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ON CONVERGENCE OF SPECTRAL EXPANSIONS
FOR ONE DISCONTINUOUS PROBLEM WITH
SPECTRAL PARAMETER IN THE BOUNDARY

CONDITION

Abstract

In this paper basic properties of eigenfunctions of discontinuous spectral
problem for the second order differential operator with spectral parameter in
the boundary condition in spaces L, ® C and L,, 1< p < o0, are studied.

1.Introduction. Consider a spectral problem

1"

y (x)+Ay(z)=0, ze€(-1,00U(0,1), (1)

y(—-1)=y(1) =0,
y (—0) =y (+0), (2)

Y (=0) — 1y (+0) = Amy (0),m # 0,

which arises by solving the problem on vibrations of a loaded string with the fixed
ends and with a load placed in the middle of a string [1].

In the present paper we research convergence of expansions in eigenfunctions
of problem (1), (2). For this purpose, at first, in p.2 formulas for eigenvalues,
eigenfunctions and Green’s functions of the problem (1), (2) are derived. Then, in
p.3 the linearizing operator L acting in space L, (—1,1) @ C, where C is a complex
plane, is constructed and properties of operator L and it’s resolvent are studied. On
the basis of previous items results in p.4 the theorem about basicity of eigenfunctions
of operator L in space L, (—1,1) ® C, 1 < p < o0, is proved. Finally, in p.5 we
solve the issue how we can get a basis of the space L, (—1,1), 1 < p < oo, if we
eliminate some eigenfunction from the system of eigenfunctions of problem (1), (2).

Similar questions for the problem on vibrations of a loaded string when the load
is fixed in one or two ends of a string, are investigated by other methods in the
papers[2-6].

2. Eigenvalues, eigenfunctions and Green’s function of problem (1),
(2). Let’s put A = p? and introduce the following designation for boundary forms

(2)

Uy(y) =Un (y) + U2 (y), v=14, (3)

where Upi(y) = y(=1), Uia(y) =0, Un(y) =0, Usa(y) =y (1), Usi(y) =
y(=0), Usz(y) = —y(+0), Usn(y) =y (=0), Ui (y) = -y (+0) — p*my (0).

Lemma 1. Spectral problem (1), (2) has two series of simple eigenvalues: A1, =

(ﬂ-n)2 Y n — 17 27 eeey and )\2777‘ = (p2,7’b)2

form

, n=0,1,2,..., where p,, has asymptotic

2 1
Pz,n:W”+7Tmn+O<nQ>- (4)
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The eigenfunctions uy, (x), n=0,1,..., prescribed by formula

Ugn—1 (x) =sinmnz, n=1,2,...,

o () = sinpy, (1+x) at ze[-1,0], (5)
A= sinpy, (1—x) at x€[0,1], n=0,1,..,

correspond to them.

Proof. Take p; (z) =sinp(l+z), pi5(z) =cosp(l+x) for x € [-1,0] and
Vg1 () = sin px, @9y (x) = cospzx for x € [0,1] as linear - independent solutions of
the equation (1). We shall search eigenfunctions of the problem (1), (2) in the form
of

e (2) + cizpp (v)  at @ e [-1,0],
u(x,p) = 6
(=) { 2191 (2) + c220005 (x)  at  z €[0,1]. ©)

Let’s demand, that function u (x, p) satisfy boundary conditions (2). Then for defi-
nition of numbers cj;, we receive the system of the linear homogeneous equations

11U (¢11) + 12U (912) + c1Uv2 (921) + c22Ub2 (022) =0,  v=1,4, (7)
whose determinant is
A (p) = det HUVj (‘ij)Hu:ﬂ; Gk=1,2 "
Taking into consideration (3), for values of forms U,; (¢;;) we have:

Un1 (¢11) =0, Un (‘Pm) =0, Uiz (‘le) =0, Uiz (‘PQQ) =0,
0, U1 (¢12) =0, Uz (¢91) = sin p, Uz (pg2) = cosp, (8)
p11) =sinp, Us (‘Pm) =cosp, Us (9021) =0, Us (‘PQQ) =-1,

