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Bala A. ISKENDEROV, Elnara S. HUSEYNOVA

ON A MIXED PROBLEM IN BOUNDED DOMAIN
FOR ONE EQUATION CORRECT BY PETROVSKII

AND ESTIMATE OF ITS SOLUTION

Abstract

In this paper the existence and uniqueness of a mixed problem in bounded
domain for one correct by Petrovskii equation is proved and the estimate of
solution by data of the problem is obtained.

At studying the perturbance propagation in viscous gas there arises the following
equation

∂2u (x, t)
∂t2

− ω
∂

∂t
∆3u (x, t) = a2∆3u (x, t) , x ∈ R3, t ≥ 0, (1.0)

where ∆3 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

, a is the sound velocity in gas in the absence thereof

viscosity , ω =
4
3
ν, ν is a kinematic coefficient of viscosity [1]. In the paper [2] the

Cauchy problem has been studied for equation (1.0) in L2 (R3), and the uniform
stabilization of solution of the Cauchy problem for equation (1.0) has been obtained.

1. Existence and uniqueness of solution of a mixed problem.
In this paper in Q = Ω× (0,∞) the following mixed problem is studied

∂2u (x, t)
∂t2

− ω
∂

∂t
∆nu (x, t) = a2∆nu (x, t) + f (x, t) , (1.1)

u (x, t)|t=0 = ϕ0 (x) ,
∂u (x, t)
∂t

∣∣∣∣
t−0

= ϕ1 (x) , (1.2)

u (x, t)|∂Ω = 0, (1.3)

where Ω is a bounded domain with the sufficiently smooth boundary ∂Ω of n-
dimensional Euclidean space Rn, x = (x1, x2, ..., xn) ∈ Rn, ϕ0 (x) , ϕ1 (x) , f (x, t)
are the functions given in Q

∆n =
∂2

∂x2
1

+
∂2

∂x2
2

+ ...+
∂2

∂x2
n

.

Denote by C(0,0) (Q) a space of the functions defined in Q and continuous with
respect to (x, t).

Definition 1. Denote by B(2,2) (Q) a space of functions defined in Q such that
∂β+|α|

∂tβ∂xα1
1 ...∂xαn

n
u (x, t) = C(0,0) (Q) , |α| = α1 + α2 + ... + |α|n and satisfying the

estimate
‖u (x, t)‖C(|α|,β)(Ω) ≤ Ce−γt, 0 ≤ |α| , β ≤ 2, (1.4)

where C and γ are some constants.
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Denote by H
µj

D (Ω) ,
(
µj ≥ 1, j = 1, 2

)
, H

µ3
N (Ω) ,

(
µj ≥ 2

)
([3], p.252) the

subspaces of Sobolev-Slobodetskii space Hµj (Ω) , j = 1, 2, 3 for whose elements
respectively the following conditions are satisfied

F (x)|∂Ω = 0, ...,∆

�
µj−1

2

�
F (x)|∂Ω = 0, j = 1, 2;

∂F (x)
∂τ

∣∣∣∣
∂Ω

= 0, ...,
∂

∂τ
∆

[µ3
2 ]−1

F (x)|∂Ω = 0,

where τ is a normal to ∂Ω, [σ] denotes the entire part of σ.
We’ll assume that ϕ0 (x) ∈ Hµ0 (Ω) , ϕ1 (x) ∈ Hµ1 (Ω) , f (x, t) ∈ Hµ2 (Ω) at

each t ≥ 0, where µ0, µ1, µ2 are some numbers, Hµj (Ω) , j = 0, 1, 2; are Sobolev-
Slobodetskii spaces.

Definition 2. We’ll call the function u (x, t) a classical solution of problem
(1.1)-(1.3) if u (x, t) ∈ B(2,2) (Q) and satisfies the equation, initial and boundary
conditions in the ordinary sense.

