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Abstract

In the present paper the fractional operator rot2 is investigated as a frac-
tional operator of the known rotor operator rot and some applications and phys-
ical interpretation of these operators in some problems of electrodynamiics are
considered.

Introduction. At the present time the fractionalization of transformations and
operators is of great interest both from theoretical and practical point of view. For
example, the fractional Fourier transformation and its applications were studied by
several authors: Namias, Lohmann, Mendlovic and Ozaktas, Shamir and Cohen
[2-4], and fractionalization of Hankel transformation was considered in [5]. Having
the operator L it is possible to consider fractional operator, which is denoted by
Lα, where the parameter α takes real values or even can be complex. The new
operator Lα expands the initial operator L, in the sense, that the operator L is
obtained as a particular case of fractionalized operator at some value of α (ordinary
at α = 1, Lα|α=1 = L).

In the given work the fractional operator rotα is investigated as fractional opera-
tor of the known rotor operator rot and some applications and physical interpretation
of these operators in some electrodynamics problems are considered.

The operator rot is one of the key operators of the theory of electromagnetic
field. In particular, in the simplest case electric and magnetic fields are connected
among themselves with the help of rotor in the Maxwell equations in differential
form [6] in lack of the sources:

~E = − 1
ik
rot
(
η ~H
)
, η ~H =

1
ik
rot ~E (1)

where k =
2π
λ

is a wave number, η =
√
µ/ε is an impedance, ε, µ are dielectrical

and magnetic penetrabilities.
The new fractional operator rotα, introduced here, where 0 ≤ α ≤ 1, has the

following properties: at α = 1 we obtain the ordinary operator rotα|α=1 = rot, and
at α = 0 we obtain a unit operator rotα|α=1 = I.

First the fructionalized (or fractional) rotor was introduced by N.Engheta [1],
where fractional rotor was used for getting new ”fractional” solutions of Maxwell
equations, as a result of application rotα to the fixed solution

(
~E, η ~H

)
:

~Eα =
1

(ik)α
rotα ~E, η ~Hα =

1
(ik)α

rotα
(
η ~H
)
. (2)
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The ”fractional” field
(
~Eα, η ~Hα

)
, obtained like that, is characterized by the

fractional order α and defines:
(1) the initial field

(
~E, η ~H

)
at α = 0;

(2) the dual field [7]
(
~E1, η ~H1

)
=
(
η ~H0,− ~E0

)
at α = 1.

As 0 < α < 1 the fractional field describes intermediate solution between initial
and dual solutions.

The obtained result can be interpreted as generalization of the known duality
principle for Maxwell equation [6, 7]. Namely: having the solution

(
~E, η ~H

)
, sat-

isfying the Maxwell equations with the medium parameters ε, µ and applying the
fractional rotor to this solution, we obtain a new field, again satisfying the Maxwell
equations with the same parameters ε, µ. As a particular case, at α = 1 the frac-
tional field describes the dual field, taking part in formulation of the known duality
principle.

In the paper [1] the general scheme of obtaining fractionalized operator from
arbitrary linear operator is given and the expression for rotα function of one variable
~P = ~P (z) = Px (z) ~x+ Py (z) ~y + Pz (z)~z is represented in the explicit form:

rotα ~P (z) =
[
cos
(απ

2

)
−∞

Dα
z Px (z)− sin

(απ
2

)
−∞

Dα
z Py (z)

]
~x+

+
[
sin
(απ

2

)
−∞

Dα
z Px (z) + cos

(απ
2

)
−∞

Dα
z Py (z)

]
~y + δ0α−∞D

α
z Pz (z)~z (3)

where δ0α is Kronecker’s symbol, the operator −∞Dα
z means Riemann-Liouville frac-

tional integral [10], which is defined as

−∞D
α
z P (z) =

1
Γ (−α)

z∫
−∞

P (u) du
(z − u)α+1 , 0 < α < 1

where Γ (x) is Euler gamma-function.
However for many scattering and radiation problems definition (3) is not enough:

it is necessary to have the expression for rotα for functions, dependent on two or
three variables. In the general case for arbitrary function it is sufficiently difficult
to obtain in the explicit form the expression for a fractional rotor.

