k

)
the matrix Gk (γ; i) is positive, the equality

(10) implies that for all u (t) ∈
0

W 3
2 (R+;H; i) and γ ∈

[
0; q−1

k

)
∥∥∥∥ 1√

β

d3u

dt3
+
√
αA3u

∥∥∥∥2

L2(R+;H)

≥ γ

∥∥∥∥A3−k d
ku

dtk

∥∥∥∥2

L2(R+;H)

.

Here we pass to limit as γ → q−1
k , get ai,k ≤ q

1/2
k , and have ai,k = q

1/2
k . The lemma

is proved.G
If should be noted that for specially chosen i and k there may be ai,k > q

1/2
k .

Lemma 4. ai,k > q
1/2
k if and only if the equation detGk (γ; i) = 0 would have a

solution from the interval
(
0; q−1

k

)
, moreover, the least of these roots equals a−2

i,k .

Proof. Let ai,k > q
1/2
k . Then a−2

i,k ∈
(
0; q−1

k

)
.From (10) for γ ∈

(
0; a−2

i,k

)
we

have: ∥∥∥∥Fk

(
d

dt
; γ;A

)
u

∥∥∥∥2

L2(R+;H)

+
(
Gk (γ; i) ψ̃, ψ̃

)
H2
≥

≥
∥∥∥∥ 1√

β

d3u

dt3
+
√
αA3u

∥∥∥∥2

L2(R+;H)

×
(
1− γa2

i,k

)
> 0.

If in the last inequality we take the solution of problem (12), (13), (14), we find
that the matrix Gk (γ; i) is positive for γ ∈

[
0; a−2

i,k

)
, and thereby the last eigen-

value µ1 (γ) of the matrix Gk (γ; i) is greater than zero for any γ ∈
[
0; a−2

i,k

)
. From
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definition of ai,k we have that for γ ∈
(
a−2

i,k ; q−1
k

)
there exists such a vector-function

νγ (t) ∈
0

W 3
2 (R+;H; i) that∥∥∥∥ 1√

β

d3νγ

dt3
+
√
αA3νγ

∥∥∥∥2

L2(R+;H)

< γ

∥∥∥∥A3−k d
kνγ

dtk

∥∥∥∥2

L2(R+;H)

.

Taking the last inequality in (10) into account we find∥∥∥∥Fk

(
d

dt
; γ;A

)
νγ

∥∥∥∥2

L2(R+;H)

+
(
Gk (γ; i) ψ̃γ , ψ̃γ

)
H2

< 0,

where

ψ̃γ =
(
A3−rj−1/2d

rjνγ (0)
dtrj

)1

j=0

, rj 6= i.

By the same there exists such a vector ψ̃γ ∈ H2 that for γ ∈
(
a−2

i,k ; q−1
k

)
(
Gk (γ; i) ψ̃γ , ψ̃γ

)
H2

< 0, i.e. the least eigen-value µ1 (γ) of the matrix Gk (γ; i)

is negative for γ ∈
(
a−2

i,k ; q−1
k

)
. As the µ1 (γ) is a continuous function of the argument

γ ∈
[
0; q−1

k

)
we get µ1

(
a−2

i,k

)
= 0 and this means that the equation det Gk (γ; i) =

0 has even if one root from the interval
(
0; q−1

k

)
. Inversely if det Gk (γ; i) = 0 has a

root from the interval
(
0; q−1

k

)
it means that for any γ ∈

[
0; q−1

k

)
the matrix Gk (γ; i)

may not be positive. Therefore, by lemma 3 ai,k > q
1/2
k . Denoting the least root of

the equation det Gk (γ; i) = 0 by λi,k, we see that a−2
i,k ≤ λi,k by virtue of the fact

that from the proof of the lemma we get that for γ ∈
[
0; a−2

i,k

)
the matrix Gk (γ; i) is

positive. And as det Gk

(
a−2

i,k ; i
)

= 0 we find that a−2
i,k = λi,k. The lemma is proved.

Combining the last two lemmas we get the following theorem being one of the
main results of the paper.

Theorem 4. The following equality is true:

ai,k =

{
q
1/2
k for detGk (γ; i) 6= 0, γ ∈

(
0; q−1

k

)
,

λ
−1/2
i,k in the contrary case.

Now, considering the cases i and k we get the statement
Theorem 5. a0,1 = a1,1 = q

1/2
1 ; a2,1 = β1/6

21/3α1/3 ; a0,1 = β1/3

21/3α1/6 ; a1,2 = a2,2 =

q
1/2
2 .