Opening determinant A (p) with the account (8), we shall receive

A (p) = —psinp (pmsinp — 2cosp) . (9)

From the formula (9) it is obvious, that function A (p) has two series of zeroes,
the first of which consists of zeros of function sinp , i.e. p;,, = mn , and the second
series py,, consists of zeros of function pmsin p — 2cos p. Reasoning as in [7, p.20],
we receive that for p,,, it is true the asymptotic formula

p27n =71n+ 5717

where 9, satisfy the relation

sin d,, = coS 0y,

mp?,n

From the last relation we have

that proves the truth of (4).
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Substituting p = mn in (7) subject to (8), we find c19 = 0, co2 = 0, co1 =
(—1)" c11. Therefore, we choose c11 = 1, we receive from (6) eigenfunction ug,—1 ()
corresponding to eigenvalue A1, = (7rn)2 in the form of

U p—1 () =sinmnz, n=12,...
Similarly at p = p,,, from (7), (8) we conclude that
c12 = 0, €12 8in py,, + €22 €COS Py, = 0, €11 sin py,, = C22.
From here taking into consideration that sin p,,, # 0, we receive

€21 = —C11 COS Pg .

Now choosing ¢1; = 1 we get from (6) eigenfunction wusg, () corresponding to

eigenvalue Ao, = (p27n)2 in the following form

o (2) = sinpy, (1+z), at xc[-1,0],
" sinpy, (1—x), at x€[0,1], n=0,12,...

The lemma is proved.

Now let’s pass to construction of Green function of problem (1), (2). It is de-
fined as a kernel of integral representation for solution of the corresponding non-
homogeneous problem

y' (@) +py () = f (2), (10)
satisfying boundary conditions (2). We shall search the solution of problem (10),
(2) in the form of
[ n(x) at  zel-1,0],
y(@) = { y1(z) at xel0,1], (11)
where

0
y1 (2) = erpn (@) + enagns (&) + / 9(60) £ ()

1 (12)
12 (2) = carn (2) + o (0) + [ 00600 1 (€)
—ssin(z—¢&)  at &<u,
9(x,&p) = { 271:§in (x—€) at z<E (13)

Let’s demand, function (11) satisfy the boundary conditions (2). Then for defi-
nition of numbers c;j;, we receive the system of algebraic equations

U, (y) =cnUn (9011) + c12U1 (9012) + ca1Uy2 (9021) + 22U, 2 (SOQQ) +

0 1
+/ Uy1(g)f(§)d§+/0 Up(o)f(€)dE=0, v=T,4.  (14)

~1
Let’s define numbers c¢j;, from (14) and we shall substitute their values in (12).
Then for solving of problem (10), (2) we shall get the formula

0 1
y1(ﬂ?)Z/lGn(%ﬁ,p)f(f)d&Jr/o Gia(2,6,p) F(€)de, e [~1,0],

0 1 (15)
?42(33):/1021 (x,€,p)f(§)d§+/o G (,€,p) f(§)dE, € [0,1];
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where

Gu (z,&,p) =

G2 (z,&,p) =

G21 (Z’, 57 10) =

G (2,€,p) =

g Y11
Uvt (11)

¥21

and A (p) is a determinant from (7).
Calculating values of forms U,y (g) where g is defined by (13), we shall find that

Un (9) =
Uz (9) =0,

Us1 (9) = 71,) sin p€,
U (9) = —q, cos pt,

—ﬁsinp(l—i—f),

Ui2(g9) =0,
Uz (9) =
Usz (g9) = 55 sin p¢,

Uv2 (p92)

0
Uvz (22)

¥22
Uv2 (p92)

¥22
Uv2 (p92)

—g,sinp(1-¢),

Usz (9) = —3 cos p€ + 3pmsin pé,
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(16)

Let’s substitute (16), (8) and (9) in determinants of formulae for Gy ; (z,¢&, p).
Transforming the received determinants similar to [8, page 95| and then opening
them, we shall receive formulae for Green function components. We’ll formulate it

as a lemma.