Theorem 1. The classical solution of problem (1.1)-(1.3) is unique if it exists.
Proof. We show that the classical solution of homogeneous problem (1.1)0,

(1.2)0, (1.3) is a trivial solution, where a zero by the number of data means that
they are equal to zero. For this multiplying (1.1)0 by u (x, t) and integrating by
Ω× [0, t] , we obtain

ε (t) =

t∫
0

∫
Ω

[
∂2u (x, t)
∂t2

− ω
∂∆u (x, t)

∂t
− a2∆u (x, t)

]
∂u (x, t)
∂t

dtdx ≡

≡ ε1 (t) + ε2 (t) + ε3 (t) ≡ 0. (1.5)

We transform each of addends in (1.5) using the initial and boundary conditions.
Taking into account that for the homogeneous problem ϕ1 (x) ≡ 0, we obtain

ε1 (t) =

t∫
0

∫
Ω

∂2u (x, t)
∂t2

∂u (x, t)
∂t

dtdx =

≡ 1
2

∫
Ω

t∫
0

∂

∂t

(
∂u (x, t)
∂t

)2

dtdx =
1
2

∫
Ω

(
∂u (x, t)
∂t

)2

dx. (1.6)

Applying the first Green formula and allowing for boundary condition (1.3) we obtain

ε2 (t) = −ω
t∫
0

∫
Ω

∂

∂t
∆u (x, t)

∂u (x, t)
∂t

dtdx = ω

t∫
0

∫
Ω

n∑
j=1

(
∂2u (x, t)
∂xj∂t

)2

dtdx. (1.7)

Analogously

ε3 (t) = −a2

t∫
0

∫
Ω

∆u (x, t)
∂u (x, t)
∂t

dtdx = a2

t∫
0

∫
Ω

n∑
j=1

∂u (x, t)
∂xj

∂2u (x, t)
∂xj∂t

dtdx =
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=
a2

2

t∫
0

∫
Ω

(
∂u (x, t)
∂t

)2

dtdx =
a2

2

∫
Ω

n∑
j=1

(
∂u (x, t)
∂xj

)2

dx. (1.8)

From (1.5)-(1.8) we obtain

ε (t) =
1
2

∫
Ω

(
∂u (x, t)
∂t

)2

dx+ ω

t∫
0

∫
Ω

n∑
j=1

(
∂2u (x, t)
∂xj∂t

)2

dtdx+

+
a2

2

∫
Ω

n∑
j=1

(
∂u (x, t)
∂xj

)2

dx ≡ 0.

Hence we obtain

∂u (x, t)
∂t

= 0,
∂2u (x, t)
∂xj∂t

= 0, ...,
∂u (x, t)
∂xj

= 0, (x, t) ∈ Q, j = 1, 2, ..., n. (1.9)

Taking into account that for homogeneous problem the initial data are identically
equal to zero and boundary condition (1.3) we obtain that

u (x, t) ≡ 0.

Theorem 1 is proved.
For construction of solution of mixed problem (1.1)-(1.3) we fulfil the Laplace

transformation over problem (1.1)-(1.3), and take into account estimate (1.4). Then
we obtain

−ϕ1 (x)− kϕ0 (x) + k2û (x, k)− ω∆n [−ϕ0 (x) + kû (x, k)] = a2∆nû (x, k) + f̂ (x, k) ,

where Re k ≥ −γ0, and the sign̂over the function denotes the Laplace transforma-
tion of this function by t. Hence we obtain(

−kω − a2
)
∆nû (x, k) + k2û (x, k) = ϕ1 (x) + kϕ0 (x)− ω∆nϕ0 (x) + f̂ (x, k) .

Denote
Φ (x, k) = ϕ1 (x) + kϕ0 (x)− ω∆nϕ0 (x) + f̂ (x, k) .

Then we obtain the following boundary-value problem equivalent to problem
(1.1)-(1.3) (

kω + a2
)
∆nû (x, k) + k2∆nû (x, k) = −Φ (x, k) , x ∈ Ω, (1.10)

û (x, k)|∂Ω = 0. (1.11)

For the solution of problem (1.10),(1.11) we introduce the following operator.
Consider the differential expression Ã = ∆n with domain of definition

D
(
Ã

)
=

{
W (x) : W (x) ∈ C2 (Ω) ∩ C

(
Ω̄

)
, W (x)|∂Ω = 0, ∆nW (x) ∈ L2 (Ω)

