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Malik-Bakhish A. BABAEV

FINDING THE EXTREMALS OF THE OPTIMAL
APPROXIMATION ON THE SET DIFFERENT

FROM PARALLELEPIPED

Abstract

The suitable formula for calculation of the best approximation is found and
the best approximate function in approximation of the function of m groups
variables by the sums of the functions depending on m − 1 groups of variables
at the boundary of multivariate parallelepiped is constructed. The formulae are
also constructed in approximation on an arbitrary set containing the domain of
this parallelepiped.

The problems of exact calculation and the more, finding the extremal function
are very important in approximation theory and belong to hardly solved problems
of this theory.

In the paper the convenient formula for calculation of the best approximation was
found and the best approximation function in approximation of the function of m
groups of variables by the sums functions depending on m−1 groups on the bound-
ary of multivariate parallelepiped is constructed. Such formulae are constructed
in approximation on arbitrary set containing the boundary of this parallelepiped.
These problems were previously solved by the author in approximation on full mul-
tivariate parallelepiped [1], and in case of functions of two variables on the boundary
of rectangle with additional limitation on approximated function [2].

Let Π = Π (a, h) =
{
x ∈ Rn/ai ≤ xi ≤ ai + hi, i = 1, n

}
be n-dimensional paral-

lelepiped. Choosing the numbers 0 ≤ k0 < k1 < ... < km = n denote
K = (k0, k1, ..., km) , |K| = m. Consider the group the variables tj =

(
xk+1

j−1
, ..., xkj

)
,

j = 1,m and let t = (t1, ..., tm). Further, denote by

Dm =
{
ε = (ε1, ..., εm) , εj = 0, 1; j = 1,m

}
the set of vertices of m-dimensional unit cube and let

δ (ε) =
m∑

j=1

(1− εj) .

Consider the mapping

g (ξ, τ) : Dm → Π (ξ, τ)

of the set Dm onto the set of vertices of n-dimensional parallelepiped Π (ξ, τ)

g (ξ, τ) =
(
ξ1 + ε1τ1, ..., ξk1

+ ε1τk1 , ..., ξk+1
m−1

+ ξkm
+ εmτkm

)
.

For arbitrary set Q ⊂ Π (ξ, τ) denote by MK = MK (Q) the class of functions
f = f (x) : Rn → R, x ∈ Q satisfying the condition∑

ε∈D

|K|
(−1)δ(ε) f (g (ξ, τ)) ≥ 0.
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for an arbitrary parallelepiped Π (ξ, τ) with the vertices from Q. It is evident that
if the set Q is with “meat”, i.e., contains a part of positive n-dimensional measure
then such parallelepipeds Π (ξ, τ) will be many, and these parallelepipeds may not
belong to the set Q.

We’ll sometimes use the notation f (t) , f (t1, ..., tm) instead of f (x) , f (x1, ..., xn)
assuming that this will not lead to misunderstanding. We’ll determine by

∆δi
f (t) =

{
f (t\ti, ti + δi)− f (t) , if the points t and (t\ti, ti + δi) ∈ Q
0, if t or (t\ti, ti + δi) /∈ Q,

the finite difference of the function f relative to the group of the variables
ti =

(
xk+1

i−1
, ..., xki

)
with vector-step δi =

(
rk+1

i−1
, ..., rki

)
and the mixed difference

f by the groups of the variables t1, ..., tk relative to the corresponding vector-steps
δ1, ..., δk we’ll determine by

∆δ1...δk
f (t) = ∆δk

(
∆δ1...δk−1

f (t)
)
.

Introduce the notation

ci =
(
ak+1

i−1
, ..., aki

)
, di =

(
ak+1

i−1
+ hk+1

i−1
, ..., aki

+ hki

)
;

m = {1, ...,m} , Ip = {i1, ..., ip} , Jq = {j1, ..., jq} ;
Ip, Jq ⊂ m, Ip ∩ Jq = ∅, pq = m\ (Ip ∪ Jq) ; p, q = 0,m;

(a)Ip
=

(
ai1 , ..., aip

)
, (a + h)Jq

=
(
aj1 + hj1 , ..., ajq + hjq

)
;

(a)I0
= (a + h)J0

= ∅.