Lemma 2. For Green function components Gyj (x,&,p) the following expres-

S10MS

G (z,8,p) =

G22 (l’, 67 p) =

(

1
A(p)
sinp (1 + x) sin p¢,

1
——sinp(z —§) +
p
1
psinp

;Sinp(fcﬁ) 4 sinp (14 a)sinp (1+€) -

A(p)
sin pxsinp (1+£),

sinp (14 z)sinp (1 +¢&)—

—1<z2<E<0;

0<¢é<x<,

psin p
1
——sinp(x — &)+ ——sinp(l —z)sinp (1 — &)+
. A(p)
——sinpzsinp (1 — &),
psin p

ll)sinp(a:—f)—i-

—— sin p (1 — x) sin pé&,
psin p

Atp) sinp(l —x)sinp (1 —¢)—

0<z<E<T;

(17)
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Gz (x, &, p) = Al(p) sinp(1+z)sinp(1-¢), =e€[-1,0], £€[0,1]; (19)
Gm(x,s,p):Atp) sinp(1—2)sinp(1+€), ze[0,1], £€[-10; (20
are true.

3. Construction of linearizing operator. By W} (—1,0)U(0, 1) we denote a
space functions whose contractions on segments [—1, 0] and [0, 1] belong correspond-
ingly to Sobolev spaces sz (—1,0) and W]f (0,1). Let’s define the operator L in
L,(—1,1) & C space as follows:

D(L)y={i€Ly,(-1,1)®C: @ = (u;mu(0)), ue W7 (—1,0)U(0,1),

u(=1)=wu(1)=0, u(—0)=u(4+0)}, (21)

and for @ € D (L)
Li = (—u";u/ (=0) — o/ (+0)) . (22)

Lemma 3. Operator defined by formulae (21), (22) is a linear closed operator
with dense definitional domain in L,(—1,1) @ C. Eigenvalues of the operator L
and problem (1), (2) coincide, and {uy} are eigenvectors of the operator L, where
lion—1 = (ugn—1(x); 0), Gon = (u2n (z); msinp,,,).

Proof. To prove the first part of the lemma we shall take @ = (u;a) €
L,(—1,1) ® C and define functional F'(u) as follows:

F (u) = mu(+0) — a.

Let us assume
U,(u)=U,(u), v=1,2,3.

Then F, U, ,v=1,2,3, are bounded linear functionals on Wp2 (—1,0)0u(0,1)®C,
but unbounded on L, (—1,1) @ C. Therefore (see for example [9, p.27-29]) the set

D (L) ={i=(u,a), ue W} (-1,00U(0,1), F (i) =U, (a) =0, v=1,2,3}

is everywhere dense in L, (—1,1) @ C, and L is a closed operator as contraction of
corresponding closed maximal operator.

The second part of the lemma is verified directly.

The lemma, is proved.

For construction resolvent of operator L, we shall consider the equation

Li— i = f, (23)
where @ € D (L), f = (f;8) € L, (~1,1) ® C. We can rewrite equation (23) in the
form of

—u = X+ f,
u (0) — o' (40) — Amu (0) = 3, (24)
U,(u)=0, v=1,23.
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Lemma 4. For solution @ = (u; mu (0)) of equation (23) it holds the following
representations

Bsinp (1 + x)
p(2cosp— pmsinp

1 [* .
u(,p) = )—p/_lf(é)smp(:v—&)dH

1 [0 . /0 . .
+p/z f(é)smﬂ(w—é)d§+A(p)/lf(f)smn(l+x)smp(1+€)d£—

_ 1 /zf(g)sin (1 + ) sin p€d§ — 1 /Of(ﬁ)sin xsinp (14 &) dé+
psinp J_q g g psinp J, PSP
1 1
. . _ad
N /0 F(€)sinp (14 ) sinp (1 — ) de, (25)
ifl'e [_170]7