}
.
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The differential expression Ã with the domain of definition D
(
Ã

)
allows negative

definite self-adjoint extension of A in L2 (Ω). The spectrum of the operator A is
discrete, for its eigen values λi the inequality

0 > λ1 ≥ λ2 ≥ ... ≥ λl ≥ ..., lim
l→∞

λi = −∞ (1.12)

holds.
The eigen functions ψl (x) of the operator A corresponding to the eigen values λi

form basis in the space L2 (Ω).
Using theorem 3.6 from [4] (p.177) for solution of problem (1.10),(1.11) we obtain

û (x, k) =
∞∑
l=1

cl (k)ψl (x)
(kω + a2)λl − k2

, (1.13)

where λi are eigen values, ψl (x) are eigen functions of the Dirichlet problem for the
Laplace operator, and

cl (k) = −
∫
Ω

Φ (x, k)ψl (x) dx. (1.14)

Series in (1.13) converges in L2 (Ω). Later we’ll show that the series in (1.13) as
well as series obtained from it by termwise integration with respect to k converge
uniformly with respect to x in Ω under the definite condition on initial functions
ϕ0 (x) , ϕ1 (x) and on boundary ∂Ω of the domain Ω.

We transform the coefficients cl (k). From (1.14) we have

cl (k) = −c(1)
l − kc

(0)
l +

∫
Ω

∆ϕ0 (x)ψl (x) dx−
∫
Ω

f̂ (x, k)ψl (x) dx,

where
c
(j)
l =

∫
Ω

ϕj (x)ψl (x) dx, j = 0, 1.

Using the second Green formula and allowing for boundary condition (1.11), we
obtain ∫

Ω

∆ϕ0 (x)ψl (x) dx =
∫
Ω

ϕ0 (x) ∆ψl (x) dx = λlc
(0)
l ,

Then
cl (k) = −c(1)l − kc+ ωλlc

(0)
l − f̂l (k) ,

where
f̂l (k) =

∫
Ω

f̂ (x, k)ψl (x) dx

and for u (x, t) we obtain the expression

u (x, t) = − 1
2πi

ε+i∞∫
ε−i∞

∞∑
l=1

[
c
(1)
l + (k − ωλl) c

(0)
l

(kω − a2)λl − k2
ektdk

]
ψl (x) dx. (1.15)
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Later with the conditions on the data of problem (1.1)-(1.3) we show that we can
termwise integrate the series in (1.15). Then

u (x, t) =
1

2πi

∞∑
l=1

ψl (x)

c(1)l

ε+i∞∫
ε−i∞

ektdk

k2 − (kω + a2)λl
+ c

(0)
l

ε+i∞∫
ε−i∞

kektdk

k2 − (kω + a2)λl
−

−ωλl

ε+i∞∫
ε−i∞

ektdk

k2 − (kω + a2)λl
+

ε+i∞∫
ε−i∞

f̂l (k) ektdk

k2 − (kω + a2)λl

}
≡

≡ uϕ1
(x, t) + uϕ0

(x, t) + uf (x, t) . (1.16)

where ε > 0 is a sufficiently small number, uϕi
(x, t) is a solution of problem (1.1),

(1.2), (1.3) with initial data ϕi (x, t), and for data with index j 6= i ϕj (x, t) ≡ 0,
uf (x, t) is a solution of this problem at ϕ0 (x) ≡ 0, ϕ1 (x) ≡ 0.

We compute the integrals in (1.16). Denote

J1,l (t) =
1

2πi

ε+i∞∫
ε−i∞

ektdk

k2 − (kω + a2)λl
, J2,l (t) =

1
2πi

ε+i∞∫
ε−i∞

f̂l (k) ektdk

k2 − (kω + a2)λl
. (1.17)

The poles of integrands in (1.17) are at the points

k1,2 =
ωλl

2
±

√
ω2λ2

l

4
+ a2λl,

that are situated in the half-plane Re k ≤ 0. Applying the residue method we obtain