Introduce the class WK = WK (Q) of the functions f for all x ∈ Q satisfying the
conditions

[m/2]∑
k=0

∑
I2k⊂m

∆(d1−t1)...(ti1−ci1)...(ti2k
−ci2k)...(dm−tm)f (t1, ..., ci1 , ..., ci2k

, ..., tm) ≥ 0 (1)

[m+1
2 ]∑

k=0

∑
I2k⊂m

∆
(d1−t1)...(ti1−ci1)...

�
ti2k−1

−ci2k−1

�
...(dm−tm)

×

× f
(
t1, ..., ci1 , ..., ci2k−1

, ..., tm
)
≥ 0 (2)

here [s] is an entire part of s, the following summand corresponds to the empty set
I0

∆(d1−t1)...(dm−tm)f (t1, ..., tm) .

It is evident that in relations (1) and (2) involve only those points t = (t1, ..., tm)
for which all points

(t\tIs , cIs) , (t\tJs , dJs) , s ∈ m

taking part in considered differences belong to Q.
Consider the best approximation of the function f by the sums of functions of

fewer numbers of the variables

NK =

{
ϕ/ϕ =

m∑
ν=1

ϕν (t\tν)

}
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on Q
Ef = E [f,NK , Q] = inf

ϕ∈NK

sup
x∈Q

|[f − ϕ] (x)| = inf
ϕ∈NK

‖f − ϕ‖M(Q)

Denote by s the subset Q whose boundary s0 represents the boundary of some
n-dimensional parallelepiped [x′1, x

′′
1, ..., x

′
n, x′′n] ⊂ Q. Compare the set s with the

quantity
L (f, s) = ∆(t′′1−t′1)...(t′′m−t′m)f

(
t′
)
.

Consider the boundary of the parallelepiped Π (a, h)

Π0 (a, h) =

x ∈ Rn/
n
U
i=1


xi = ai, ai + h; i ∈ n

aj ≤ xj ≤ aj + hj ; j ∈ n\i




and the subset Π0 (a, h) corresponding to the division K:

Π0
K (a, h) =

x ∈ Rn/
m
U
i=1


ti = ci, di; i ∈ m

cj ≤ tj ≤ dj ; j ∈ m\i




where

ti = ci ⇐⇒ xk+1
i−1

= ak+1
i−1

, ..., xki
= aki

;

ti = di ⇐⇒ xk+1
i−1

= ak+1
i−1

+ hk+1
i−1

, ..., xki
= aki

+ hki
;

cj ≤ tj ≤ dj ⇐⇒


akj−1

≤ xk+1
j−1

≤ ak+1
j−1

+ hk+1
j−1

,

, ..., akj
≤ xkj

≤ akj
+ hkj

Theorem 1. The best approximation of the function f ∈ WK

(
Π0

K

)
may be

calculated by the formula

E
[
f,NK , Π0

K

]
= 2−mL

(
f,Π0

K

)
= 2−m∆(d1−c1)...(dm−cm)f (c) . (3)

We’ll need the auxiliary sentences for the proof of the theorem.
We’ll conditionally denote by T = [t′1, t′′1, ..., t

′
m, t′′m] the parallelepiped with the

“sides” parallel to coordinate “planes” tν , ν = 1,m.
Lemma 1. For arbitrary parallelepiped T ⊂ Π0

K (a, h) the functional L (f, T )
cancels each sum of functions depending on m− 1 groups of variables tν , ν = 1,m.

