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ON SOME CONNECTIONS BETWEEN

RUNGE-KUTTA AND ADAMS METHODS

Abstract

The one- and multi-step methods whose classical representatives are Runge-
Kutta and Adams methods are popular methods of numerical solution of the
Cauchy problem for the ordinary differential equations. Each of these methods
has its lacks and advantages. Here one scheme is given with the help of which it’s
possible to obtain the Adams method from Runge-Kutta method and vice versa.

Introduction. As is known, the first direct numerical method has been worked
out by Euler (see [1]). The Euler method is developed in two directions as a result of
that the Runge-Kutta and Adams methods appeared. Some technicians called the
Adams method a developed form of the Runge-Kutta method (see, for example [1,
p.293]). It’s obvious that the Runge-Kutta and Adams methods cross at a point in
which the Euler method is found. Thus we obtain that the Euler method is developed
in two directions as a result of that the one- and multi-step methods appeared.

Taking into account that each of these directions has its advantage, some authors
tried to construct the methods that combine the best properties of Runge-Kutta
and Adams methods. As a result of such investigations the hybrid methods (see,
for example [2]) appeared. Here we define some connections between Adams and
Runge-Kutta methods.

1. Construction of k-step methods on the base of explicit Runge-Kutta form
methods.

Consider the following Cauchy problem

y′ = f (x, y) , y (x0) = y0. (1)

Assume that problem (1) has a unique solution y (x) that is defined on the seg-
ment [x0, X].

It’s known that by using the Runge-Kutta methods at every step we have re-
peatedly to compute the function f (x, y). Note that by increase of accuracy of the
method the amount of computations of the function f (x, y) also increases. More-
over, the computed values of the function f (x, y) at some fixed point aren’t used at
a neighboring point. For example, the following method

yn+1 = h (f (xn, yn) + f (xn + h, yn + hf (xn, yn))) /2 (2)

is the second order Runge-Kutta method. As it follows from description of method
(2), by increasing the values of variable n by 1 (unit), the values of the functions
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f (xn+1, yn+1) and f (xn+1 + h, hf (xn+1, yn+1)) are computed again. These facts
are the basic lacks of the Runge-Kutta methods.

In order on the base of method (2) to show the connection between Runge-Kutta
and Adams methods, we construct the Adams method. To this end we consider the
following scheme

ŷn+1 = yn + hf (xn, yn) , (3)

yn+1 = yn + h (f (xn, yn) + f (xn+1, ŷn+1)) /2. (4)

The indicated scheme is the predictor-correction method in which as a predictor the
Euler method is used, and as a correction the method of trapezoid is used. Therefore,
we can write method (2) subject to the Euler method in the following form

yn+1 = yn + h (f (xn, yn) + f (xn+1, ŷn+1)) /2,

that enters to a class of Adams methods.
Consider the third order Runge-Kutta method having the following form

yn+1 = yn + h (k1 + 4k2 + k3) /6, (5)

where

k1 = f (xn, yn) , k2 = f

(
xn +

h

2
, yn +

h

2
k1

)
, k3 = f (xn + h, yn − hk1 + 2hk2) .

In method (5) we substitute h for 2h. Then we have

yn+2 = yn + 2h (f (xn, yn) + 4f (xn + h, yn + hf (xn, yn)) +

+ f(xn + 2h, yn − 2hf (xn, yn) + 4hf (xn + h, yn + hf (xn, yn))) /6. (6)

Using the Euler method in correlation (6) we can rewrite it in the following form

yn+2 = yn + 2h (fn + 4fn+1 + f (xn + 2h, yn − 2hfn + 4hfn+1)) /6, (7)

where fm = f (xm, ym) (m = 0, 1, 2, ...).
Using the following scheme

yn+2 = yn − 2hfn + 4hfn+1 (8)

in method (7) we obtain

yn+2 = yn + h (fn + 4fn+1 + fn+2) /3. (9)

This method is the known Simpson method and enters to the class of Adams
methods. Note that method (5) has the third order, and method (9) has the fourth
order of accuracy. By obtaining method (9) from method (5) we used the Euler
method and method (8) each of them has the second order of accuracy. Since we
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use these substitutions in the function f (x, y), we can expect that as a result of
above mentioned substitutions, the obtained method (9) will have the third order of
accuracy. Really, if we denote by y (xn) an exact value of solution of problem (1)
at the point xn, then the error on step for the Euler method will have the following
form

εn+1 = y (xn+1)− yn+1 = Ch2 + O
(
h3

)
.

