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BEHAVIOR OF SOLUTION OF THE SECOND

ORDER QUASILINEAR PARABOLIC EQUATION

IN UNBOUNDED DOMAIN

Abstract

In this paper we consider the second order quasilinear parabolic equations of
nondivergent form in an unbounded domain whose supplement contains rotation
funnel or conical domain. For the generalized solutions of the first boundary-
value problem, the Phragmen-Lindelöf theorem is proved.

Introduction. Let En+1 be an (n + 1) dimensional Euclidean space of the
points (t, x) = (t, x1, ...xn) , D = Ω × (0, t) ⊂ En+1 be an unbounded domain,
Ω ⊂ En, ∂D and Γ (D) be boundary and parabolic boundary of the domain D,
respectively, CR = Ct1,t2

x0;R
be a cylinder

{
t1 < t < t2,

∣∣x− x0
∣∣ < R

}
, A4m = {(τ , ξ)|

Fs,β (t− τ , x− ξ) ≥ 4−ms}, A4m,νm = A4m ∩ {t ≤ −νm} , Ã4m,νm = A4m,νm ∩
{t ≤ −νm} , m = 1, 2, ...; γs,β (E) be parabolic (s, β)-capacity of the set E ⊂ En+1

generated by the kernel

Fs,β (t, x) =

 t−s exp

(
−|x|

2

4βt

)
, for t > 0,

0, for t ≤ 0.

.

Let Vf =

x :

(
n−1∑
i=1

x2
i

)1/2

< f (xn) , 0 < xn < ∞

 be a rotation funnel , where

f (t) is a positive, continuous and nondecreasing function of t such that the function
f (t) /t is bounded, and doesn’t increase with respect to t, t ∈ (0,∞) or conical
domain.

In the domain Ω whose supplement contains funnel rotation or conical domain
Vf we consider the following first boundary-value problem

Lu =
n∑

i,j=1

aij (t, x, u, ux) uij + b (t, x, u, ux)− ut = 0, (1)

u|Γ(D) = 0, (2)

where ut =
∂u

∂t
, ux =

(
∂u

∂x1
, ...,

∂u

∂xn

)
, ui =

∂u

∂xi
, uij =

∂2u

∂xi∂xj
, i, j = 1, ..., n,

‖aij (t, x, z, υ)‖ is a real symmetrical matrix with elements measurable in D. Let
u (t, x) be a solution of equation (1) and for all (t, x) ∈ D, z ∈ E+

1 , υ ∈ En, ξ ∈ En

the following conditions be fulfilled

γ |ξ|2 ≤
n∑

i,j=1

aij (t, x, z, υ) ξiξj ≤ γ−1 |ξ|2 , (3)
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Aij (t, x) = aij (t, x, u, ux) and |Aij (t, x)−Aij (τ , y)| ≤ C1ϕ
(
|x|+

√
t
)

; C1−const,

ϕ (z) = |ln |ln z||−1 , Aij (0, 0) = δij =


1, if i = j,

0, if i 6= j,

(4)

b (t, x, z, υ) ≤ b0 |υ|2 + (B (t, x) , υ) + c (t, x) z. (5)

Here E+
1 = {z : z ∈ E1, z ≥ 0} , γ ∈ (0, 1] , b0 ≥ 0 are constants,

B (t, x) = (b1 (t, x) , ..., bn (t, x)) and b1 (t, x) , ..., bn (t, x) , c (t, x) ∈ Lloc
∞ (D).

We’ll assume that (
B (t, x) ,

(
x− x0

))
≤ 0, (6)

c (t, x) ≤ 0, (7)

for all (t, x) ∈ D, x0 ∈
−→
l , where

−→
l is some ray starting from the origin of coordinate.

The goal of our paper is to obtain the Phragmen-Lindelöf type theorem for non-
negative solutions of boundary-value problem (1)-(2). Under solution of the men-
tioned problem we’ll understand its generalized solution from the space W

(2,1)
p (D).

Here we denote by W
(2,1)
p (D) a Banach space of the functions u (t, x), where norm

is defined as

‖u‖
W 2,1

p (D)
=

∫
D

|u|p +
n∑

i=1

|ui|p +
n∑

i,j=1

|uij |p + |ut|p
 dtdx

1/p

,

where p ∈ (1,∞).
Everywhere in the sequel, notation C (...) denotes that the positive constant C

depends only on contents of parentheses.
For the second order elliptic equations of nondivergent form such type results

have been obtained in the papers [1-5]. Concerning divergent elliptic equations
we refer to the papers [6-7]. In the papers [8-9] the behavior of solutions of par-
abolic equations have been considered. We also note the papers [10-11] wherein
the Phragmen-Lindelöf type theorems for quasilinear elliptic equations have been
obtained.