Bsinp (1 —x)
p(2cosp— pmsinp

1 [* .
u(z,p) = )—p/o £ (€)sinp (z — €) dé+

1 [t . I . .
+p/x f(ﬁ)smp(x—i)derA(p)/o F(€)sinp(1—2)sinp(1 - €) de+

- /%f@ﬁm:mm (1—&)de+ — /ﬂﬂ@ﬁn(l—@$n§%+
psinp Jo PSP psinp J, g P
I : . p
) / F(€)sinp (1= a)sinp (14 de. (26)
if ©€1l0,1];
0,p) = ! X
u(0p ~ p(2cosp — pmsin p)
0 1
X {ﬁsinwr/f(&)sinp(l+£)d£+/f(£)sinp(1£)d£] : (27)
—1 0

Proof. Solution of the equation (24) will be found as

w(z, p) = { 11911 () + oo () + 91 () at x € [—1,0], (28)

C21991 (T) + c22099 () + 2 (x) at 2z €[0,1];

where y; (z) and ya (x) are defined by (15). Since y (z) defined by (11) satisfies
boundary conditions (2), then

U,(y) =0, v=T14 (29)

Let’s demand the function u (x, p) satisfy boundary conditions U, (u) = 0, v =
1,2,3, Uy (u) = . Then allowing for (29) from (28) we shall receive

{ c11Up1 (¢11) + 12001 (p12) + c21Uv2 (9091) + c22Un2 (pg2) =0, v =1,2,3;
c11Up1 (¢11) + c12U4 (912) + e21Ua2 (9a1) + c22Us2 (999) = B
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Solving this system with respect to unknowns ¢y, we shall receive

o1t = =55 U (e12) U (e20) U (922) = U (o) U ().

C12 = Aﬂ(p)Ull (11) [U22 (21) Us2 (022) — U2a (922) Usa (921)] »
C21 = A’E/J)UQQ (¢22) [Un1 (¢11) Us1 (p12) — U1 (p12) Us1 (e11)] 5

C22 = —A%})Uﬂ (¢21) [U11 (¢11) Us1 (¢12) — Ur1 (¢21) Us1 (011)] -

Substituting the received values of coefficient cj; in (28) and taking into account
formulae (8), (17) - (20), we shall receive validity of formulas (25) and (26). And
formula (27) results from (26) (or from (25)) by substitution x = 0.

The lemma is proved.

4. Basicity of eigenfunctions in spaces L, (—1,1) & C.

Theorem 1. Eigen vectors of operator L form basis in space Ly, (—1,1) & C,
1<p<oo, and at p=2 this basis is Riesz basis.

Proof. At first we shall prove completeness of a system of eigen functions of
operator L in space L, (—1,1) @& C. For this purpose we shall receive estimation
of the resolvent of the operator L at great values of |p|. We shall use the following
known inequalities

|sin p| < celPl sing. |cos p| < cel?! sing. (30)

where p = re’?, 0 < ¢ < 7. Besides outside of circles of the same radius § with
centers in zero of sin p the following estimation is true

|sin p| > mgse"Sn¢, (31)

From estimations (30), (31) and from the formula (9) it follows that at great values of
|p| outside circles of radius 0 with the centers in zero of A (p) the following estimation
is true

A ()] > Myre?rsne, (32)
From representation (25), (26) allowing for of inequalities (30), (31), (32) we shall
receive the inequality
Cs
ol
which fairly uniform on x € [—1,1]. From the last estimation it follows that for
resolvent operator R (\) = (L — AI)~! of the operator L outside of the above-stated
circles the following estimation is true

|u(z, p)| <

Cs
R 102 < AR
() < &
Having estimation (33) by a standard method (see for example [10], p. 445) we
receive that eigenfunctions of operator L form complete system in space L, (—1,1) @

