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ONE-DIMENSIONAL SCHRÖDINGER OPERATOR

WITH δ′-INTERACTION

Abstract

In the present paper some self-adjoint operator A that is one of possible

realizations of the formal operator − d2

dx2
+βδ′ (x) is defined in the space L2 (R).

The spectrum of the operator A is investigated.

Spectral properties of one-dimensional Schrödinger operator with δ′-interactions
and some of their generalizations are studied in [1-7].

Recall the definition of one-center δ′-interaction in one-dimensional case for the
Schrödinger operator ([1], ch.I.4). In the space L2 (R) it is considered the operator

Eβ = − d2

dx2
, β ∈ R = (−∞,+∞) (1)

with dense domain of definition

D (Eβ) =
{
f ∈ W 2

2 (R\ {0}) : f ′ (+0) = f ′ (−0) , f (+0)− f (−0) = βf ′ (0)
}

. (2)

In quantum mechanics ([1], ch.I.4) the self-adjoint operator Eβ by definition
describes the δ′-interaction with center at the point zero and corresponds to the

formal operator − d2

dx2
+ βδ′ (x) in the space L2 (R), where δ′ (x) is the derivative

of Dirac’s delta-fucntion. As is noted in [5], the self-adjoint operator Eβ doesn’t
describe the δ′-interaction in an ordinary sense. In fact, we can show that the
operator Eβ coincides with the operator B:

Bf = −d2f

dx2
+ βf ′ (0) δ′ (x) , D (B) = D (Eβ) .

We can be convinced in it showing that the resolvents of the operators Eβ and B

coincide.
In fact the δ′-interaction of the Schrodinger operator may be connected namely

with the operator

− d2

dx2
+ βδ′ (x) . (3)

Therefore, naturally, there appears the question [5]: which self-adjoint operator
in the space L2 (R) is possible realization of formal operator (3)?

In the paper [5] the δ′-interaction of the Schrodinger operator is defined as a
limit as ε → +0 of the operators

H̃α,λ,ε = − d2

dx2
+̇

λ

εα
[δ (x− ε)− δ (x + ε)] , ε > 0, α > 0.
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It happens that a strong resolvent limit of the operators H̃α,λ,ε is not connected
with operator (3). Therefore, this approach doesn’t respond to the stated above
question.

To our view, the construction of a selfadjoint operator corresponding to the
formal operator (3) is connected with definition of the product δ′ · f where the
fucntion f (x) and its derivative f ′ (x) have the first order discontinuity at the point
x = 0. Note that for such functions f (x) product δ′ · f is defined amibiguosly.

In the present paper the product δ′ · f is defined by the equality

δ′ · f = −f ′ (+0) + f ′ (−0)
2

δ (x) +
f (+0) + f (−0)

2
δ′ (x) . (4)

In the case f (x) ∈ C1 (R) formula (4) turns into the known formula

δ′ · f = −f ′ (0) δ (x) + f (0) δ′ (x) .

Now we state the method suggested in this paper for construction of self-adjoint
operator A, corresponding to formal operator (3).

Consider in the space L2 (R) the operator

Af = −d2f

dx2
+ βδ′ (x) f , β ∈ R (5)

with dense domain of definition D (A) consisting of the functions f ∈ W 2
2 (R\ {0})

and satisfying the boundary conditions
(β − 2) f (+0) + (β + 2) f (−0) = 0 ,

(β + 2) f ′ (+0) + (β − 2) f ′ (−0) = 0 .

(6)

It is easy to check that A is a closed symmetric operator in the space L2 (R).
In this paper the self-adjointness of A is proved and the spectrum of the oper-

ator A is studied. Besides, integrability of the resolvent Rz (A) = (A− zE)−1 is
established in the space L2 (R).

Theorem 1. The operator A is self-adjoint in the space L2 (R). The resolvent
Rz (A) is an integral operator in L2 (R) with kernel

G (x, y; z) = − 1
2i
√

z
ei
√

z|x−y|+

+
β2 (1− sign x · sign y)− 2β (sign x + sign y)

2i
√

z
(
4 + β2

) ei
√

z(|x|+|y|) , (7)

(x, y ∈ R, z /∈ [0,+∞)) .

Proof. The operator A is close and symmetric. Therefore it suffices to show
that if Jmz 6= 0 then z ∈ ρ (A), where ρ (A) is a resolvent set of the operator A.

Find the resolvent of the operator A. In the space L2 (R) solve the equation

Af + λ2f = g , g (x) ∈ L2 (R) , λ > 0 .
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By (4) we can write this equation in the following form

− d2f

dx2
− β

f ′ (+0) + f ′ (−0)
2

δ (x) + β
f (+0) + f (−0)

2
δ′ (x) + λ2f = g. (8)

Adding Fourier transformation to equation (8) and considering that

F

[
d2f

dx2

]
= ξ2F [f ] , F [δ (x)] = 1 , F

[
δ′ (x)

]
= −iξ ,

we get

F [f ] =
f ′ (+0) + f ′ (−0)

2
β

ξ2 + λ2 +
f (+0) + f (−0)

2
iβξ

ξ2 + λ2 +
1

ξ2 + λ2 F [g] .