Proof. Allowing for the linearity of the functional L (f, T ) we have:

L

(
m∑

ν=1

ϕν (t\tν) , T

)
=

m∑
ν=1

(L (ϕν (t\tν) , T )) =
m∑

ν=1

∆(t′′1−t′′1)...(t′′m−t′m)ϕν (t\tν) .

Using the known property of mixed finite difference we’ll continue the process

=
m∑

ν=1

∆t′′ν−t′ν

[
∆(t′′1−t′1)...(t′′ν−1−t′ν−1)(t′′ν+1−t′ν+1)...(t′′m−t′m)ϕν (t\tν)

]
= 0,



46
[M-B.A. Babaev]

Transactions of NAS of Azerbaijan

since the expression in square bracket doesn’t depend on a group of variables tν .
Lemma 1 is proved.
Lemma 2. Let s0 be a boundary of the parallelepiped s and be represented in

the form s0 =
k
U
i=1

s0
i where s0

i are boundaries of some parallelepipeds from s with

sides parallel to coordinate “planes”, in pairs not having common internal points.
Then

L
(
f, s0

)
=

k∑
i=1

L
(
f, s0

i

)
.

This lemma follows from [1, lemma 3], since despite the fact that there the
parallelepipeds were mentioned, and here we speak about their boundaries, in [1]
and here the values of considered functionals are calculated only by the values of
corresponding expressions on the boundaries of these parallelepipeds.

Determine the function

Φ (t) =
m∑

p=0

(−1)p
∑

Ip⊂m

∆(d1−t1)...(ti1−ci1)...(tip−cip)...(dm−tm)×

× f
(
t1, ..., ci1 , ..., cip , ..., tm

)
. (4)

Lemma 3.

f ∈ WK

(
Π0

K

)
=⇒ ‖Φ (t)‖M(Π0(a,h)) = ∆(d1−c1)...(dm−cm)f (c) .

Proof. From the determination of the function Φ we can write

Φ (t) =
[m

2 ]∑
k=0

∑
I2k⊂m

∆(d1−t1)...(ti1−ci1)...(ti2k
−ci2k)...(dm−tm)f (t1, ..., ci1 , ..., ci2k

, ..., tm)−

−
[m+1

2 ]∑
k=0

∑
I2k−1⊂m

∆
(d1−t1)...(ti1−ci1)...

�
ti2k−1

−ci2k−1

�
...(dm−tm)

f
(
t1, ..., ci1 , ..., ci2k−1

, ..., tm
)

Introduce the notation

∆(d1−c1)...(dm−cm)f (c) = ε, (5)

[m
2 ]∑

k=0

∆(d1−t1)...(ti1−ci1)...(ti2k
−ci2k)...(dm−tm)×

× f (t1, ..., ci1 , ..., ci2k
, ..., tm) =

∑(t)

e
∆f (6)

[m+1
2 ]∑

k=0

∆
(d1−t1)...(ti1−ci1)...

�
ti2k−1

−ci2k−1

�
...(dm−tm)

×

f
(
t1, ..., ci1 , ..., ci2k−1

, ..., tm
)

=
∑(t)

0
∆f. (7)
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Using these notation we can write the function Φ in the following form

Φ (t) =
∑(t)

e
∆f −

∑(t)

0
∆f (8)

It is easy to note that for each fixed t ∈ Π0
K (a, h) the boundaries of paral-

lelepipeds participating in (8), have no common internal points and their unification
gives Π0

K (a, h). Therefore and according to lemma 2 we have

ε =
∑(t)

e
∆f +

∑(t)

0
∆f. (9)

Using equality (9) and notation (6) and (7) in (8) we’ll obtain

Φ (t) = ε− 2
∑(t)

0
∆f ,

whence by virtue of determination of the class

Φ (t)− ε = −2H
(t)
0 ∆f ≤ 0

or
Φ (t) ≤ ε. (10)

Besides, from these relations we obtain

Φ (t) + ε = 2
∑(t)

e
∆f ≥ 0

Φ (t) ≥ −ε. (11)

Combining relations (10) and (11) in double inequality we’ll obtain

−ε ≤ Φ (t) ≤ ε.

