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Frank Recker

ON THE ERGODICITY OF A MICROSCOPIC

TRAFFIC MODEL FOR A ROAD NETWORK

Abstract

Vehicular traffic is analyzed in computer simulations. Often, microscopic
traffic models, i.e. models in which every vehicle is modeled on its own, are
used. The high-dimensional microscopic states are transformed into macroscopic
values by taking the mean of some interesting values, like the traffic flow, the
traffic density, or the fundamental diagram. The question is, whether such an
approach delivers reliable results. Necessary for this is the existence of a Law of
Large Numbers.

We will prove an ergodic theorem for a prototypical traffic model with gen-
eral state space, based on a model introduced by Poppinga. From this ergodic
theorem some LLNs will be derived. Finally we will give possible extensions of
the model and discuss how the proof might be extended to such models.

1.Introduction

Vehicular traffic plays an important role in our society and much scientific work is
done in this area. One great challenge is to simulate macroscopic effects like traffic
densities or traffic flow in microscopic traffic models. The microscopic models are
usually stochastic, since deterministic models are unable to reproduce observed facts
like the occurrence from traffic jams “out of nothing” (c.f. [4], p. 109). These traffic
models are therefore stochastic processes Xt with t ∈ N0 or t ∈ R+. The macroscopic
values are functionals defined on the values of Xt. In fact, the practically important
functionals are the mean traffic density (measure in vehicles per meter), the mean
traffic flow (measured in vehicles per second), and the fundamental diagram. The
last describes the (mean) traffic flow as a function of the traffic density.

Observing these mean values one might ask, whether one can prove limit theorems
about these random variables. Of course, the answer depends on the chosen model.
In this paper, we analyse a model for vehicles driving on a network of roads. We
will prove, that the stochastic process is ergodic and hence the distribution converges
towards a stationary distribution. Furthermore, the mean values converge towards
the respective limit values, which can be expressed with the stationary distribution.

The notion of microscopic traffic models is quite old. It appeared already in [5].
The idea is always to derive traffic properties by modeling the behavior the single
vehicles. For an overview of the proposed models we refer to [4, 2]. The evaluation
of such a model is done as follows: Let the model run on a computer and compare
the results with what should occur. With this paper, we can show prototypically
for one model, that such a physical reasoning can be justified mathematically. For
all starting distributions, the distribution over the state space converges towards
a stationary distribution, and we get a law of large numbers for the mean values.
Questions of this kind are e.g. analyzed for traffic at a bottleneck in [3] or for traffic
on a circle in [7]. We will use a dynamic, inspired by the one introduced in [7], for
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the traffic on a network of roads. The proof technique should extend to various other
models and especially to those with a discrete state space, e.g. the various cellular
automaton models, which were developed during the last years, starting with [8] and
culminating in [9].

We will describe and formalize our model and the macroscopic values in section 2.
The theorems about the limit behavior of the model will be given in section . It will
be proved that the model is uniformly ergodic and hence that we have the desired
convergency of the distribution. Moreover we will get some Laws of Large Numbers
for the macroscopic values. The corresponding proofs are in section . With the
theoretical background of section 3 the derived values from this simulation are known
to come from consistent estimators for the corresponding theoretical values, which
justifies the use of these estimators in practical traffic observation or in simulations of
traffic. A discussion about possible extensions of the model and some open questions
will be given in section 5.

2. The Model

2.1. Overview

We will model the following traffic situation: Let there be n ∈ N = {1, 2, . . . } vehicles
which stay in an enclosed area, e.g. a city. Some vehicles are passive, i.e. they are
parking. Other vehicle are moving and we assume that they have a destination and
a route which connects their current position and the destination. As it was said in
the introduction, the model will be a Markov chain. The state space should therefore
contain for each vehicle the information where it is, where its destination is, and how
it will get there. The formal definition of the state space (H,H) will be given in
subsection 2.2.

The motion of the vehicles during the next time step will depend stochastically
on the positions of the other vehicles. We will model this as a (time discrete) Markov
chain and the dynamic will be described by a stochastic kernel P : H ×H → [0, 1].
Note however that we make no assumptions on the length (e.g. in seconds) of a time
step. The details are in subsection 2.3.

The state space (H,H) and the kernel P define a Markov chain (Xt)t∈N0 . The
macroscopic traffic values, i.e. the traffic density, the traffic flow, and the fundamen-
tal diagram, will be defined as functions of Xt. This is done in subsection 2.4.

2.2.The State Space

The road network is modeled as a directed graph (V,E) where each edge e has a
positive length l0(e). A two way road is simply modeled by two edges in the graph.
We assume, that the graph (V,E) is strongly connected, i.e. for every (x, y) ∈ V ×V ,
there exists a directed path from x to y. We will call the tripel (V,E, l0) a road
network.

A position of a vehicle in the graph will be described by a tuple (e, r), where e

is an edge and r is the distance from the beginning of the edge, i.e. 0 ≤ r < l0(e).
Every edge is isomorphic to an interval [0, l[ on the real line which is equipped with
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the Borel-σ-algebra B ∩ [0, l[. All edges together form the position-space. Formally,
the position space is the measure space (Q,Q, λ), where Q is the set of all positions,
Q is the respective Borel-σ-algebra, and λ is the respective Lebesgue measure.