C.

ol = ro. (33)
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1 1
Let Tony = {p: 0= p1nl = 2wmn}, Ty = {p: P = 2| = %mn} Cp =

1
{p dpl =7 (n + 2> , 0<argp<m}, by I, and C], we denote the images of I,

and C,,, respectively at mapping A = p?. Let’s research convergence of series
oo
> Eif, (34)
k=0

where . )
Bnaf =5 [ ROVFax= [ oR() i
e e

F/2n—1 1—‘2n71

1 A 1 .
Bunf = 5rs [ ROVFN= - [ oR () fap.
. Tay
From asymptotic formulae (4) it follows that at great values of n between contours
C,, and C;,; there are exactly two eigen values of the operator L . Let S, ( f) are

partial sums of series (34). Then

St (1) =55 [ROVGN= 2 [ oR () fdp = = [ pit(a.p)dp =

211
/ Cn C"

—m /puxpdp, /mqu)dp ; (35)

where @ (z,p) € L, (—1,1) @ C, whose first component of is defined by (25), (26),
and the second component is mu (0), where u (0) is defined by equality (27). Let’s

estimate norm So9,41 f . We shall carry out the estimation for each component

from (35), and for each addend of representations (25), (26), (27). From (25) at
x € [—1,0] we have

/pu z,p)d ﬁ sinp(1 1) //f sin p (z — §) d€dp+

2cosp — pm smp

0 1
—1—1 //f sinp(z —¢& d{dp—i— /A /f sinp (14 x)sinp (1 — &) dédp+
Cp Cr 0
0

1 p . .
mC/A(p)/lf@Slnf’(l”)Sl“P“ +€)dedp-

[ 5 [ £©sinp 1+ a)sin pdcap-

sin p

n
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[ [ £(©) sinpwsinp 1+ dgap -
'n —1

= Jn1 (a:) + Jn2 (x) + Jn3 (x) + In.a (37) + Jns (:C) +Jne (a?) + Jn7 (x) (36)

Taking into account estimations (30), (31) we shall receive

sinp(1+x elplzsing
o (@)] = |2 plte) | Bl / dp| =
wi ) 2cosp— pmsinp v Ip|
Cn lpl=r(n+3)
T 1 .
_ ’mca/err<n+2)xsmgodgp S |ﬁ|0§ (37)
T

Moreover Jp, 2 () = Jp 3 (x) = 0, because subintegral functions are regular functions
with respect to A. Let’s estimate Jp, 4 (). Allowing for (32) we shall receive

Tna @)l = |~ [ 5l [ 7(@sinp(+2)sinp 1+ € dedp) <
21

< Mé/ 2|p|s1n<p/ |f \p| 2+z+¢€) Slnapdf \dp\

Ch
( ) w 0
- / / £ (@) RO g, o
0 -1
0 g 1 .
< HEED [irg) [ elrraeromeapie <
—1 0
My (2n+1) | 2 ()
< Mt U [ [ elrr2) O e -
e
0
_2M5/|§f)§’ {65("@)(“5 }d§<2M/ £ (€

Applying Riesz theorem on boundedness of Hilbert transformation in L, to the
integral in the right hand side of the last inequality , we shall receive

[t @) < Cfll,, 3 (38)

Furher, taking into account that for function A;(p) = 2cosp — pmsinp it
holds place the estimation |A; (p)| > Ms |p|el?ls™¢ that is true outside of circles
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identical radius ¢ with the centers in zeros of Ay (p), for integrals J,, 5 (z), Jne (x)
and J,, 7 (x) in the same way we get the analogous estimation

[Jns () <CNfllL, > ne @I <Clfllz,, Iz @<l (39)

From inequalities (37), (38), (39) it follows that

1 [mtep| s

T
i

f

40
Lc (40)

The last inequality is fulfilled uniformly on = € [—1,0]. Operating similarly,
we receive from representation (26) that the inequality (40) is true at x € [0;1].
Moreover from (40), we receive also the estimation of the second components from
(35):