Now, we apply the inverse Fourier transformation and use the known formulae

F−1

[
ξ

ξ2 + λ2

]
= − i sign x

2
e−λ|x|, F−1

[
1

ξ2 + λ2

]
=

1
2λ

e−λ|x| ,

F−1

[
1

ξ2 + λ2 F [g]
]

= F−1

[
1

ξ2 + λ2

]
∗ g .

Then we find

f (x) =
f ′ (+0) + f ′ (−0)

4λ
βe−λ|x|+

+
f (+0) + f (−0)

4
β sign x · e−λ|x| +

1
2λ

∫
R

e−λ|x−y|g (y) dy. (9)

Find the quantities f (+0) , f (−0) , f ′ (+0) and f ′ (−0). Pass in (9) to limit as
x → +0. Then

f (+0) =
f ′ (+0) + f ′ (−0)

4λ
β +

f (+0) + f (−0)
4

β +
1
2λ

∫
R

e−λ|y|g (y) dy . (10)

Further we calculate the derivative f ′ (x) and in the obtained equality we pass to
limit as x → +0:

f ′ (+0) = −f ′ (+0) + f ′ (−0)
4λ

β−

− f (+0) + f (−0)
4

βλ +
1
2

∫
R

e−λ|y|sign y · g (y) dy . (11)

Solving the system composed of equations (6), (10) and (11) with respect to
f (+0), f (−0), f ′ (+0) and f ′ (−0) we find

f (+0) =
β (2 + β)

2
(
4 + β2

)
λ

∫
R

e−λ|y|sign y · g (y) dy +
2 + β(

4 + β2
)
λ

∫
R

e−λ|y|g (y) dy ,

f (−0) =
β (2− β)

2
(
4 + β2

)
λ

∫
R

e−λ|y|sign y · g (y) dy +
2− β(

4 + β2
)
λ

∫
R

e−λ|y|g (y) dy ,
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f ′ (+0) =
2− β

4 + β2

∫
R

e−λ|y|sign y · g (y) dy − (2− β) β

2
(
4 + β2

) ∫
R

e−λ|y|g (y) dy ,

f ′ (−0) =
2 + β

4 + β2

∫
R

e−λ|y|sign y · g (y) dy − (2 + β) β

2
(
4 + β2

) ∫
R

e−λ|y|g (y) dy .

Taking the obtained expressions into account in (9), after simple calculations we
get

f (x) =
∫
R

G
(
x, y;−λ2

)
g (y) dy , (12)

where
G

(
x, y;−λ2

)
=

1
2λ

e−λ|x−y|−

− β2 (1− sign x · sign y)− 2β (sign x + sign y)
2

(
4 + β2

)
λ

e−λ(|x|+|y|) . (13)

If λ ∈ (0,+∞) and β ∈ R then integral operator (12) is bounded in L2 (R),
and consequently, the inverse operator

(
A + λ2E

)−1 exists and bounded in L2 (R).
Therefore (

A + λ2E
)−1

g (x) =
∫
R

G
(
x, y;−λ2

)
g (y) dy, g ∈ L2 (R) ,

and −λ2 ∈ ρ (A).
Continuing analytically G

(
x, y;−λ2

)
to a complex plane with crack along a

positive semi-axis we get that Rz (A) is an integral operator and the kernel G (x, y; z)
has representation (7). As a result, we get that if Jmz 6= 0, then z ∈ ρ (A).
Consequently, A is a self-adjoint operator in the space L2 (R). The theorem is
proved.

The structure of the spectrum of the operator A is described by the following
theorem.

Theorem 2. The essential spectrum of the operator A coincides with absolute
continuous part of the spectrum A, and

σ (A) = σess (A) = σac (A) = [0,+∞) . (14)

Proof. Let A0 be a minimal operator in L2 (R) generated by the expression

−d2f

dx2
. It is known that A0 is a nonnegative self-adjoint operator and the resolvent

Rz (A0) , z /∈ [0,+∞) is an integral operator in L2 (R) with kernel

G0 (x, y; z) = − 1
2i
√

z
ei
√

z|x−y| .

The equalities

σ (A0) = σess (A0) = σac (A0) = [0,+∞)

are valid.
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Denote

B =
(
A0 + λ2

0E
)−1 −

(
A + λ2

0E
)−1

, λ0 > 0, −λ2
0 ∈ ρ (A) ∩ ρ (A0) .

The operator B is an integral operator in L2 (R) with kernel

K (x, y) =
β2 (1− sign x · sign y)− 2β (sign x + sign y)

2
(
4 + β2

)
λ0

e−λ0(|x|+|y|) .

Since K (x, y) ∈ L2 (R×R), then β is a Hilbert-Schmidt operator and conse-
quently is compact. By Weyl’s theorem ([8], theorem XIII.14) the essential spectra
of the operators A and A0 coincide:

σess (A) = σess (A0) = [0,+∞) . (15)

It follows from representation (13) that B is a finitedimensional operator. Ac-
cording to the known theorem ([9], ch. X, theorem 4.2) absolutely continuous parts
of the operators A and A0 are unitary equivalent and in particular, absolutely con-
tinuous parts of the spectra A and A0 coincide

σac (A) = σac (A0) = [0,+∞) .

Hence and from (15) we get (14). The theorem is proved.
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