Let W be the set of all directed paths in the graph. This set is countable and
thus (W,P(W )) is a measurable space. We call it the path space. In the following,
we will write a path w ∈ W usually in the form w = e1 . . . ek, with the ei being the
edges which form the path.

A route should consist of a starting point, a path, and a destination. Formally,
we define the route space to be

(H0,H0) := (Q×W ×Q,Q⊗W ⊗Q).

Before we give the definition of the state space, as the product of route spaces
we have to consider some aspects of routes. An element (a0, w0, b0) ∈ H0 might have
no real meaning since a0 might not lie on the first edge of w0 or b0 might not lie
on the last edge of w0. Nevertheless, H0 contains these routes and hence H0 keeps
its product space structure. However, the stochastic process will be concentrated
on the meaningful routes, which we will call valid. In the following we will use the
terminology “a point lies on an edge” or “a point is an inner point of the route”.
The meaning of this should be clear without formal definition.

Definition 2.1 Let (H0,H0) be a route space of a graph G. A route (a0, w0, b0) ∈
H0 is called valid, if a0 lies on the first edge of w0, b0 lies on the last edge of w0 and
no inner point of the route will be passed twice. w0 is called passive if w0 consists
of one edge and a0 = b0. w0 is active if w0 is valid and not passive.

Note, that passive routes are of course also valid. The above defined sets are all
measurable, which is shown in the next lemma.

Lemma 2.2 Let G be a road network and (H0,H0) the route space of G. The set
of all valid routes is measurable (i.e. an element of H0), the set of all passive routes
is measurable, and the set of all active routes is measurable.

Proof For the set of all valid routes consider a fixed path w0. The set of all valid
routes, which use w0 is trivially measurable and there are only countably many paths
in W . The same idea works for passive and for active routes.

The definition of the state space can now be given as the product of route spaces.

Definition 2.3 Let (V,E, l0) be a road network, let be n ∈ N and for all i =
1, . . . , n let (Hi,Hi) be a copy of the respective route space (H0,H0). Then

(H,H) :=
n⊗

i=1

(Hi,Hi)

is the state space for G and n. The set of all valid states is

Hv := {(x1, . . . , xn) ∈ H |xi is valid, i = 1, . . . , n}.

The set of all passive states is

Hp := {(x1, . . . , xn) ∈ H |xi is passive, i = 1, . . . , n}.
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Hv and Hp are of course measurable (c.f. Lemma 2.2). In the following we will
write a state x ∈ H also in the form (x1, . . . , xn) ∈ H or (a,w, b) =
= ((a1, w1, b1), . . . , (an, wn, bn)) ∈ H.

2.3.The Dynamic

The dynamic of the Markov chain is motivated by the following assumptions: A
vehicle is either passive or active. If the i-th vehicle is passive then in each time step
there is a probability pi that the vehicle gets activated again. If vehicle i is activated
then a destination (i.e. an edge and a position on that edge) is chosen with respect
to a measure µi on the point space (Q,Q). A valid route is chosen with respect to a
kernel Ji.

If the i-th vehicle is active, then in every time step it travels an amount which
depends on the free space that this vehicle has in front of it. We will make almost
no assumptions on this amount. The only requirements are: The amount can be
described by a family of Lebesgue densities and this amount should be a sensible
part of the free space (c.f. 3.2).

The rest of this subsection is used to describe this dynamic formally as a stochastic
kernel P : H ×H → R+. For this, we use n ∈ N, (V,E, l0), (Q,Q), (W,W), (H0,H0)
and (H,H) as defined above.

Assume, that x0 = (a0, w0, b0) ∈ H0 is a valid route with w0 = e1 . . . ek, k ≥ 1,
a0 = (e1, r1) and b0 = (ek, rk). Then the length of x0 is given by

l(x0) :=
k−1∑
i=1

l0(ei)− r1 + rk.

The mapping l : H0 → R+ is measurable (by a similar argument as in the proof of
Lemma 2.2) and l(a0, w0, b0) = 0 iff (a0, w0, b0) is passive.

Let x0 ∈ H0 be a valid route and let q ∈ Q be a point which lies on the route x0.
Then, without formal definition, we define dx0(q) to be the distance from the start
of x0 to q. If q′ ∈ Q is a point on the graph which does not lie on x0 then define
dx0(q

′) := +∞. With this we define the free space αi(x) for the i-th vehicle in a
state x:

Definition 2.4 For all i = 1, . . . , n define the function αi : H → R+ as

αi(x) := inf{dxi(aj) | j ∈ {1, . . . , n}, xj is active, dxi(aj) > 0},

with the notation

x = (x1, . . . , xn) = ((a1, w1, b1), . . . , (an, wn, bn)).

The mapping αi is measurable. αi(x) = +∞ means that at the moment the i-th
vehicle has free space in front of it up to its destination.