The aim of the given work is to obtain the expression for fractional rotor for the
function of two or three variables, expressed by exponential functions.

As it will be shown below, for a function of three variables, expressed by expo-
nents for the operator rotα (0 ≤ α ≤ 1) the following representation holds:

rotα
[
~zeiax+iby+icz

]
=

1
k2

(
iαδ0αac+ (ik)α sin

(πα
2

)
kb− (ik)α cos

(πα
2

)
ac
)
F~x+

+
1
k2

(
iαδ0αbc− (ik)α sin

(πα
2

)
ka− (ik)α cos

(πα
2

)
bc
)
F~y+

+
1
k2

(
iαδ0αc

2 + (ik)α cos
(πα

2

) (
a2 + b2

))
F~z. (4)
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The consideration of the exponents is caused by that they play an important
role in electrodynamics. For example, plane waves are described with the help of
exponents. Moreover, there are decompositions of cylindrical and spherical waves
by the plane waves [9].

The obtained representations of the fractional rotα later can be used in the
concrete scattering and radiation problems for obtaining ”intermediate solutions”,
applying the fractional rotor to some fixed solution of the problem.

At that the parameter α, characterizing the fractionalization of solution, will be
defined by the various values of physical quantities, describing the problem.

1. The fractional operator from a linear operator. We can consider
the operator rot as a linear operator. Therefore, let’s consider the general scheme
of getting fractional operator from the linear operator, introduced in [1]. For this
reason, consider the class of linear operators {L,L : Cn → Cn}, where Cn is a space
of n-dimensional vectors over the field of complex numbers.

The operator Lα is called fractionalized (fractional) operator from the linear
operator L, if the following conditions are fulfilled:

1. as α = 1 Lα|α=1 = L;
2. as α = 0 Lα|α=0 = I, where I is an identity (unit) operator
3. semigroup properties LαLβ = LβLα = Lα+β.

Let the linear operator L have the eigen vectors
{
~Am, m = 1..n

}
and the cor-

responding eigen values {am,m = 1..n}. Then

L
(
~Am

)
= am ~Am .{

~Am

}
form full linearly independent system of eigen vectors in the space Cn. It

means, that the arbitrary vector ~H and Cn can be represented in the form of linear
combinations of these vectors

~H =
n∑

m=1

cm ~Am

with some decomposition coefficients cm.
Define the fractional operator Lα, as operator with the same eigen vectors{

~Am, m = 1..n
}

, but with eigen values {(am)α , m = 1..n}, i.e.

Lα
(
~Am

)
= (am)α ~Am .

Let’s remark, that the choice of branch of multivalued quantity (am)α each time
is carried out proceeding from physical conditions of the concrete problem.

So, action of the operator Lα on the arbitrary vector ~H from Cn will be written
in the from:

Lα
(
~H
)

= Lα

(
n∑

m=1

cm ~Am

)
=

n∑
m=1

cmL
α
(
~Am

)
=

n∑
m=1

(am)α cm ~Am . (5)
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This correlation defines the fractional operator Lα by eigen values and eigen
vectors of the operator L. It is easy to see, that this definition satisfies all three
conditions in definition of fractionalized operator.

2. Fractional rotor rotα.
2.1. The general case. It is known, that for the three-dimensional vector ~P

as the function of variables x, y, z in the Cartesian system of coordinates:

~P (x, y, z) = Px (x, y, z) ~x+ Py (x, y, z) ~y + Pz (x, y, z)~z

the rotor operator has the form:

rot ~P =
(
∂Pz
∂y

− ∂Py
∂z

)
~x+

(
∂Px
∂z

− ∂Pz
∂x

)
~y +

(
∂Py
∂x

− ∂Px
∂y

)
~z

where ~x, ~y, ~z are unit vectors of Cartesian system of coordinates.
Apply the Fourier transformation from the space x, y, z to the space ~k (kx, ky, kz)

to the vectors ~P and rot ~P , assuming that the Fourier transformations
∧
~P (kx, ky, kz) ≡

Fk

(
~P (x, y, z)

)
and

∧
~R (kx, ky, kz) ≡ Fk

(
rot ~P (x, y, z)

)
exist. This is fulfilled, for ex-

ample, if we’ll necessitate, that P ′
x, P

′
y, P

′
z ∈ L2 (−∞,∞) is a class of functions with

summable square [12].