Lemma 1. Let u (t, x) be a fixed nonnegative solution of equation (1) and

Aij (t, x) = aij (t, x, u (t, x) , ux (t, x)), w (t, x) = eτu(t,x) − 1, where τ =
b0

γ
. Then if

conditions (3),(5),(6),(7) are satisfied, then

L1w =
n∑

i,j=1

Aij (t, x) wij +
n∑

i=1

bi (t, x) wi − wt ≥ 0,

for (t, x) ∈ D.
Proof. It’s clear that wi = τeτuui, wij = τ2eτuuiuj + τeτuuij . Allowing for

conditions (3), (5), (6), (7), we have
n∑

i,j=1

Aij (t, x) wij = τ2eτu
n∑

i,j=1

aij (t, x, u, ux) uiuj + τeτu
n∑

i,j=1

aij (t, x, u, ux) uij ≥
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≥ τ2eτuγ |ux|2 − τeτub (t, x, u, ux) + τeτuut ≥ τ2eτuγ |ux|2−

−τeτu
[
(B (t, x) , ux) + b0 |ux|2 + c (t, x) u

]
+ τeτuut =

= τeτu |ux|2 (τγ − b0)− τeτu
n∑

i=1

bi (t, x) ui − τeτuc (t, x) u + τeτuut.

Since τ =
b0

γ
, then it follows from the last inequality that

n∑
i,j=1

Aij (t, x) wij − wt ≥ −τeτu
n∑

i=1

bi (t, x) ui + τeτuut = −
n∑

i=1

bi (t, x) wi + wt,

or

L1w =
n∑

i,j=1

Aij (t, x) wij +
n∑

i=1

bi (t, x) wi − wt ≥ 0.

The lemma is proved.
Lemma 2. Let with respect to the coefficients of the operator L1 conditions

(3)-(7) be satisfied and there exist the constants R1 = R1 (n, C1) , C2 = C2 (n, C1)
and C3 = C3 (n, C1) such that at R ≤ R1, s =

n

2
+C2ϕ (R) , β = 1−C3ϕ (R) , then

for (x, t) ∈ D ∩ CR, (y, τ) ∈ CD ∩ CR

L1Fs,β (t− τ , x− y) ≥ 0 (8)

holds.
Proof. For t > τ

L1Fs,β = Fs,β

 1
4β2 (t− τ)2

n∑
i,j=1

aij (t, x, u, ux) (xi − yi) (xj − yj)−

− 1
2β (t− τ)

n∑
i,j=1

aii (t, x, u, ux) +
s

t− τ
− |x− y|2

4β (t− τ)2
−
(
B (x) , x− x0

) ≥

≥ Fs,β

 1
4β2 (t− τ)2

n∑
i,j=1

[aij (t, x, u, ux)− aij (0, 0, u, ux)] (xi − yi) (xj − yj) +

+
|x− y|2

4β2 (t− τ)2
− 1

2β (t− τ)
×

×
n∑

i=1

[aii (t, x, u, ux)− aii (0, 0, u, ux)]− n

2β (t− τ)
+

s

t− τ
− |x− y|2

4β (t− τ)2

}
≥

≥ Fs,β

{
|x− y|2

4β (t− τ)2
−
[
1− nC1ϕ (R)

β
− 1
]

+
1

t− τ

[
s− n + nC1ϕ (2R)

2β

]}
. (9)
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We choose R1 so small that for R ≤ R1 ϕ (2R) ≤ 2ϕ (R) , 1 − 2nC1ϕ (R) >
1
2
. Then assuming β = 1− 2nC1ϕ (R) , s ≥ n + 2nC1ϕ (R)

2β
from (9) we obtain the

required estimate. Now it sufficies to fix C2 = 2nC1 (1 + n) , C3 = 2nC1, and the
lemma is proved.

In [8] the analogous results have been obtained for linear equations.
Let s > 0, β > 0 and a > 5 be given.
Consider the cylinders

Cm = C−4m,0

0,2a

r
βs
a 4m

, m = 1, 2, ... .

Denote by Sm the lateral surface of the cylinder Cm. Here and further we’ll
assume that the following conditions are satisfied

4m+1

νm
ln

4m

νm

m→∞−→ 0, 4m+1 < νm < 4m, m = 1, 2, ... . (10)

Let (τ , ξ) be an arbitrary point belonging to Em = Alm,νm\D.
Definition. Let s > 0 and β > 0 be given, and E be a Borel set in En+1. The

measure µ is called feasible on E if∫
E

Fs,β (t− τ , x− y) dµ (τ , y) ≤ 1 for (t, x) /∈ E.

The number
γs,β (E) = supµ (E) ,

where the exact upper bound is taken on all feasible measures, is called (s, β)-capacity
of the set E.