A new route for the i-th vehicle will be chosen in two steps. First a new destina-
tion is chosen via a destination measure. Afterwards a path in the graph is selected.
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The former is described via a probability measure µi on Q. The later is given by a
stochastic kernel Ji : (H0 × H0) × W → R. Together with the start and the end,
the path should give a valid and active route. To be precise we formalize this in
the following definition. Note that the set Ua0,b0 , which is used in Definition 2.5,
is measurable since W contains all subsets of W . Furthermore Ua0,b0 is not empty,
since the graph is strongly connected and we allow active routes where the starting
point and destination are the same (c.f. Definition 2.1).

Definition 2.5 For all a0, b0 ∈ Q define

Ua0,b0 := {w0 ∈ W | (a0, w0, b0) is active}.

A route-choice-kernel is a stochastic kernel J0 : (HG × HG) ×WG → [0, 1] such
that J0((a0, b0), Ua0,b0) = 1 for all a0, b0 ∈ Q.

Now we define how far a vehicle will move during the next time step. In our model
this space depends stochastically on the amount of free space in front of the vehicle
but it does not depend on the earlier positions of the vehicle. We will discuss possible
extensions of the model and the implications on the ergodic theorem in section 5.

Let the free space be α. Then the used part of the free space is realized stochas-
tically. The respective probability measure is given by a Lebesgue-density fα.

Definition 2.6 Let α ∈ R, α > 0. A mapping f(α, .) : R → R is a driving-
density, if f(α, .) is a Lebesgue-density with supp f(α, .) ⊂ [0, α].

The condition supp f(α, .) ⊂ [0, α] ensures that no accident occurs, i.e. that no
two vehicles are at the same position. We will now define the stochastic kernel P for
the dynamic. Without formal definition we will use the following notation. If x0 is
a valid route and a, b ∈ Q are points which lie on x0 and a lies before b or equals b

then x0|ba is the shortened route, starting in a using parts of the path of x0 and
ending in b.

The dynamic is given by a stochastic kernel. It formalizes the above described
intuition about the behavior of passive and active cars. A passive car with number
i stays passive with probability (1 − pi) and gets activated with probability pi. If
it is activated, then it gets a new destination and a route. This is the meaning of
equation (1) in Definition 2.7.

If the i-th vehicle is active, then it travels an amount which is given via the
Lebesgue-Density fi(αi(x), .). If the vehicle reaches its destination before driving
the whole (stochastically realized) distance then it stops earlier. In any case, the
destination does not change and the path will become a shortened path as defined
above. In the next definition we use again the notation dxi(a

′) for the distance from
the start of the route xi to a′.

Definition 2.7 For all i = 1, . . . , n let be pi ∈ (0, 1), let µi be a probability
measure on (Q,Q), let Ji be a route-choice-kernel and let fi be a driving-density.
Then we define the stochastic kernel Pi : H × Hi → R+ as follows: If xi is passive
then let be

Pi(x, .) := (1− pi)δxi + pi · (δai ⊗ µi ⊗ Ji). (1)
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If xi = (ai, wi, bi) is active then let be

Ri := {xi|bi

a′i
| a′i lies on xi},

(i.e. the set of all reachable states). Define

Pi(x, {(bi, wi, bi)}) :=
∫

[dxi (bi),+∞[

fi(αi(x), .) dλ. (2)

For each measurable set Si ⊂ Ri\{(bi, wi, bi)} define

Pi(x, Si) :=
∫

�
dxi (a

′
i)

����xi|
bi
a′

i
∈Si

�
fi(αi(x), .) dλ. (3)

We have Pi(x,Ri) =
∫
[0,+∞[ fi(αi(x), .) dλ = 1 for all valid x and hence the proba-

bility measure Pi(x, .) is uniquely determined on Ri. Finally we define Pi(x,Ci) :=
Pi(x, Ci ∩Ri) for all measurable sets Ci ∈ Hi.

If xi is not valid, define Pi(x, .) as an arbitrary (but fixed, i.e. equal for all invalid
x) measure which is concentrated on the valid states. The kernel P is then defined
as

P (x, .) :=
n⊗

i=1

Pi(x, .). (4)

P is a stochastic kernel for the Markov chain which describes the dynamic of our
model. From Definition 2.5 and Definition 2.7 follows for all x ∈ H

P (x,Hv) = 1.

Hence the paths of the Markov chain will stay in Hv with probability one (even when
it starts in an invalid state).

2.4. Macroscopic values

Suppose now that (Xt)t∈N is a Markov chain with state space (H,H) and transition
kernel P as defined above. Such a Markov chain always exists (c.f. [6], Theorem
3.4.1.). We call such a Markov chain a traffic model for the respective parameters.

Easy to prove is that (Xt, Xt+1)t∈N is a Markov chain with state space (H ×
H,H⊗H) and transition Kernel P ′ given by

P ′((x, x′), C × C ′) = δx′(C) · P (x′, C ′). (5)

A state of this Markov chain combines two consecutive states of the Markov chain (Xt)t∈N.
First we define the traffic flow as a function of the Markov chain. Informally, the

traffic flow in a point q ∈ Q at time t ∈ N is the number of vehicles that pass the
point from time t to time t + 1.
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Definition 2.8 Let (Xt, Xt+1)t∈N be as defined above. Let further be q ∈ Q and
t ∈ N. Then the traffic flow in q at time t is

Fq,t := hq ◦ (Xt, Xt+1)

with
hq(x, x′) := |{i ∈ {1, . . . , n} | q lies on x and q does not lie on x′}|

for all x, x′ ∈ H. The mean traffic flow in q at time t is

F q,t :=
1
t

t∑
k=1

Fq,k.