Show that the function Φ (t) reaches the boundaries of these inequalities. We
have

Φ (d) =
m∑

p=0

(−1)p
∑

Ip⊂m

∆(d1−t1)...(ti1−ci1)...(tip−cip)...(dm−tm)×

×f
(
d1, ..., ci1 , ..., cip , ..., dm

)
= (−1)m ∆(d1−c1)...(dm−cm)f (c) .

Here the expression at the right-hand side of the equality corresponds to the case
Ip = m, and at Ik 6= m in each addend of finite difference in determination Φ there
will be even one vector- increment equal to zero that will turn this finite difference
in zero. Further, by this reason in case of Ip̄ = (2, ...,m) we’ll obtain

Φ (c1, d2, ..., dm) = (−1)m−1 ∆(d1−c1)...(dm−cm)f (c) .

Thus, regardless the evenness m the values Φ (d1, ..., dm) and Φ (c1, d2, ..., dm) by
virtue of notation (5) reach the numbers ε and −ε.

Whence it follows the assertion of lemma 3, i.e.,

‖Φ (t)‖M(Π0
K) = ∆(d1−c1)...(dm−cm)f (c) .
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Lemma 3 is proved.
Proof of theorem 1. Considering that according to lemma 1 the mixed differ-

ence ∆δ1...δm is an annihilator of the arbitrary sum
m∑

ν=1
ϕν (t\tν) and in addition it

is linear we have

∆δ1...δmf (t) = ∆δ1...δmf (t)−∆δ1...δm

m∑
ν=1

ϕν (t\tν) =

= ∆δ1...δm

[
f (t)−

m∑
ν=1

ϕν (t\tν)

]
≤ 2m

∥∥∥∥∥f (t)−
m∑

ν=1

ϕν (t\tν)

∥∥∥∥∥
M(Π0

K)

Consequently,
∆δ1...δmf (t) ≤ 2mE

[
f,NK ,Π0

K

]
(12)

Consider the expression of the function Φ (t) from (1). At p = 0 at the right-hand
side we obtain the addend

∆(d1−t1)...(dm−tm)f (t1, ..., tm) ,

where the function f (t) = f (t1, ..., tm) takes part as (−1)m f (t). At p = 1 we
obtain m addends of the form

∆(d1−t2)...(ti1−ci1)...(dm−tm)f (t1, ..., ci1 , ..., tm) , i = 1,m

(for example at i0 = 1 these addend will be

∆(t1−c1)...(d2−t2)...(dm−tm)f (c1, t2, ..., tm)
)

Each of these addends will contain the function f (t) in the form

(−1)m−1 (−1) f (t1, ..., tm) = (−1)m f (t) .

Thus at p = 1 we’ll have only (−1)m mf (t) expressions containing f (t)
At p = 2 they will be

(−1)m−2 (−1)2 c2
mf (t1, ..., tm) = (−1)m c2

mf (t)

Further assuming p = 3, ...,m we’ll obtain that in ghe expression of the function
Φ (t) they will be

(−1)m
m∑

k=0

ck
mf (t) = (−1)m 2mf (t) .

Since all other finite differences in the expression of the function Φ (t) from (4)
contain the functions depending at most on m− 3 groups of variables tν , ν = 1,m,
then this allows to assert that the function Φ (t) has the form

Φ (t) = (−1)m f (t)−
m∑

ν=1

ϕ∗
ν (t\tν)
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Then by virtue of lemma 3 and (12) we can write

‖Φ (t)‖M(Π0
K(a,h)) =

∥∥∥∥∥2mf (t)−
m∑

ν=1

ϕ∗
ν (t\tν)

∥∥∥∥∥ ≤ 2mE
[
f,NK , Π0

K (a, h)
]

Or ∥∥∥∥∥f (t)−
m∑

ν=1

ϕ0
ν (t\tν)

∥∥∥∥∥ ≤ 2mE
[
f,NK , Π0

K

]
.