J1,l (t) =
e

 
ωλl
2 +

r
ω2λ2

l
4 +a2λl

!
t

2
√

ω2λ2
l

4 + a2λl

− e

 
ωλl
2 −

r
ω2λ2

l
4 +a2λl

!
t

2
√

ω2λ2
l

4 + a2λl

J2,l (t) = e

0
B@3ωλl

2 +

s
ω2λ2

l
4 +a2λl

1
CA

2

r
ω2λ2

l
4 +a2λl

e

 
ωλl
2 +

r
ω2λ2

l
4 +a2λl

!
t

−

− e

0
B@3ωλl

2 −

s
ω2λ2

l
4 +a2λl

1
CA

2

r
ω2λ2

l
4 +a2λl

e

 
ωλl
2 −

r
ω2λ2

l
4 +a2λl

!
t

.

By G.Borel theorem ([5], p.475)

uf (x, t) =
∞∑

l=1

ψl (x)
∫
Ω

ψl (x)

t∫
0

f (x, τ)
1

2πi

ε+i∞∫
ε−i∞

e(t−τ)kdk

(kω + a2)λl − k2

 dx. (1.18)

From (1.16)and (1.17) we obtain

uϕ0
(x, t) =

∞∑
l=1

c
(0)
l ψl (x) J2,l (t) , (1.19)
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uϕ1
(x, t) =

∞∑
l=1

c
(1)
l ψl (x) J1,l (t) , (1.20)

uf (x, t) =
∞∑
l=1

ψl (x)
∫
Ω

ψl (x)

t∫
0

[f (x, τ) J1,l (t− τ) dτ ] dx =

=
∞∑
l=1

ψl (x)

t∫
0

fl (τ) J1,l (t− τ) dτ . (1.21)

2. An estimate of a solution of mixed problem (1.1)-(1.3).
We first show some estimates that are necessary for estimating the solution of

problem (1.1)-(1.3).
Lemma 1. For all l = 1, 2, ... the estimate

Re

ωλl

2
+

√
ω2λ2

l

4
+ a2λl

 ≤ max
{
−a

2

ω
,
ω

2
λ1

}

holds.
Proof. Let

ω

2
≥ a

|λ1|
1
2

. Since λl satisfy the inequality (1.12), then

ωλl

2
+

√
ω2λ2

l

4
+ a2λl = − a2

ω

2
+

√
ω2

4
− a2

|λl|

≤ −a
2

ω
. (2.1)

Let now
a

|λl0+1|
1
2

<
ω

2
≤ a

|λl0 |
1
2

. Then from

Bl = |λl|

−ω
2

+

√
ω2

4
− a

|λl|


and from inequality it follows that at l = 1, 2, ..., l0

ReBl = −ω
2
|λl| ≤ −

ω

2
|λ1| , (2.2)

and at l ≥ l0 + 1 estimate (2.1) is valid for Bl. Then from (2.1) and (2.2) it follows
that fort all l

ReBl ≤ max
{
−a

2

ω
,
ω

2
λ1

}
= γ.

Lemma 1 is proved.
We can also show that for all l = 1, 2, 3, ... the inequality

Re

ωλl

2
−

√
ω2λ2

l

4
+ a2λl

 ≤ ω

2
λl ≤

ω

2
λ1 (2.3)
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holds.
Besides, if ω 6= 2a

|λl|
1
2

, l = 1, 2, 3, ... then∣∣∣∣∣∣
√
ω2λ2

l

4
+ a2λl

∣∣∣∣∣∣ ≥ εω
1
2 |λl| , (2.4)

where ε > 0 is a sufficiently small number.
We now pass to estimates uϕ0

(x, t) , uϕ1
(x, t) and uf (x, t) and their derivatives.