∧
~P ≡ Fk

(
~P (x, y, z)

)
≡

∞∫
−∞

∞∫
−∞

∞∫
−∞

~P (x, y, z) e−ikxx−ikyy−ikzzdxdydz .

The Fourier transformation
∧
~R ≡ Fk

(
rot ~P (x, y, z)

)
of the rotor ~P we can rep-

resent in the following form:

∧
~R ≡ Fk

(
rot ~P (x, y, z)

)
= i~k × Fk

(
~P (x, y, z)

)
= i~k ×

∧
~P . (6)

So, in the space of ~k images of Fourier a rotor operator can be represented as a

vector product of the vector i~k on the vector
∧
~P . Hence, for defining the fractional

rotor rotα, it is necessary to define fractional operator from the vector product i~k×
∧
~P

in the space ~k.
The operator L =

(
i~k×

)
at the fixed vector ~k is a linear operator, acting on

the arbitrary vector ~H as L
(
~H
)

= i~k × ~H. So, following the described scheme
of getting a fractionalized operator, it is possible to define the fractional operator
Lα =

(
i~k×

)α
:

Lα
∧
~P =

(
i~k×

)α ∧
~P .
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Applying the inverse Fourier transformation (passing inversely to the space
x, y, z), we obtain a fractional rotor from the vector ~P :

rotα ~P = F−1
k

(
Lα

∧
~P

)
.

It is easy to see, that the operator L0 =
(
~k×
)

has the following eigen values and
eigen vectors:

~A1 = ~k (kx, ky, kz) , a1 = 0 ;

~A2

(
ikkz − kykx, k

2
x + k2

z ,−ikkx − kykz
)
, a2 = ik

~A3

(
−ikkz − kykx, k

2
x + k2

z , ikkx − kykz
)
, a3 = −ik

where k =
√
k2
x + k2

y + k2
z .

The arbitrary vector ~H = Hx~xk + Hy~yk + Hz~zk in the Cartesian system of
coordinates is represented in the form of linear combination by eigen vectors:

~H = c1 ~A1 + c2 ~A2 + c3 ~A3,

where the addends cm ~Am are defined as:

c1 ~A1 =
1
k2

(
k2
xHx + kxkyHy + kxkzHz

)
~xk+

+
1
k2

(
kxkyHx + k2

yHy + kykzHz

)
~yk+ (7)

+
1
k2

(
kxkzHx + kykzHy + k2

zHz

)
~zk

c2 ~A2 =
1

2k2

[(
k2 − k2

x

)
Hx + (ikkz − kxky)Hy + (−ikky − kxkz)Hz

]
~xk+

+
1

2k2

[
(−ikkz − kxky)Hx +

(
k2 − k2

y

)
Hy + (ikkx − kykz)Hz

]
~yk+ (8)

+
1

2k2

[
(ikky − kxkz)Hx + (−ikkx − kykz)Hy +

(
k2 − k2

z

)
Hz

]
~zk

c3 ~A3 =
1

2k2

[(
k2 − k2

x

)
Hx + (−ikkz − kxky)Hy + (ikky − kxkz)Hz

]
~xk+

+
1

2k2

[
(ikkz − kxky)Hx +

(
k2 − k2

y

)
Hy + (−ikkx − kykz)Hz

]
~yk+ (9)

+
1

2k2

[
(−ikky − kxkz)Hx + (ikkx − kykz)Hy +

(
k2 − k2

z

)
Hz

]
~zk .

So the fractional operator Lα =
(
i~k×

)α
= iα

(
~k×
)α

is represented in the form:

Lα

(
∧
~P

)
= iα

3∑
m=1

(am)α cm ~Am. (10)
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For getting the representation for the fractional rotor rotα ~P , we have to apply
the inverse Fourier transformation to expression (10):

rotα ~P = F−1
k

(
Lα

(
∧
~P

))
=

= F−1
k

(
δα0k

2
xP̂x~xk − cos (απ/2) k2

xk
α−2P̂x~xk + cos (απ/2) kαP̂x~xk + ...