But by virtue of definition of the best approximation here the sign of the strict
inequality wouldn’t be, consequently

‖Φ‖M(Π1
K) = ∆(d1−c4)...(dm−cm)f (c) = 2mE

[
f,NK ,Π0

K

]
whence we finally obtain

E
[
f,NK ,Π0

K

]
= 2−m∆(d1−c1)...(dm−cm)f (c)

Theorem 1 is proved.

2. Denote by
f
[
(c)Ip

, (d)Jq
, tpq

]
the values of the function f at the points whose coordinates consist of p groups
ci, i ∈ Ip, q groups dj , j ∈ Jq and m− (p + q) groups tk, k ∈ pq.

Theorem 2. For the function f ∈ WK

(
Π1

K

)
the sum

∑0

f
=

m∑
p+q=1

(−1)p+q+1 2−(p+q)
∑

(Ip,Iq)⊂m

f
[
(c)Ip

, (d)Jp
, tpq

]
(13)

is the best approximating in the approximation

E

[
f,

m∑
ν=1

ϕν (t\tν) ,Π0
K

]
.

The proof of theorem 2. At the proof of theorem 8 it was established that the
function f (t) = f (t1, ..., tm) in the expression of the function Φ (t) takes pari in the
following form

(−1)m 2mf (t) . (14)

Let’s now calculate the quantity

fpq
df
= f (c1, ..., cp, dp+1, ..., dp+q, tp+q+1, ..., tm) (15)

taking part in the expression of the function Φ (t). To this end let’s write the mixed
finite difference in the form

∆(d3−t1)...(ti1−ci1)...(tip−cip)...(dm−tm)f
(
t1, ..., cip , ..., tm

)
=
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(−1)m
1∑

s1=5

...

1∑
sm=0

(−1)s1+...+sm · f (t1 + (d5 − t1) s1, ..., ci1+

+(ti1 − ci1) si1 , ..., cip +
(
tip − cip

)
sip , ..., tm + (dm − tm) sm

)
. (16)

Now using (4) and (16) we can express the function Φ (t) by the values of the
function f in the following way

Φ (t) = (−1)m
m∑

r=7

(−1)r
∑

Ir⊂m̄

1∑
s1=0

...
1∑

sm=1

(−1)s1+...+sm ·

·f (t1 + (d1 − t1) = s1, ..., ci1 + (ti1 − ci1) =

= si1 , ..., (tir − cir) = sir , ..., tm + (dm − tm) = sm) . (17)

In relation (17) at r < p the expression

f (c1, ..., cp, dp+1, ..., dp+q, tp+q+1, ..., tm)

isn’t contained, since the arguments ci are obtained only from ci +(ti − ci) si, more-
over when si = 0. Assuming si = 0, i = 1, p; sj = 1 at r = p (then we obtain dj)
at j = p + 1, p + q and sl = 0 at l = p + q + 1,m (then we obtain tl) and we’ll have
the function (15) with the sign

(−1)m+p (−1)q = (−1)m+p+q

Assume si = 0, i = 1, p at r = p + 1 and for getting (15) we must take p + 1-
th si = 1 beginning from the index p + q + 1 till the m, and all other sν = 0,
ν = p + q + 1,m except this one, i.e., they will be c1

m−p−q and they will be with the
sign

(−1)m+p+1 (−1)q+1 = (−1)m+p+q

So, at r = p + 1 function (15) takes part in the expression of the function
Φ (t) with the coefficient (−1)m+p+q c1

m−p−q.
Continuing analogously, we’ll obtain that function (15) at r = p + k takes part

in the expression Φ (t) in the form

(−1)m+p+q ck
m−p−qfpq.