1 .
- 0,p) <C H ‘ . 41
= [mn<c]i], . (1)
Ch
From (40) and (41) we receive estimation
Some1 (f ’ <cC H ‘ . 42
H 2n+1 (f) Lec S f Lec (42)

To receive estimation of norm Ss,, ( f ) , we shall represent it in the following form
Son (f) = Son-1 <f> + <f, {92n—1> (Y] (43)
where { 19”} is a system biorthogonally adjoint to {an}: ¥n = (9 (z), My, (0)).
Here ¥, (), n =0,1,..., are eigenfunctions of the adjoint spectral problem
9 (z) + M () =0, 9(=1)=9(1) =0,

9 (—=0) =9 (+0), ¥ (-0)— (+0) = Imd (0).

Therefore for ¥, (z) the formulae similar (5) are true. From these formulas it
follows that

in <C, ( Un <C. 44
Jall e < e S (14)
From (42), (43) and (44) we shall receive
R _ (i
20 (A)] = ot ()]
| Joma]| o], <c]f], i
+Hf‘Lp@<CH an—l L,®C -t Ly®C — / L,®C (43)

Let’s note, that in various places by C' we denote, generally speaking, various con-
stants. Inequalities (42) and (45) show, that the partial sums of series (34) are
iuniformly bounded and therefore (see [11]) eigenfunctions of the operator L form
basis in space L, (—1,1) @ C, 1< p < 0.
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For the proof of Riesz basicity for system {,} in space Ly (—1,1) @ C, we shall
show that integral on the circle I'y,,_1, I's, from each addend from representations
(25) and (26) are expressed as a,p,, (z), where {a,} € la, and system {¢,, ()} is
besselian. We shall show it, for example, for the addend from (25) of the form

0
/f sinp (1 +x)sinp (1 + &) d€. (46)
1

Let’s represent function in the following form

_P
A(p)
P 1 Jcosp  2sinp+ pmcosp

sinp 2cosp— pmsinp

Ap) 2

The first function in the right hand side of (46) has simple poles at the points
p1,, = ™n,and the second function has simple poles at the points p;,,. Then

1 0 . ‘
i Joy A(p)/1f(5)smp(1+x)smp(1+§)d§dp:
1 0
~2mi Z:Z /lf(f) sinp (14 z)sinp (14 &) dédp =

0
— sinpy, (1+2) / sy (1) dE = c1p 0).

1 2sinp+pmcosp

a 1 = 5
A /f sinp (14 z)sinp (14 ) dédp 2mi Jr, 2cosp — pmsm,o

Iy Tan

0
< [ F@sip(t)sinp (14O dedp = sinpy, (143) x
—1

0
x / s, (1+9dE = canpa (0).

0 0
where c1 = [ f(§)sinmn (1+8)d¢, con = [ f(§)sinpy, (1+&)dE, o1, (z) =
—1 -1

sinmn (1 +x), @g,(x) = sinpy, (1 +2).It is obvious, that {c1,}, {con} € I2,
and systems {¢; ,, m)} and {¢y;, ()} are besselian. Hence it follows that series

0o 00
Y ocinpra (@) and Y ernp, (2)
n=1 n=0

unconditionally converge (see [12] or [10, p. 420]).
For other addens from (25) and (26) it it is get similarly. Now we are to inves-
tigate convergence of series

Z/pu(]p and Z/pu()p

n= 1F2n 1 n= OFQn
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From representation (27) it is seen, that function u (0, p) is regular inside T'gy_1.
Therefore

/ pu (0, p)dp = 0.