The traffic density in a measurable part C of the roads is the number of vehicles
in C divided by the length of C.

Definition 2.9 Let (Xt)t∈N be as defined above. Let further be C ∈ Q with
λ(C) > 0 and t ∈ N. Then the traffic density in C at time t is

DC,t := hC ◦Xt

with
hC(x) :=

|{i ∈ {1, . . . , n} |xi = (ai, wi, bi) is active, ai ∈ C}|
λ(C)

for all x ∈ H. The mean traffic density in C at time t is

DC,t :=
1
t

t∑
k=1

DC,k.

The fundamental diagram maps every possible traffic density r to the mean traffic
flow over all time steps where the traffic density was r.

Definition 2.10 Let (Xt, Xt+1)t∈N be as defined above, let be q ∈ Q, C ∈ Q with
λ(C) > 0, r ∈ {0, 1

λ(C) ,
2

λ(C) , . . . ,
n

λ(C)}, and let be t ∈ N. Then define

Φq,C,t(r) :=

∑t
k=1 Fq,k1{DC,k=r}∑t

k=1 1{DC,k=r}
, (6)

provided the density r is realized at least once (and hence we do not divide by zero).
Otherwise let the value be zero.

3. The Ergodic Theorem

Given a Markov chain (Xt)t∈N with state space (H,H) and transition kernel P , we
can look for the sequence of kernels (Pm)m∈N. It describes the evolution of the
Markov chain after m time steps. These kernels are usually defined inductively as
P 0(x,A) := 1A(x) and

Pm+1(x,A) :=
∫

Pm(y, A) P (x,dy)
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for all m ≥ 0.
The two main questions are:

1. Is there a limit distribution lim
m→∞

Pm(x, .)?

2. Do the mean values (as they are defined in subsection 2.4) converge, i.e. do we
have a LLN (Law of Large Numbers)?

Before answering these questions we have to define the type of convergence. We
will use the terminology as it is used in [6]. For the first question the distance of the
distributions is measured in terms of the total variation norm which is defined for
signed measures µ on H as

‖ µ ‖:= sup
A∈H

µ(A)− inf
A∈H

µ(A).

The following Definition 3.1 is taken from [6], equation (16.6). Recall, that an in-
variant measure π for the Markov chain is one which fulfills

π(A) =
∫

P (x,A) π(dx)

for all A ∈ H.

Definition 3.1 A Markov chain (Xt)t∈N with state space (H,H) and transition
kernel P is uniformly ergodic if there exists an invariant measure π and further-
more

lim
m→∞

sup
x∈H

‖ Pm(x, .)− π ‖= 0. (7)

If π fulfills equation (7) then π is in fact a probability measure (since Pm(x,H) =
1 for all m ∈ N). We remark that an aperiodic, irreducible Markov chain is uniformly
ergodic iff it fulfills Doeblin’s Condition (c.f. [6], Theorem 16.2.3). We will not make
use of this fact and hence we will not go into the details.

Our model is uniformly ergodic provided the driving-densities fulfill the condition
of the following theorem which is a generalization of Satz 2.1.3 in [7].

Theorem 3.2 [Ergodic Theorem] Let (fi(α, .))α>0, i = 1, . . . , n be the driving-
densities for a traffic model (Xt)t∈N. Assume that there are constants α0, c, β1 > 0
such that for all i = 1, . . . , n we have∫

[cα;α]

fi(α, .) dλ ≥ β1 for all 0 < α ≤ α0 (8)

and ∫
[cα0;α]

fi(α, .) dλ ≥ β1 for all α > α0. (9)

Then the traffic model (resp. the Markov chain (Xt)t∈N) is uniformly ergodic.
We remark that these conditions are not very strong. Stated informally we assume

that each vehicle uses a sensible amount of the free space with probability at least β1.
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For little free space (α ≤ α0) the sensible amount is cα and for much free space
(α > α0) the amount is cα0. The theorem will be proved in section 4.

Corollary 3.3 If the conditions of Theorem 3.2 are fulfilled for the traffic model
(Xt)t∈N then the Markov chain (Xt, Xt+1)t∈N is uniformally ergodic.

The corollary will also be proved in section 4. Having these theorems, we can
answer the second question. Herein we use the notation P∗-a.s. as in [6], p. 69: A
statement holds P∗-a.s. iff it holds Px-a.s. for all x ∈ H. As usual Px denotes the
distribution of the Markov chain if it starts in the state x.