)
2.2. The one-variable function. The particular case, when the initial vector

~P depends only on one coordinate z, i.e. ~P = ~P (z) = Px (z) ~x+ Py (z) ~y + Pz (z)~z
was considered in [1].

In this case the Fourier transformation

∧
~R ≡ Fk

(
rot ~P (z)

)
= i~k × Fk

(
~P (z)

)
= (ikz~zk×)

∧
~P ,

and the fractional operator

Lα =
(
i~k×

)α
= (ikz)

α (~zk×)α .

Following the described above method of getting a fractional operator, we’ll find
the eigen vectors and eigen values of the operator (~zk×):

~A1 (0, 0, 1) = ~zk, a1 = 0;

~A2 (i, 1, 0) = i~xk + ~yk, a2 = i;

~A3 (−i, 1, 0) = −i~xk + ~yk, a3 = −i .

The arbitrary vector ~H = Hx~xk +Hy~yk +Hz~zk in the space (~xk, ~yk, ~zk) is repre-
sented in form of linear combinations by the eigen vectors ~H = c1 ~A1 + c2 ~A2 + c3 ~A3,
where addends are calculated by the following formulae:

c1 ~A1 = Hz~zk,

c2 ~A2 =
1
2

(Hx + iHy) ~xk +
1
2

(−Hx +Hy) ~yk, (11)

c3 ~A3 =
1
2

(Hx − iHy) ~xk +
1
2

(iHx +Hy) ~yk.

So, the fractional operator

(~zk×)α ~H =
3∑

m=1

(am)α cm ~Am (12)

or in detail

(~zk×)α ~H = 0αHz~zk + iα
[
1
2

(Hx + iHy) ~xk +
1
2

(−iHx +Hy) ~yk

]
+
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+ (−i)α
[
1
2

(Hx − iHy) ~xk +
1
2

(iHx +Hy) ~yk

]
.

In particular, if ~H = ~xk, then (~zk×)α ~xk = cos
(απ

2

)
~xk + sin

(απ
2

)
~yk.

At α = 1, we obtain the known correlation for the vector product: (~zk×)α |α=1~xk =
(~zk×) ~xk = ~yk.

At α = 0, we have the unit operator (~zk×)α |α=0~xk = I~xk = ~xk.

Using the formulae for decomposition of the vector
∧
~P

(
∧
P x,

∧
P y,

∧
P z

)
by the

eigen vectors cm ~A, from (12) we have the representation for the fractional operator
Lα =

(
i~k×

)α
:

Lα

(
∧
~P

)
= (ikz)

α
3∑

m=1

(am)α cm ~Am =

= (ikz)
α 0α

∧
P z~zk +

1
2

(ikz)
α

(
∧
P y − i

∧
P x

)
(i~xk + ~yk) +

+
1
2

(−ikz)α
(
∧
P y − i

∧
P x

)
(−i~xk + ~yk) . (13)

Grouping, after transformations, finally we obtain:

Lα

(
∧
~P

)
= (ikz)

α δ0α
∧
P z~zk + (ikz)

α

[
∧
P x cos

(πα
2

)
−

∧
P y sin

(πα
2

)]
~xk+

+ (ikz)
α

[
∧
P x sin

(πα
2

)
+

∧
P y cos

(πα
2

)]
~yk. (14)

Using the identity F−1
k

(
(ikz)

α Û (z)
)

=−∞ Dα
z U (z), applying to equation (14)

the inverse Fourier transformation, finally we obtain the following representation for
the fractional operator rotα ~P (z) in the Cartesian system of coordinates (x, y, z):

rotα ~P (z) =
[
cos
(απ

2

)
−∞

Dα
z Px (z)− sin

(απ
2

)
−∞

Dα
z Py (z)

]
~x+

+
[
sin
(απ

2

)
−∞

Dα
z Px (z) + cos

(απ
2

)
−∞

Dα
z Py (z)

]
~y + δ0α−∞D

α
z Pz (z)~z. (15)

The obtained representation (15) is a generalization of the known operator rot
for fractional case.