Fop—1

Inside of circle T'y,, the function u (0, p) has only one simple pole, therefore

1 i 1 1
i / pu (0, p) dp = A e dp + dpx
F2n

2w 2cos p — pmsin p 27 2cosp — pmsin p
an F2n

< [/_Olf(é)sinp(l+£)d€+/01f(£)sinp(1—£)d€] dp =

_ Bsin py N 1 y

— s p2,n - p2,nm COs p2,n — S p2,n - p2,nm COS p2,n

0 1
< [/ £ ()sinpa, (1 +5)d5+/ f(f)sinpz,nu—f)ds] — 4 b (cn + ).
—1 0

1 1
From asymptotic formula (4) for py,, it follows that a, =0 <2>, b, =0 <>
: n n

Moreover, {c,},{d,} € l2. Hence, series
— 1
Z/ pu(0,p) dp
i
n=0 n

x 1
absolutely converges. Thus, we have shown, that the series > — pu (x,p)dp
n=0 Tt .Jr,
unconditionally converges in the norm of the space norm Lg (—1,1) @ C that is

equivalent to Riesz basicity of systems of eigenfunctions in this space. The theorem
is proved.

5. Basicity in space L, (—1,1). From the results of the previous paragraph it
follows that the system {u,}, - is overfull complete in space L, (—1,1). Therefore,
in the given paragraph we shall answer to the question on how we can receive basis
of space L, (—1,1) by eliminating some function from this system .

Theorem 2. Excepting any ng even-numbered function from the system {u,}, -
we get that received system will be basis in space L, (—1,1), 1 < p < oo and be Riss
basis in space Lo (—1,1). If from this system to we eliminate any no odd-numbered

function uy, () the received system will not be basis in space L, (—1,1) & C.

Proof. Let {u,},., be a system of eigenvectors of operator L and {f?n}

n=0
be biorthogonal by adjoint system: 9,, = (¥, (z), MV, (0)). Since ¥, (z) are eigen-
functions of the spectral problem conjugate to (1), (2), then for them the following
formula is true

Vop—1 () =sinmnz, n=1,2, ..,
o () = Cansinpy, (1 + ) if x € [-1,0], (47)
AT Consiny, (1 2) if  xel0,1].
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where Cy,, are normalization numbers for which the following relation is true
Com =140 (2 (48)
2n — n2 .

Let’s take any vector-function f € L,(-1,1)&C, fe (f (x); B) and expand it
in biorthogonal series

F=3"<f bnmin=3 ((£:90) +Bmd, (0)) . (49)
n=0

n=0

Hence for the first component we shall receive

f= i <(fa Un) + ﬁmm> Un- (50)
n=0

Let ng be an even number: ng = 2kg. Then oy, (0) = Cap, sin py g, # 0. We
shall choose number ( as follows:

ﬁ: - (fvﬁQko) .
mﬂgko (0)
Then
f=i<fﬁ—wﬁzk>u=i(fﬁ*)u (51)
~ »yYn 292]60 (O) 0 n —~ 'y Yn s
n#ng n#ng
where 9, (0)

I =0, — Yok, n=0,1,..., n#ng. 52

It is easy to check that (u;, ¥},) = d;n, i.e. {U,} is a biorthogonally adjoint system
to {un}pZo ntn, » and any function f € Ly (—1,1) can be expanded in series (51).
It means that the system {un}zo:Q ngny 1S @ basis of space L, (—1,1). If p =2
then according to theorem 1 series (49) unconditionally converges in norm of space
L,(—1,1)&C. Then series (50) unconditionally converges in norm L, (—1,1). From
formulas (5), (47), (48) and (52) it follows that

[unlly, <C, 195l < C.

Then the system {un},2, 4n, 18 almost normalized and under Lorch-Gelfand’s
theorem [13] it is Riesz basis of space Lg (—1,1).
If now ng = 2ko + 1, then J95,+1 (0) = 0 and

0=< ﬁn7 192k0+1 >= (Un, 192k:()+1) ) n 7é no,

and we receive non-zero function ¥o,11 () which is orthogonal to all functions of
system {un},~ ngng and it means, that the system {untoZo, nny 18 Ot complete
in L, (—1,1) and all the more is not basis of this space.

The theorem is proved.
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