Theorem 2. Let ω 6= 2a

|λl|
1
2

, l = 1, 2, 3, ..., ∂Ω ∈ C(2[n
2 ]+8), ϕ0(x) ∈

H
(2[n

2 ]+8)
D (Ω). Then for uϕ0

(x, t) the estimate∥∥uϕ0
(x, t)

∥∥
C(|a|,β)(Ω)

≤ C (ω) eγt ‖ϕ0 (x)‖Hθ0 (Ω) (2.5)

holds, where θ0 = 2
([n

2

]
+ 1

)
+ |α| + 2β, 0 ≤ α, β ≤ 2, and γ has been defined in

lemma 1, C (ω) is some constant depending on ω.
Proof. Using lemma 1, estimates (2.3),(2.4) from (1.19) we obtain

∥∥uϕ0
(x, t)

∥∥
C(Ω) ≤ C (ω) eγt

∞∑
l=1

∣∣∣c(0)l

∣∣∣ ‖ψl (x)‖C(Ω) . (2.6)

It’s known that [6]

‖ψl (x)‖C(ν)(Ω) ≤ C |λl|
1
2([n2 ]+γ+1) (2.7)

and [3] (p.253)

c0l
2
n ≤ |λl| ≤ c1l

2
n , (2.8)

where C, c0, c1 are constants independent of l. From (2.6) and (2.7) we have

∥∥uϕ0
(x, t)

∥∥
C(Ω) ≤ C (ω) eγt

∞∑
l=1

∣∣∣c(0)l

∣∣∣ |λl|
1
2([n2 ]+1) . (2.9)

Applying the Cauchy-Bunyakowskii inequality in (2.8) we obtain

∥∥uϕ0
(x, t)

∥∥
C(Ω) ≤ C (ω) eγt

{ ∞∑
l=1

∣∣∣c(0)
l

∣∣∣2 |λl|2([
n
2 ]+1)

}1
2

×

=
{

|λl|−([n2 ]+1)
}1

2
. (2.10)

Since at any natural n

2
n

([n
2

]
+ 1

)
≥ 1 +

1
n
,
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then the second series in (2.10) by virtue of estimate (2.8) converges. Further, by
virtue of theorem 8 from [3] (p.253)

{ ∞∑
l=1

∣∣∣c(0)
l

∣∣∣2 |λl|2([
n
2 ]+1)

}1
2

≤ C ‖ϕ0 (x)‖
H

2

��
n
2

�
+1

�
(Ω)

, (2.11)

where C is a constant independent of ϕ0 (x).
From (2.10) and (2.11) we obtain∥∥uϕ0

(x, t)
∥∥

C(Ω) ≤ C (ω) eγt ‖ϕ0 (x)‖
H

2

��
n
2

�
+1

�
(Ω)

. (2.12)

We estimate now the derivatives uϕ0
(x, t). Under the conditions of the theorem

we can termwise differentiate the series in (1.19) with respect to x and t up to the
second order inclusively. Estimating the series obtained by differentiation of (1.19)
just as in (2.9)-(2.12) we obtain∥∥uϕ0

(x, t)
∥∥

C(|a|,β)(Ω) ≤ C (ω) eγt ‖ϕ0 (x)‖Hθ0 (Ω) ,

where θ0 = 2
([n

2

]
+ 1

)
+ |α|+ |2β|, C (ω) is a constant depending on ω.

Theorem 2 is proved.
We now estimate uϕ1

(x, t). The following theorem holds

Theorem 3. Let ω 6= 2a

|λl|
1
2

, l = 1, 2, 3, ..., ∂Ω ∈ C(2[n
2 ]+6), ϕ1 (x) ∈

H
(2[n

2 ]+6)
D (Ω). Then for solution of problems (1.1)-(1.3) uϕ1

(x, t) the following es-
timate holds ∥∥uϕ1

(x, t)
∥∥

C(|a|,β)(Ω) ≤ C (ω) eγt ‖ϕ1 (x)‖Hθ1 (Ω) , (2.13)

where θ1 = 2
([n

2

])
+ |α|+ 2β, 0 ≤ |α|, β ≤ 2.

Proof. Using (1.20) and estimate (2.7) we obtain

∥∥uϕ1
(x, t)

∥∥
C(Ω) ≤

∞∑
l=1

∣∣∣c(1)l

∣∣∣ ‖ψl (x)‖C(Ω) |J1,l (t)| ≤ ω−
1
2 ε−1

∞∑
l=1

∣∣∣c(1)l

∣∣∣ |λl|
1
2 ([n

2 ]−1) .

Further acting as in the estimate uϕ0
(x, t) we obtain∥∥uϕ1

(x, t)
∥∥

C(Ω) ≤ C (ω) eγt ‖ϕ1 (x)‖
H

2

��
n
2

��
(Ω)

.