Proof. Considering the above mentioned ones to find the numbers a0,1 we have
to solve system (3) for k = 1 together with equation detG1 (γ; 0) = 0. There
det G1 (γ; 0) = 0 has only the solution γ = 0 /∈

(
0; q−1

1

)
. Therefore a0,1 = q

1/2
1 .To

find the numbers a1,1 we have to solve system (3) for k = 1. Together with
equation detG1 (γ; 1) = 0. Here det G1 (γ; 1) = 0 has no solution from the interval(
0; q−1

1

)
i.e., γ = 0 /∈

(
0; q−1

1

)
as well. Therefore a1,1 = q

1/2
1 . Considering system

(3) for k = 1 with equation detG1 (γ; 2) = 0 we have d1,1 (γ) = 22/3α1/6

β1/3 , d2,1 (γ) =
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21/3α1/3

β1/6 , consequently γ = 22/3α2/3

β1/3 ∈
(
0; q−1

1

)
. Therefore a2,1 = β1/6

21/3α1/3 . To find
the number a0,2 we have to solve system (3) for k = 2 together with equation
detG2 (γ; 0) = 0. And we have d1,2 (γ) = 21/3α1/6

β1/3 , d2,2 (γ) = 22/3α1/3

β1/6 , consequently

γ = 22/3α1/3

β2/3 ∈
(
0; q−1

2

)
. Therefore a0,2 = β1/3

21/3α1/6 . To find the numbers a1,2 and a2,2

we have do solve system (3) for k = 2 together with, equations detG2 (γ; 1) = 0 and
detG2 (γ; 2) = 0, respectively. And such of these equations has only the solution
γ = 0 /∈

(
0; q−1

2

)
. Therefore a1,2 = a2,2 = q

1/2
2 . The theorem is proved.

In sequel, by obtaining conditions of regular solvability of initial boundary value
problems of the form (1), (2) we need the following coercive inequalities.

Lemma 5. For any vector-function u (t) ∈
0

W 3
2 (R+;H; i) the inequalities∥∥∥∥ 1√

β

d3u

dt3
+
√
αA3u

∥∥∥∥
L2(R+;H)

≤ α−1/2
∥∥∥Q(i)

0 u
∥∥∥

L2(R+;H)
, i = 0; 1; 2, (15)

hold.
Proof. Let i = 0. In the paper [4] it is established that if

u (t) ∈
0

W 3
2 (R+;H; 0), then∥∥∥∥ρ−1/2 (t)

d3u

dt3

∥∥∥∥2

L2(R+;H)

+
∥∥∥ρ1/2 (t)A3u

∥∥∥2

L2(R+;H)
+
∥∥∥∥A3/2du (0)

dt

∥∥∥∥2

H

≤ α−1
∥∥∥Q(0)

0 u
∥∥∥2

L2(R+;H)
.

Whence we have

1
β

∥∥∥∥d3u

dt3

∥∥∥∥2

L2(R+;H)

+α
∥∥A3u

∥∥2

L2(R+;H)
+
∥∥∥∥A3/2du (0)

dt

∥∥∥∥2

H

≤ α−1
∥∥∥Q(0)

0 u
∥∥∥2

L2(R+;H)
. (16)

Applying integration by parts and considering that u (t) ∈
0

W 3
2 (R+;H; 0) we get∥∥∥∥ 1√

β

d3u

dt3
+
√
αA3u

∥∥∥∥2

L2(R+;H)

=

=
1
β

∥∥∥∥d3u

dt3

∥∥∥∥2

L2(R+;H)

+ α
∥∥A3u

∥∥2

L2(R+;H)
+
√
α√
β

∥∥∥∥A3/2du (0)
dt

∥∥∥∥2

H

. (17)

Comparing (16) and (17) we have∥∥∥∥ 1√
β

d3u

dt3
+
√
αA3u

∥∥∥∥
L2(R+;H)

≤ α−1/2
∥∥∥Q(0)

0 u
∥∥∥

L2(R+;H)
·

The truth of inequalities (15) for i = 1 and i = 2 is established similarly. The
lemma is proved.

The investigations carried out up to now allow to establish sufficient conditions
of regular solvability of initial boundary problems of the form (1), (2). The following
main theorem is true.