Corollary 3.4 Let Xt be a traffic-model which fulfills the conditions of Theorem
3.2 with state space (H,H) and transition kernel P . Define P ′ as in equation (5)
and let π and π′ be the invariant measures for (Xt)t∈N resp. (Xt, Xt+1)t∈N. Then
we have

lim
t→∞

F q,t = Eπ′(hq) P∗-a.s.,

lim
t→∞

DC,t = Eπ(hC) P∗-a.s.,

and for r as in Definition 2.10 we have: If π(h−1
C ({r})) > 0, then

lim
t→∞

Φq,C,t(r) =
1

π(h−1
C ({r}))

∫
h−1

C ({r})
hqdπ′ P∗-a.s..

In the proof of Corollary 3.4 we will use Theorem 17.0.1 from [6]. It states the
following: Suppose that Xt is a positive Harris chain with state space (H,H) and
with invariant probability measure π. Assume further that g : H → R is an integrable
mapping. Then we have the following LLN:

lim
t→∞

1
t

t∑
k=1

g(Xk) =
∫

g dπ P∗-a.s..

Proof of Corollary 3.4 We have

F q,t =
1
t

t∑
k=1

hq(Xk, Xk+1)

and

DC,t =
1
t

t∑
k=1

hC(Xk).

The chains (Xt) resp. (Xt, Xt+1) are uniformly ergodic and hence they are posi-
tive Harris chains with invariant probability measures π resp. π′. Furthermore the
mappings hq and hC are bounded and thus integrable. Using the above quoted The-
orem 17.0.1 from [6] we conclude that we have a Law of Large Number for hq and
hC . This proves the first two equations. Further by equation (6) we have

Φq,C,t(r) =
1
t

∑t
k=1 g1(Xk, Xk+1)

1
t

∑t
k=1 g2(Xk)

,
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with g1(x, x′) = hq(x, x′) · 1h−1
C ({r})(x) and g2(x) = 1h−1

C ({r})(x). The mappings g1

and g2 are again bounded and we therefore have a LLN for the enumerator and the
denominator, which proves the third equation.

Corollary 3.4 can be formulated in the following way: The mean values are con-
sistent estimators for parameters of the traffic model. These parameters can thus
be estimated by computer simulations, which is the usual approach in applied sci-
ences. Our contribution is to prove that this approach is indeed justified from a
mathematical point of view.

4. The Proof

4.1. Overview

In this section we will prove Theorem 3.2 and Corollary 3.3. As in [7] we will do this
by showing that there are constants t0 ∈ N and β > 0 and a probability measure ν

on H such that for all x ∈ H, C ∈ H

P t0(x,C) ≥ βν(C). (10)

Equation (10) means that the whole space H is ν-small. Theorem 16.0.2 in [6] states,
that H is ν-small iff the Markov chain is uniformly ergodic. Thus equation (10)
would prove Theorem 3.2. Having this we can prove Corollary 3.3 by showing a
simar equation for the kernel in equation (5).

In the proof we will use the Chapman-Kolmogorov equation: Let be t1, t2 ∈ N
with t1 + t2 = t. Then we have for all x ∈ H, C ∈ H

P t(x, C) =
∫

P t2(y, C) dP t1(x, dy).

Given a set D ∈ H, which might depend on x and C, we have as a corollary

P t(x,C) ≥
∫

D
P t2(y, C) dP t1(x, dy). (11)

4.2. The main parts of the proof

Showing equation (10) requires a lot of details. In this section the key steps of the
proof are given. They are formulated as four lemmata which are proved in subsection
4.3. These lemmata can be explained with the intuition about traffic. The outline
of the proof was motivated by the corresponding proofs in [7].

For the rest of this section we use the notation of Theorem 3.2 and Corollary 3.3.
The first lemma states the following: There exists a constant γ > 0 such that with
probability at least β1 the following happens: If there is at least one active vehicle
then one vehicle will move at least cγ or one vehicle will reach its destination.

Lemma 4.1 Let L′ be the length of a shortest circle in the graph G, let be γ =
min{L′/n, α0} and let be x ∈ Hv\Hp. Then there is an i ∈ {1, . . . , n} such that xi is
active and

Pi

(
x,
{
x′i ∈ Hi | l(x′i) ≤ (l(xi)− cγ)+

})
≥ β1.
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Applying Lemma 4.1 often enough, we get the probability that all vehicles reach
there destinations and stay there passive. A detailed calculation (given in the next
subsection) shows that this probability can be bounded uniformly for all states x.
For the formulation we need some further notation. Let q ∈ Q be a point on the
graph. Then wq denotes the path which consists of one edge, namely the edge on
which q lies. Thus (q, wq, q) is the state of a passive vehicle being in the position q.

Lemma 4.2 There are constants t1 ∈ N and β2 ∈]0, 1[ such that for all x =
(ai, wi, bi)i=1,...,n ∈ Hv and all rectangular sets C ∈ H of the form

C = ((B1 × U1 ×B1)× · · · × (Bn × Un ×Bn)) (12)

with bi ∈ Bi, i = 1, . . . , n and wq ∈ Ui for all q ∈ Bi, i = 1, . . . , n we have

P t1 (x,C ∩Hp) ≥ β2.