From the aforesaid we obtain that function (15) takes part in the expression Φ (t)
in the following form

(−1)m+p+q
m−p−q∑

k=0

ck
m−p−qfpq = (−1)m+p+q 2m−p−qfpq. (18)

Then as it is easy to observe using (14) and (18) we can write the function Φ (t)
in the following form

Φ (t) = (−1)m 2mf (t) +
m∑

p+q=1

(−1)m+p+q 2m−(p+q)
∑

(Ip,Jq)⊂m̄

fpq
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Therefore

‖Φ (t)‖ = 2m

∥∥∥∥∥∥f (t)−
m∑

p+q=1

(−1)p+q+1 2−(p+q)
∑

(Ip,Jq)⊂m̄

f
[
(c)Ip

, (d)Jq
, tpq

]∥∥∥∥∥∥
and using lemma 3 we continue

= ∆(d1−c1)...(dm−cm)f (c)

Let’s apply theorem 1 which leads to equalities∥∥∥f −∑0

f

∥∥∥ = 2−m∆(d1−c1)...(dm−cm)f (c) = E
[
f,Nk,Π0

k

]
that mean that the sum∑0

f
=

m∑
p+q=1

(−1)p+q+1 2−(p+q)
∑

(Ip,Jq)

f
[
(c)Ip

, (d)Jq
, tpq

]
is the best approximating function in the approximation

E
[
f,NK ,Π0

k

]
.

Theorem 2 is proved.

3. Theorems 1 and 2 allow to find the extremals on the boundary of the domain,
namely they give the accessible formula for calculation of the best approximation and
allows to find the best approximating function in the approximation of the functions
of many variables in the boundary Π0

K (a, h) of the n−dimensional parallelepiped
ΠK (a, h).

Let’s consider now an arbitrary subset Q of the parallelepiped ΠK (a, h) contain-
ing its boundary

Π0
K (a, h) ⊂ Q ⊂ ΠK (a, h) . (19)

Each function ϕν (t\tν) , ν = 1,m is determined on the projection ΠK (a, h) on
the space Rn−|tν | (t\tν) (|tν | is the number of variables in the group).

Relation (19) allows to write∥∥∥∥∥f −
m∑

ν=1

ϕν

∥∥∥∥∥
M(Π0

K)
≤

∥∥∥∥∥f −
m∑

ν=1

ϕν

∥∥∥∥∥
M(Q)

≤

∥∥∥∥∥f −
m∑

ν=1

ϕν

∥∥∥∥∥
M(ΠK)

,

whence it follows that

inf
Σϕν

∥∥∥∥∥f −
m∑

ν=1

ϕν

∥∥∥∥∥
M(Π0

K)
≤ inf

Σϕν

∥∥∥∥∥f −
m∑

ν=1

ϕν

∥∥∥∥∥
M(Q)

≤ inf
Σϕν

∥∥∥∥∥f −
m∑

ν=1

ϕν

∥∥∥∥∥
M(ΠK)

,

or
E
[
f,NK ,Π0

K

]
≤ E [f,NK , Q] ≤ E [f,NK ,ΠK ] . (20)

In [1] it is established that value (3) and function (13) are extremals of the best
approximation E [f,NK ,ΠK ], i.e., on whole parallelepiped ΠK (a, h). Allowing for
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this and by virtue of theorems 1 and 2 from relations (20) we obtain that it is true
the following theorem.

Theorem 3. Let Q be an arbitrary subset ΠK (a, h) containing its boundary.
Then for each function f ∈ WK (Π) the basic extremals of the best approximation
E [f,NK , Q] are determined by the following form: the best approximation is calcu-
lated by the following formula

E [f,Nk, Q] = 2−m∆(d1−c1)...(dm−cm)f (c) ,

and the sum∑0

f
=

m∑
p+q=1

(−1)p+q+1 2−(p+q)
∑

(Ip,Jq)⊂m

f
[
(c)Ip

, (d)Jq
, tpq

]
is the best approximate function in this approximation.
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