For the derivatives
∂β+|α|

∂tβ∂xα1
1 ...∂xαn

n
u (x, t) analogously we obtain

∥∥uϕ1
(x, t)

∥∥
C(|a|,β)(Ω) ≤ C (ω) eγt ‖ϕ1 (x)‖Hθ1 (Ω) ,

C (ω, ε) is a constant depending on ω and ε, θ1 = 2
([n

2

])
+ |α|+ 2β.

Theorem 3 is proved.
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Theorem 4. Let ω 6= 2a

|λl|
1
2

, l = 1, 2, 3, ..., ∂Ω ∈ C(2[n
2 ]+6) and

t∫
0

‖f (x, τ)‖2
H2[n

2 ]+6(Ω)
dτ < +∞.

Then for the solution uf (x, t) of problem (1.1)-(1.3) the following estimate holds

‖uf (x, t)‖C(|a|,β)(Ω) ≤ C (ω)


t∫
0

‖f (x, τ)‖2Hθ1 (Ω) dτ


1
2

, (2.14)

where θ1 = 2
([n

2

])
+ |α|+ 2β, C (ω) is a constant depending on ω.

Proof. Estimating uf (x, t) by modulo from (1.21), using at that estimate (2.7)
and applying the Cauchy-Bunyakovskii inequality we obtain

‖uf (x, t)‖C(Ω) ≤ C (ω)
∞∑
l=1

|λl|
1
2([n2 ]−1)

t∫
0

|fl (τ)| eγ(t−τ)dτ ≤

≤ C (ω)

[ ∞∑
l=1

|λl|−([n2 ]+1)
]1

2

 ∞∑
l=1

|λl|2[
n
2 ]

 t∫
0

|fl (τ)| eγ(t−τ)dτ

2


1
2

. (2.15)

Applying (2.7) and (2.8) in (2.15) we obtain

‖uf (x, t)‖C(Ω) ≤ C (ω)

 ∞∑
l=1

|λl|2[
n
2 ]

t∫
0

|fl (τ)|2 dτ
t∫
0

e2γ(t−τ)dτ


1
2

≤

≤ C (ω)
[
1− e2λt

] 
t∫
0

[ ∞∑
l=1

|λl|2[
n
2 ] |fl (τ)|2

]
dτ


1
2

. (2.16)

By virtue of theorem 8 from [3] (p.253) and (2.16) we obtain

‖uf (x, t)‖C(Ω) ≤ C (ω)


t∫
0

‖f (x, τ)‖2
H

2

�
n
2

�
(Ω)

dτ


1
2

, . (2.17)

Differentiating uf (x, t) with respect to (x, t) and acting just as at estimate
uf (x, t) we obtain

‖uf (x, t)‖C(|a|,β)(Ω) ≤ C (ω)

 t∫
0

∞∑
l=1

|λl|2[
n
2 ]+|α|+2β |fl (τ)|2 dτ


1
2

.
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Hence we obtain

‖uf (x, t)‖C(|a|,β)(Ω) ≤ C (ω)


t∫
0

‖f (x, τ)‖2Hθ1 (Ω) dτ


1
2

.

Theorem 4 is proved.
Corollary of theorems 2-4. Let the conditions of theorems 2-4 be fulfilled.

Then for the solution of problems (1.1)-(1.3) the following estimate holds

‖u (x, t)‖C(|a|,β)(Ω) ≤ C (ω)

eγt
[
‖ϕ0 (x)‖H(θ0)(Ω) + ‖ϕ1 (x)‖H(θ1)(Ω)

]
+

+

 t∫
0

‖f (x, τ)‖2Hθ1 (Ω) dτ


1
2

 , (2.18)

where θ0, θ1 are determined in theorems 2 and 3.

Note that at ω =
2a

|λl|
1
2

the statements of theorems 2-4 remain valid only with

the difference that in estimates (2.5),(2.13),(2.14),(2.18) it appears the multiplier t

that is a contribution to the functions J1,l (t) and J2,l (t) at the points ω =
2a

|λl|
1
2

.
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