The measure ν in equation (10) should be concentrated on a set which is visited by
the Markov process independently of the starting distribution. The previous lemma
indicates that we might use the set of all passive states for this. Following this idea
we define

T : Qn → H

by
T (q1, . . . , qn) := ((q1, wq1 , q1), . . . , (qn, wqn , qn)).

T (q1, . . . , qn) is the state where each vehicle is passive and the i-th vehicle stays at
the position qi. It is easy to prove that T is measurable. Further, we define the
probability measure ν over H as

ν :=

(
n⊗

i=1

µi

)
T

.

Suppose x is a state in Hv. The dynamic might evolve in the following way:
After t1 time steps (c.f. Lemma 4.2) all vehicles are passive. Then they get a new
destination with resp. to the destination measures µi, i = 1, . . . , n. After another t1
time steps they reach again there destination. The state of the Markov chain is then
in the set on which ν is concentrated. This is first proved for rectangular sets.

Lemma 4.3 There are constants t2 ∈ N and β ∈]0, 1[ such that for all x ∈ Hv

and all rectangular sets C ∈ H of the form

C = ((A1 × U1 ×B1)× · · · × (An × Un ×Bn)) (13)

we have
P t2(x, C) ≥ βν(C).
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With a standard method the result is afterwards extended to general measurable
sets C and to all (i.e. also invalid) states x ∈ H.

Lemma 4.4 There are constants t0 ∈ N and β ∈]0, 1[ such that for all x ∈ H

and all C ∈ H we have
P t0(x,C) ≥ βν(C).

Suppose now we had proven Lemma 4.4. Then equation (10) would follow and
hence, as explained above, Theorem 3.2 would hold. Proving Corollary 3.3 is now
quite easy and it is similar to the proof of Satz 4.2.9 in [7].

Proof of Corollary 3.3 Let P be the transition kernel for the Markov chain
(Xt)t∈N. P fulfills equation (10). Let t0, β and ν be chosen accordingly. The
transition kernel P ′ for the Markov chain (Xt, Xt+1)t∈N is given by equation (5).
We will show that P ′ fulfills an equation similar to (10) which proves the uniform
ergodicity of (Xt, Xt+1)t∈N. Let be t′0 := t0 + 1 and define the measure ν ′ on H⊗H
by extending

ν ′(C × C ′) :=
∫

C
P (x,C ′) ν(dx)

to the σ-algebra.
Let be (x, x′) ∈ H ×H and C ×C ′ ∈ H×H. By induction over t′0 one can prove

P ′t′0((x, x′), C × C ′) =
∫

C
P (y, C ′) P t0(x′,dy).

Using Lemma 4.4 we get

P ′t′0((x, x′), C × C ′) ≥ β

∫
C

P (y, C ′) ν(dy) = βν ′(C × C ′).

The inequality extends to the whole σ-algebra, which was to be shown.
It remains to show the lemmata 4.1 to 4.4. These rather technical proofs are

given in subsection 4.3.

4.3. The details of the proof

For the rest of this section let L be the length of all edges in the graph and let L′ be
defined as above, i.e. L′ is the smallest length of all circles in the graph.

Lemma 4.5 For all x = (x1, . . . , xn) ∈ Hv\Hp there exists an i ∈ {1, . . . , n} such
that xi is active and αi(x) ≥ L′

n .
Proof Assume, that the claim were not true. Since x /∈ Hp there has to be

an i ∈ {1, . . . , n} such that xi is active and hence αi(x) > 0. If there is even an
j ∈ {1, . . . , n} with αj(x) = +∞ then the statement of the lemma would be true (in
contrast to the assumption). Therefore, each active vehicle has a predecessor with a
distance which lies proper between 0 and L′

n . If we follow this link of predecessors
then eventually we will reach a vehicle which has already been visited before. The
edges on which the positions of the vehicles lie induce a circle in the graph with a
length greater than 0 and less then L′. This contradicts the construction of L′.
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Proof of Lemma 4.1 Chose the i from Lemma 4.5. From the measurability of
l follows the measurability of the set{

x′i ∈ Hi | l(x′i) ≤ (l(xi)− cγ)+
}

.

A straight calculation which uses equation (2) and equation (3) shows

Pi(x,
{
x′i ∈ Hi | l(x′i) ≤ (l(xi)− cγ)+

}
) =

∫
[min{cγ,l(xi)},+∞[

fi(αi(x), .) dλ

and thus

Pi(x,
{
x′i ∈ Hi | l(x′i) ≤ (l(xi)− cγ)+

}
) ≥

∫
[cγ,+∞[

fi(αi(x), .) dλ.

Case 1: γ = L′/n and αi(x) ≤ α0. Then αi(x) ≥ γ (by the choice of i) and
therefore ∫

[cγ,+∞[

fi(αi(x), .) dλ ≥
∫

[c·αi(x),αi(x)]

fi(αi(x), .) dλ ≥
(8)

β1.

Case 2: γ = L′/n and αi(x) > α0. By definition of γ we have γ ≤ α0 and hence∫
[cγ,+∞[

fi(αi(x), .) dλ ≥
∫

[cα0,αi(x)]

fi(αi(x), .) dλ ≥
(9)

β1.