Theorem 6. Let A = A∗ > cE, c > 0, the operators Ak (t)A−k, k = 1; 2, be
restricted in H and it is fulfilled the inequality

bi,1sup
t

∥∥A1 (t)A−1
∥∥

H→H
+ bi,2sup

t

∥∥A2 (t)A−2
∥∥

H→H
< 1,
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where the numbers bi,1 and bi,2 (i = 0; 1; 2) are determined in the following way:

b0,1 =
β1/3

21/3α2/3
; b1,1 = b2,1 = α−1/2q

1/2
2 ; b0,2 = b1,2 =

= α−1/2q
1/2
1 ; b2,2 =

β1/6

21/3α5/6
.

Then each of initial boundary value problems (1), (2) (i = 0; 1; 2) is regularly
solvable.

Proof. Obviously we can represent the initial boundary value problems (1), (2)
in the form of the following operator equations:

Q
(i)
0 u (t) +Q

(i)
1 u (t) = f (t) (i = 0; 1; 2) ,

where

f (t) ∈ L2 (R+;H) , u (t) ∈
0

W 3
2 (R+;H; i) (i = 0; 1; 2) .

It follows from theorem 1 that the operators Q(i)
0 (i = 0; 1; 2) have restricted

inverse operators Q(i)−1

0 (i = 0; 1; 2) that act from the space L2 (R+;H) to the space
0

W 3
2 (R+;H; i) (i = 0; 1; 2), respectively.

After substitution u (t) = Q
(i)−1

0 ν (t) (i = 0; 1; 2) , where ν (t) ∈ L2 (R+;H) we
get the following equations(

E +Q
(i)
1 Q

(i)−1

0

)
ν (t) = f (t) (i = 0; 1; 2) .

Now we can show that by fulfilling the conditions of the theorem the norm of
the operators Q(i)

1 Q
(i)−1

0 (i = 0; 1; 2) is less than unit. Taking into account theorem
5 and lemma 5 we have∥∥∥Q(i)

1 Q
(i)−1

0 ν
∥∥∥

L2(R+;H)
=
∥∥∥Q(i)

1 u
∥∥∥

L2(R+;H)
≤
∥∥∥∥A1 (t)

d2u

dt2

∥∥∥∥
L2(R+;H)

+

+
∥∥∥∥A2 (t)

du

dt

∥∥∥∥
L2(R+;H)

≤ sup
t

∥∥A1 (t)A−1
∥∥

H→H

∥∥∥∥Ad2u

dt2

∥∥∥∥
L2(R+;H)

+

+sup
t

∥∥A2 (t)A−2
∥∥

H→H

∥∥∥∥A2du

dt

∥∥∥∥
L2(R+;H)

≤

≤
(
bi,1sup

t

∥∥A1 (t)A−1
∥∥

H→H
+ bi,2sup

t

∥∥A2 (t)A−2
∥∥

H→H

)∥∥∥Q(i)
0 u
∥∥∥

L2(R+;H)
=

=
(
bi,1sup

t

∥∥A1 (t)A−1
∥∥

H→H
+ bi,2sup

t

∥∥A2 (t)A−2
∥∥

H→H

)
‖ν‖L2(R+;H) .

As a result we have ∥∥∥Q(i)
1 Q

(i)−1

0

∥∥∥
L2(R+;H)→L2(R+;H)

≤

≤ bi,1sup
t

∥∥A1 (t)A−1
∥∥

H→H
+ bi,2sup

t

∥∥A2 (t)A−2
∥∥

H→H
< 1.
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When these inequalities are true the operators E +Q
(i)
1 Q

(i)−1

0 (i = 0; 1; 2) have
the inverse in the space L2 (R+;H) and we can determine u (t) by the following
formulae:

u (t) = Q
(i)−1

0

(
E +Q

(i)
1 Q

(i)−1

0

)−1
f (t) ,

moreover
‖u‖W 3

2 (R+;H) ≤
∥∥∥Q(i)−1

0

∥∥∥
L2(R+;H)→W 3

2 (R+;H)
×

×
∥∥∥∥(E +Q

(i)
1 Q

(i)−1

0

)−1
∥∥∥∥

L2(R+;H)→L2(R+;H)

‖f‖L2(R+;H) ≤ const ‖f‖L2(R+;H) .

The theorem is proved.
Remark. Notice that the results of the paper essentially improve the corre-

sponding results of the paper [4], refine the results of the paper [5] and of these for
ρ (t) ≡ 1, t ∈ R+ we can obtain some results of [7].
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