It is easy to check, that

rotα ~P (z) =

{
rot ~P (z) , α = 1
~P (z) , α = 0

2.3. The fractional rotor for the exponent of two variables. We’ll apply
the described above scheme for particular case, when the function is represented in
the form

~E = ~zF (x, y) = ~zeiax+iby
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In this case the Fourier transformation

∧
~R ≡ Fk

(
rot ~E

)
= i~k × Fk

(
~E
)
,

where Fk
(
~E
)

=
∧
~E
(
0, 0, F̂

)
and ~k = ~k (kx, ky, 0).

Let’s denote Lα =
(
i~k×

)α
as a fractional operator in the space of Fourier images.

The eigen-values of this operator

a1 = 0, a2 = ik, a3 = −ik .

From formulas (7)-(9) for our case ~k = ~k (kx, ky, 0) we obtain, that the vector
∧
~E = ~zkF̂ in the space (~xk, ~yk, ~zk) is represented in the form of linear combination

by the eigen vectors
∧
~E = c1 ~A1 + c2 ~A2 + c3 ~A3, where addends are calculated by the

following formulae:
c1 ~A1 = 0,

c2 ~A2 = − iky
2k
F̂~xk +

ikx
2k

F̂~yk +
1
2
F̂~zk (16)

c3 ~A3 =
iky
2k
F̂~xk −

ikx
2k

F̂~yk +
1
2
F̂~zk .

So

Lα

(
∧
~E

)
= iα

3∑
m=1

(am)α cm ~Am (17)

and

rotα
[
~E
]

= F−1
k

[
Lα

(
∧
~E

)]
.

Substituting (16) in (17) we have

Lα

(
∧
~E

)
= iα

3∑
m=1

(am)α cm ~Am =

= iα
{

(ik)α
[
− iky

2k
F̂~xk +

ikx
2k

F̂~yk +
1
2
F̂~zk

]
+

+(−ik)α
[
iky
2k
F̂~xk −

ikx
2k

F̂~yk +
1
2
F̂~zk

]}
= (18)

= (ik)α
[
−F̂ ~xk

iky
2k

(iα − (−i)α) + F̂ ~yk
ikx
2k

(iα − (−i)α) + F̂~zk
1
2

(iα + (−i)α)
]
.

Choosing in expression (18) the branches of the multivalued functions iα so, that

iα − (−i)α = 2i sin
(πα

2

)
, iα + (−i)α = 2 cos

(πα
2

)
.
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Let’s note, that the choice of the multivalued branch is always connected with
conditions of a concrete physical problem.

Finally we obtain:

Lα

(
∧
~E

)
= (ik)α

[
sin
(πα

2

) ky
k
F̂~xk − sin

(πα
2

) kx
k
F̂~yk + cos

(πα
2

)
F̂~zk

]
. (19)

Fourier transformation of the function F (x, y):

F̂ (kx, ky) = Fk

(
eiax+iby

)
= δ (kx − a) δ (ky − b) . (20)

Putting (20) to expression (19) for Lα
(
∧
~E

)
, then applying the inverse Fourier

transformation we obtain the expression for the fractional rotor in the following
form:

rotα
[
~zeiax+iby

]
=

= (ik)α eiax+iby
[
sin
(πα

2

) b
k
~x− sin

(πα
2

) a
k
~y + cos

(πα
2

)
~z

]
, (21)

where k is defined as k2 = a2 + b2.
From (21) obviously we obtain, that as α = 0 we have the identity operator

rotα|α=0

[
~E
]

= ~E and as α = 1 we obtain the ordinary rotor operator rotα|α=1

[
~E
]

=

rot ~E.
In particular case, when b = 0 we have the one-variable function ~E = ~zF (x) =

~zeiax and from (21) we have

rotα
[
~zeiax

]
= − (ik)α sin

(πα
2

) a
k
eiax~y + (ik)α cos

(πα
2

)
eiax~z

that is adjusted with expression (15).

2.4. The fractional rotor of exponent of three-variables. By the sim-
ilar way we obtain the expression for fractional rotor for three-variables function,
represented in the form:

~E = ~zF (x, y) = ~zeiax+iby+icz .