Case 3: γ = α0. By the choice of i we have αi(x) ≥ L′

n ≥ γ = α0. We can assume
that αi(x) > α0 since otherwise this case is covered by case 1. Then we have∫

[cγ,+∞[

fi(αi(x), .) dλ ≥
∫

[cα0,αi(x)]

fi(αi(x), .) dλ ≥
(9)

β1.

Proof of Lemma 4.2 Let be I1(x) := {i ∈ {1, . . . , n} |xi is active} and let be
I2(x) := {i ∈ {1, . . . , n} |xi is passive}. For each i in I1(x) let Ri be the set of all
reachable states, as defined in Definition 2.7 and let

R′
i :=

{
x′i ∈ Hi | l(x′i) ≤ (l(xi)− cγ)+

}
.

Define further

D1(x) :=
⋃

i∈I1(x)

(
R′

i × ×
j∈I1(x)\{i}

Rj

)
,

D2(x) := ×
i∈I2(x)

{xi},

and
D(x) := D1(x)×D2(x).

The set D(x) contains all states which are reached in such a way that all passive
vehicles stay passive and at least one active vehicle moves according to Lemma 4.1.
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Now fix the i ∈ I1(x) which exists due to Lemma 4.1. The set D1(x) includes the
set R′

i××j∈I1(x)\{i}Rj . Using equation (4) we have therefore

P (x,D(x)) ≥ Pi(x, R′
i) ·

∏
j∈I1(x)\{i}

Pj(x,Rj) ·
∏

j∈I2(x)

Pj(x, {xj}).

We have Pi(x,R′
i) ≥ β1 by the choice of i. For all j ∈ I1(x)\{i} we have Pj(x,Rj) = 1

(c.f. Definition 2.7). Finally for each j ∈ I2(x) we have Pj(x, {xj}) = 1 − pj (c.f.
equation (1)). Thus we have

P (x,D(x)) ≥ β1(1− pi)|I2(x)|.

Define pmax := max{pi | i = 1, . . . , n}. Then

P (x, D(x)) ≥ β1(1− pmax)n. (14)

We define the sequence of sets (Et(x))t∈{1,...,n} by E0(x) := {x} and

Et+1(x) :=
⋃

y∈Et(x)

D(y).

Et(x) is the set of all states that are reachable in t time steps such that in every time
step all passive vehicles stay passive and for at least one active vehicle we know that
it moves a distance of cγ (as defined in Lemma 4.1) or reaches its destination. In
the state x the total length of all active routes is at most Ln and there are at most
n active vehicles. Hence for t1 ≥ nL

cγ + n the set Et1 contains only passive states, i.e.
Et1 ⊂ Hp. Since the destinations of the vehicles never change, we have in fact

Et1 = {((b1, wb1 , b1), . . . , (bn, wbn , bn))},

and hence Et1 ⊂ C. From equation (11) follows by using equation (14) t1-times

P t1(x,Et1) ≥ (β1(1− pmax)n)t1 .

The lemma is therefore true for β2 := (β1(1− pmax)n)t1 .
In analogy to the definition of wq for q ∈ Q we define now qw. Let be w ∈ W

(i.e. w is a path in the graph) and let |w| be the number of edges in w. Then

qw :=
{
∅ if |w| 6= 1
{q ∈ Q | q lies on w} if |w| = 1

Accordingly we define for a set of paths U ⊂ W

qU :=
⋃

w∈U

qw.

With this we have for all q ∈ Q, U ⊂ W

wq ∈ U ⇐⇒ q ∈ qU . (15)



Transactions of NAS of Azerbaijan
[On the 1Ergodicity of a Microscopic ...]

179

Lemma 4.6 Let be x = (a,w, b) ∈ Hp and let C ∈ H be a rectangular set of the
form

C = (A1 × U1 ×B1)× · · · × (An × Un ×Bn) .

Let furthermore be

C ′ :=
{
(a′, w′, b′) ∈ Hv | (a′i, w′

i, b
′
i) is active, b′i ∈ Ai ∩ qUi ∩Bi, i = 1, . . . , n

}
and pmin := min{pi | i = 1, . . . , n}. Then we have

P
(
x,C ′) ≥ pn

min · ν(C).

Proof All routes xi are passive, i = 1, . . . , n. The set C ′ contains no passive
states. Using equation (1) we get

P
(
x,C ′) =

n∏
i=1

pi · µi(Ai ∩ qUi ∩Bi) ≥ pn
min

n∏
i=1

µi(Ai ∩ qUi ∩Bi).

For all q = (q1, . . . , qn) ∈ Qn we get with equation (15)

T (q) ∈ C ⇐⇒ (qi, wqi , qi) ∈ Ai × Ui ×Bi (i ∈ {1, . . . , n})
⇐⇒ qi ∈ Ai ∩ qUi ∩Bi (i ∈ {1, . . . , n})

and hence
n∏

i=1

µi(Ai ∩ qUi ∩Bi) = ν(C).