In method (6) we substitute the approximated values yn of solution of problem
(1) by exact ones. Then we have

y (xn+2) = y (xn) + 2hf (xn, y (xn)) + 4f(xn + h, y (xn) + hf (xn, y (xn))+

+f(xn + 2h, y (xn) + 2hf (xn, y (xn))+

+4f(xn + h, y (xn) + hf (xn, y (xn))))/6 + Rn, (10)

where Rn is an error of method (5). Since it is a representative of a class of the third
order Runge-Kutta methods, we can write the error on step in the following form

Rn = C1h
4 + O

(
h5

)
. (11)

In order to estimate the error of method (9), we rewrite correlation (10) in the form

y (xn+2) = y (xn) + h(f (xn, y (xn)) + 4f(xn+1, y (xn+1) +

+O
(
h2

)
) + f(xn+2, y (xn+2) + O

(
h3

)
))/3 + Rn. (12)

Hence we can write

y (xn+2) = y (xn) +
h

3
(f (xn, y (xn)) + 4f(xn+1, y (xn+1) +

+f(xn+2, y (xn+2))) + Rn + O
(
h3

)
. (13)

If we subtract relation (9) from (13), we obtain that the error of the method has the
following order

εn+2 = Ch3 + O
(
h4

)
. (14)

Here we assume that εn+1 = εn = 0, since we compute error on step, i.e. local error
of the method obtained from (5). Note that error of method (9) can be written in
the form (see for example [3)

εn+1 = Ch4 + O
(
h5

)
. (15)

Here it’s assumed that εn = 0. However, a local error of method (9) has the
following form (see [4])

Ch5 + O
(
h6

)
. (16)

As was noted method (5) has the third order of accuracy, but in it using super-
position in the function f (x, y) with respect to the second argument, the method of
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fourth order was constructed. In order to determine reason of increase the accuracy
of the obtained method, we consider the following fourth order Runge-Kutta method

yn+1 = yn + h (k1 + 2k2 + 2k3 + k4) /6, (17)

where

k1 = f (xn, yn) , k2 = f

(
xn +

h

2
, yn +

h

2
k1

)
,

k3 = f

(
xn +

h

2
, yn +

h

2
k2

)
, k4 = f (xn + h, yn + hk3) .

For clearness of method (17) we rewrite it in the following form

yn+1 = yn + h(f (xn, yn) + 2f(xn +
h

2
, yn +

h

2
f (xn, yn))+

+2f(xn +
h

2
, yn +

h

2
f(xn +

h

2
, yn +

h

2
f (xn, yn))+

+f(xn + h, yn + hf(xn +
h

2
, yn +

h

2
f(xn +

h

2
, yn +

h

2
f (xn, yn)))))/6, (18)

Using the explicit Euler method, we rewire (18) in the following form

yn+1 = yn + h(fn + 2f(xn +
h

2
, yn+ 1

2
) + 2f(xn +

h

2
, yn +

h

2
fn+ 1

2
)+

+f(xn + h, yn + hf(xn +
h

2
, yn +

h

2
fn+ 1

2
)))/6,

where fm = f (xm, ym) , fm+ 1
2

= f

(
xm +

h

2
, y

m+
1
2

)
, (m = 0, 1, 2, ...).

By using the implicit Euler method, we have

yn+1 = yn + h(fn + 2fn+ 1
2

+ 2fn+ 1
2

+ f(xn + h, yn + hfn+ 1
2
))/6. (19)

In method (19) we substitute h for 2h. Then we have

yn+2 = yn + 2h (fn + 4fn+1 + f (xn+2, yn + 2hfn+1)) /6. (20)

Using the midpoint method

yn+2 = yn + 2hfn+1,

in method (20), we obtain

yn+2 = yn + h(fn + 4fn+1 + fn+2)/3. (21)

Thus, the obtained method coincides with method (9). Note that method (21)
is obtained from method (17) that is the fourth order Runge-Kutta method. With
the help of the described scheme we constructed the two-step method of the fourth
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order accuracy on the base of the one-step methods of the third and fourth order
accuracy. However, if we use the Runge-Kutta methods of the fifth and higher order
for construction of k-steps methods (k ≥ 3), then as a result we obtain the unstable
methods. Therefore, the above-described scheme will be of useful at construction of
one- and two-step methods. Now we consider the construction of the Runge-Kutta
methods on base of the Adams method. Since the second order Runge-Kutta method
is easily obtained from the method of trapezoids, we consider the Adams method of
order higher than second order. It’s obvious that such schemes will be from k-step
methods, where k ≥ 2. By the Dahlquist result we obtain that if the method

k∑
i=0

αiyn+i = h

k∑
i=0

βifn+i (22)

is stable, then p ≤ 2 [k/2] + 2 (see [5]). Here the coefficients αi, βi (i = 0, 1, ..., k) are
some real numbers. Consequently, at k = 2 maximum order of accuracy for stable
methods is equal to 4, i.e. pmax = 4. Therefore for the construction of the Adams
stable methods with accuracy order p > 2, the quantity k should satisfy the condition
k ≥ 2.