Lemma 3. Let s > 0, β > 0, a > 5 be given. Let D ⊂ En+1 be a domain with
the proper boundary Γ and Cm+1 ∩D = �. Let Γm be such part of proper boundary
D which is strictly in Cm. Let the operator L1 be determined in D, for this operator
the conditions

β ≤ γ, s ≥ γ−1

2β
(11)

be satisfied.
Let w (t, x) be a subparabolic function for this operator continuous in D, positive

in D and vanishing in Γm. Then if condition (10) is satisfied, then

sup
D∩Cm

w ≥ (1 + η) sup
D∩Cm+1

w. (12)

Proof. Let’s fix m and give arbitrary ε > 0 and let measure µ be defined on Em

such that
U (t, x) =

∫
Em

Fs,β (t− τ , x− y) dµ (τ , y) ≤ 1



Transactions of NAS of Azerbaijan
[Behavior of solution of the second order...]

149

out of Em and
µ (Em) > γs,β (Em)− ε.

Denote sup
D∩Cm

w = M and consider the auxiliary function

υ (t, x) = M

[
1− U (t, x) + sup

Sm

U (t, x)
]

.

By equality (12) the function U is subparabolic, and therefore υ is also subpar-
abolic. Everywhere on proper boundary of the domain D we have

u
(
t′, x′

)
≤ lim

(t,x)→(t′,x′)
υ (t, x) .

Actually the proper boundary contains Γm and points on Sm, and in lower base
of Cm.

Since U ≤ 1 out of Em, then

lim
(t,x)→(t′,x′)∈Γm

υ (t, x) ≥ 0,

when u|Γm
= 0.

By the maximum principle u ≤ υ in D

sup
D∩Cm+1

w ≤ sup
D∩Cm+1

υ ≤ M

[
1−

(
inf

D∩Cm+1

G (x)− sup
Sm

G (x)
)]

.

Since [9]

sup
(t,x)∈Sm

U ≤ 4−mse−
s(a−1)2

e µ (Em) ,

inf
(t,x)∈Cm+1

U ≤ 4−mse−
s
e µ (Em) ,

we obtain

sup
D∩Cm+1

w ≤ M

[
1− 4−mse−

s
e µ (Em) + 4−mse−

s(a−1)2

e µ (Em)

]
≤

≤ M

[
1− 4−ms

(
e−

s
e − e−

s(a−1)2

e

)(
γs,β (Em)− ε

)]
.

Thus we obtain
sup

D∩CR

w ≥
(
1 + η14

−msγs,β (Em)
)

sup
D∩CR+1

w,

where η1 = e−
s
e − e−

s(a−1)2

e .
According to [2]

sup
D∩Cm

w ≥
(
1 + η14

−msγs,β (Em)
)

sup
D∩Cm+1

w =
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=
(

1 + η1

4−ms

2s
γs,β (Em)

)
sup

D∩Cm+1

w =

=
(
1 + η14

−ms
)

sup
D∩Cm+1

w = (1 + η) sup
D∩Cm+1

w,

where η = η14−ms is a constant.
The lemma is proved.
Theorem. Let the nonnegative solution u (t, x) of boundary-value problem (1),(2)

be defined in the domain D, moreover with respect to conditions of the operator L

conditions (3)-(7) be satisfied. Then either u (t, x) ≡ 0 in D or

lim
r→∞

M (r)
rδ

> 0, (13)

where M (r) = sup
D∩Cr

|u|, δ = δ (γ, n, l) is a positive constant.

Proof. Let u (t, x) 6= 0. Then there exists a point y ∈ D, in which u (t, y) = a 6=
6= 0. Assume that a > 0. Denote by D+ a set {(t, x) : (t, x) ∈ D, u (t, x) > 0},
and by D′ connected component of D+ containing the point y. By the maximum
principle D′ is an unbounded domain.

Let m0 be the least natural number for which y ∈ C4m0 . We fix an arbitrary
sufficiently large number r. Denote by m a natural number satisfying the inequalities

4m ≤ r < 4m+1. (14)

It follows from (14) that

m >
ln r

ln 4
− 1.

We’ll take r so large that m > m0 and
ln r

ln 4
− 1 ≥ ln r

2 ln 4
. Then

m >
ln r

2 ln 4
. (15)

Let M (r) = sup
D∩CR

u. Applying subsequentially inequality (12) and allowing for

(14)-(15), we obtain

M (r) ≥ M (4m) ≥ (1 + η) M
(
4m−1

)
≥ ... ≥ (1 + η)m−m0 M (4m0) ≥

≥ (1 + η)m a

(1 + η)m0
≥ (1 + η)

ln r
2 ln 4

a

(1 + η)m0
= ηln r

2 a1, (16),

where η2 = (1 + η)
1

2 ln 4 , a1 =
a

(1 + η)m0
. From (16) we conclude that

M (r) ≥ a1r
δ,

where δ = ln η2.
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If a < 0, then we multiply the solution u (x) by −1, and we lead analogous
reasoning. Thus we showed that for sufficiently large r

M (r) ≥ a1r
δ,

where a is a positive constant independent of r. Hence the required limit equality
(13) follows. The theorem is proved.

The author expresses her gratitude to dr.ph.-m.s. T.S.Gadjiev and cand.ph.-m.s
Kh.M.Nadjafov for their valuable advices.
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