Proof of Lemma 4.3 We define t2 := 2t1 + 1 and β := β2
2p

n
min, where t1 and

β2 are chosen according to Lemma 4.2. Furthermore let be

D := (((A1 ∩ qU1 ∩B1)× U1 × (A1 ∩ qU1 ∩B1))× . . .

×((An ∩ qUn ∩Bn)× Un × (An ∩ qUn ∩Bn))).

Obviously, D ⊂ C. Define

C ′ := {(a′, w′, b′) ∈ Hv | (a′i, w′
i, b

′
i) is active, b′i ∈ Ai ∩ qUi ∩Bi, i = 1, . . . , n}.

Let x′ = (a′, w′, b′) ∈ C ′ be arbitrary. Then x′ ∈ Hv and D is of the form of the C

in equation (12). Furthermore we have b′i ∈ Ai ∩ qUi ∩ Bi by the definition of C ′.
Finally for all q ∈ Ai ∩ qUi ∩ Bi we have wq ∈ Ui (c.f. equation (15)). Hence x′ and
D fulfill the conditions of Lemma 4.2 and we get

P t1(x′, C) ≥ P t1(x′, D ∩Hp) ≥ β2.

Also from Lemma 4.2 we get
P t1(x,Hp) ≥ β2.

Let x′′ ∈ Hp be arbitrary. Then x′′ (instead of x), C and C ′ fulfill the conditions of
Lemma 4.6 and hence we get

P (x′′, C ′) ≥ pn
minν(C).
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From equation (11) follows

P t2(x,C) ≥
∫

Hp

∫
C′

P t1(x′, C) P (x′′,dx′) P t1(x,dx′′).

The above stated inequalities thus yield

P t2(x,C) ≥ β2
2p

n
minν(C).

Proof of Lemma 4.4 Let be t2 and β as in Lemma 4.3.
For every set-system E ′ ⊂ H we denote by σ(E ′) the σ-algebra generated by E ′

and we denote by δ(E ′) the generated Dynkin System, i.e. the intersection of all E ′
including Dynkin Systems (c.f. [1], chapter 2). Define

D := {C ∈ H |P t2(x, C) ≥ βν(C), P t2(x,H\C) ≥ βν(H\C) for all x ∈ Hv}

and
E := {C ∈ H |C is of the form of the C in equation (13)}.

The set E is intersection stable, i.e. for all A,B ∈ E we have A ∩ B ∈ E . Hence
δ(E) = σ(E) ([1], Theorem 2.4).

Let be x ∈ Hv and C ∈ E . From Lemma 4.3 follows P t2(x,C) ≥ βν(C). The set
H\C is the complement of a rectangular set. Therefore, it and can be written as the
disjoint union of 3n rectangular sets Ci, i = 1, . . . , 3n. Thus, we have

P t2(x,H\C) =
3n∑
i=1

P t2(x,Ci) ≥
Lemma 4.3

3n∑
i=1

βν(Ci) = βν(H\C).

Hence C ∈ D. Since x and C where arbitrary we have E ⊂ D.
From β < 1 follows H ∈ D. For all D ∈ D we have by definition H\D ∈ D. Let

(Dn)n∈N be a sequence of pairwise disjoint sets from D. The measures P t2(x, .) and
ν are σ-additive and thus ∪n∈NDn ∈ D. Therefore, D is a Dynkin-System and hence
δ(E) ⊂ D.

By definition of H we have σ(E) = H. Together this implies

H = σ(E) = δ(E) ⊂ D

and thus we have for all x ∈ Hv and C ∈ H

P t2(x,C) ≥ βν(C).

Define t0 := t2 + 1. Then for all x ∈ H (especially for x /∈ Hv) and all C ∈ H we
conclude from equation (11)

P t0(x,C) ≥
∫

Hv

P t2(x′, C) P (x, dx′) ≥ βν(C).
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5. Conclusion and Open Questions

In this paper, a stochastic process which models the traffic on a network of roads is
presented. It is proved that this process is uniformly ergodic and hence the mean
random variables converge towards limits. Furthermore these limits can be seen as
parameters of the invariant distribution and the mean random variables are consistent
estimators for these parameters. This delivers the mathematical justification for the
definition of the mean values which are observed in practice.

Using these consistent estimators we can determine the density, the flow and the
fundamental diagram for given graphs and driving-densities. This might lead to a
deeper understanding of the invariant measure and how it depends on the graph
structure.

Of course, our model can be improved in various ways. One might think of using
the speed or even the acceleration. This can be modeled via a Markov chain which
simulates a finite memory, i.e. there is a fixed k ∈ N such that at time t a state in the
model contains the positions of the vehicles at time points t−k, t−k +1, . . . , t. This
might be quite useful in practical applications. We think however that it should be
possible to generalize the theorems. If one can proof a version of Lemma 4.1 and the
destinations of the vehicles are chosen in such a way that the system mixes somehow,
then the ergodic proof should work and thus the LLNs should hold.

Similarly, it should be possible to prove similar ergodic theorems for traffic models
with discrete state space, as e.g. the cellular automaton models in [8, 9].

Acknowledgments. I thank Prof. O. Moeschlin for drawing my attention on
this topic and many supporting discussions about the model.
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