Let’s consider the following method

yn+2 = yn+1 + h(5fn+2 + 8fn+1 − fn)/12. (23)

which is the Adams method and has the accuracy order p = 3.
It’s easy to note that for obtaining the one-step method, we should assume h =

h/2. Then method (23) takes the form of

yn+1 = yn+ 1
2

+ h(5fn+1 + 8fn+ 1
2
− fn)/24. (24)

Using the Euler method for computation of yn+ 1
2

from relation (24) we have

yn+1 = yn + h(5fn+1 + 8fn+ 1
2

+ 11fn)/24.

The obtained method is the Runge-Kutta type method. Now from this method
we construct semiexplicit Runge-Kutta type method. To this end we use the method
of trapezoids at h = h/2. Then we have

yn+1 = yn + h(11k1 + 8k2 + 5k3)/24, (25)

where k1 = f (xn, yn) , k2 = f(xn +
h

2
, yn + h(k1 + k2)/4), k3 = f (xn + h, yn + hk2) .

Batcher has suggested a such scheme earlier. However we can select k2 and k3 in
the following form

k2 = f(xn +
h

2
, yn +

h

2
k1), k3 = f (xn + h, yn + h (k1 + k3) /2) .
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Thus, we showed that with the help of the above described scheme, we can
construct implicit and semiexplicit Runge-Kutta methods. Now we consider the
constructed explicit methods of Runge-Kutta type. To this end we consider method
(23).

For obtaining the Runge-Kutta method form method (23) we substitute h for
h/2. Then we have

yn+1 = yn+ 1
2

+ h(5f(xn + h, yn+1) + 8f(xn +
h

2
, yn+ 1

2
)− f (xn, yn))/24. (26)

The free term yn+ 1
2

participating in the right hand side of (26) we compute with the
help of the following method:

yn+ 1
2

= yn + h(f(xn, yn) + f(xn +
h

2
, yn+ 1

2
))/4. (27)

Subject to (27), we rewrite method (26) in the following form

yn+1 = yn + h(5f(xn + h, yn+1) + 14f(xn +
h

2
, yn+ 1

2
) + 5f (xn, yn))/24. (28)

In the obtained method for computation of the quantities yn+1 and yn+ 1
2

partic-
ipating in the right hand side of (28), we use the Euler explicit method. Then we
can write the method obtained from (28) in the form of

yn+1 = yn + h(5f (xn, yn) + 14f(xn +
h

2
, yn +

h

2
f (xn, yn))+

+5f(xn + h, yn + hf (xn, yn))/24.

If denote by

k1 = f (xn, yn) , k2 = f(xn +
h

2
, yn +

h

2
k1), k3 = f (xn + h, yn + hk1) ,

then we can write
yn+1 = yn + h(5k1 + 14k2 + 5k3)/24. (29)

This method remind the Runge-Kutta method, however, it doesn’t enter to the class
of the third order Runge-Kutta methods.

Now we consider method (9).
For construction of the Runge-Kutta method on the base of Simpson’s method,

we substitute h for h/2. Then we have

yn+1 = yn + h(fn+1 + 4fn+ 1
2

+ fn)/6. (30)

Using the notation

k1 = f (xn, yn) , k2 = f(xn +
h

2
, yn +

1
2
hk1), k3 = f (xn + h, yn + 2hk2 − hk1) ,
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we can write method (30) in the following form

yn+1 = yn + h(k1 + 4k2 + k3)/6. (31)

At construction of method (31), it is used the Euler implicit method, next its
modification based on the following relation

y′
n+1 = 2y′

n+ 1
2

− y′
n + O

(
h3

)
.

Really, after substitution yn+1 = yn + hy′
n+1, y′

n+ 1
2

= f(xn +
h

2
, yn +

h

2
k1) and

y′
n = f (xn, yn) , we obtain method (31).

As is know method (31) is the third order Runge-Kutta method. Thus, we
showed that we can construct a multi-step method with constant coefficients from
each explicit Runge-Kutta method. However the inverse isn’t always valid, i.e. we
cannot construct an explicit Runge-Kutta method of appropriate orders from each
Adams method.

Note that with the help of the predictor-correction method we can extend the
domain of stability of the Adams method (see [6]). As is known, the boundary of the
domain of stability for forward jumping method is equal to zero. However applying
the predictor-correction method to these methods, we can extend their domain of
stability (see [7]).
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