As earlier

rotα
[
~E
]

= F−1
k

[
Lα

(
∧
~E

)]
= F−1

k

[
iα

3∑
m=1

(am)α cm ~Am

]

where
c1 ~A1 =

1
k2
F̂
[
kxkz~xk + kykz~yk + k2

z~zk
]
,

c2 ~A2 =
1

2k2
F̂
[
(−ikky − kxkz) ~xk + (ikkx − kykz) ~yk +

(
k2 − k2

z

)
~zk
]
, (22)
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c3 ~A3 =
1

2k2
F̂
[
(ikky − kxkz) ~xk + (−ikkx − kykz) ~yk +

(
k2 − k2

z

)
~zk
]
.

After transformations

Lα

(
∧
~E

)
= iαδ0α

1
k2
F̂
[
kxkz~xk + kykz~yk + k2

z~zk
]
+

+(ik)α
1
k2
F̂
[(

sin
(πα

2

)
kky − cos

(πα
2

)
kxkz

)
~xk+

+
(
− sin

(πα
2

)
kkx − cos

(πα
2

)
kykz

)
~yk + cos

(πα
2

) (
k2 − k2

z

)
~zk

]
.

Taking into account, that the Fourier transformation

F̂ (kx, ky, kz) = Fk

(
eiax+iby+icz

)
= δ (kx − a) δ (ky − b) δ (kz − c)

we have the expression for the fractional rotor

rotα
[
~zeiax+iby+icz

]
=

1
k2

(
iαδ0αac+ (ik)α sin

(πα
2

)
kb− (ik)α cos

(πα
2

)
ac
)
F~x+

+
1
k2

(
iαδ0αbc− (ik)α sin

(πα
2

)
ka− (ik)α cos

(πα
2

)
bc
)
F~y+

+
1
k2

(
iαδ0αc

2 + (ik)α cos
(πα

2

) (
a2 + b2

))
F~z . (23)

Consider some particular cases.
If we take c = 0 in formula (23), then

rotα
[
~zeiax+iby

]
=

=
(

(ik)α

k
sin
(πα

2

)
b~x− (ik)α

k
sin
(πα

2

)
a~y + (ik)α cos

(πα
2

)
~z

)
eiax+iby (24)

that coincides with expression (21) for two-variables function.

3. Some applications.
3.1. The plane wave propagation. Apply the obtained result for simplest

case of propagating plane wave in medium [7]. Let plane wave propagates in the
medium, characterized by a wave vector ~k, at an angle of ϕ to the plane x − z.
Electric field is given as ~E = ~zeik(x cosϕ+y sinϕ).

Following the fractional duality principle [1], we find the new fractional field

~Eα =
1

(ik)α
rotα ~E, η ~Hα =

1
(ik)α

rotα
(
η ~H
)

Using representation (21) we obtain

~Eα =
1

(ik)α
rotα ~E =

=
(
sin

πα

2
sinϕ~x− sin

πα

2
cosϕ~y + cos

πα

2
~z
)
eik(x cosϕ+y sinϕ). (25)
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The magnetic field is found from Maxwell equation as

η ~Hα =
1
ik
rot ~Eα

We’ll analyze the obtained expression for
(
~Eα, η ~Hα

)
.(

~Eα, η ~Hα
)

satisfies the Maxwell equation and represents the plane propagating
wave.

Introduce the local CK (x′, y′, z′) at some point (x, y, z) by the following way:
Direct the axis z′ along the vector of propagation of plane wave, i.e.

~z′ = ~x cosϕ+ ~y sinϕ;
the axis x′ coincides with the axis z : ~x′ = ~z;
the axis y′ is chosen such, that three vectors x′, y′, z′ form the orthogonal system

of vectors, i.e. we take ~y′ = ~x′ × ~z′ = −~x sinϕ+ ~y cosϕ.
In this local CK the initial vector of voltage of the electric field ~E will be written

as ~E = Ex~x
′ where Ex′ = eik(x cosϕ+y sinϕ).

The fractional electric field has the coordinates ~Eα = Eαx′~x′ + Eαy′~y′, where

Eαx′ = cos
πα

2
eik(x cosϕ+y sinϕ), Eαy′ = − sin

πα

2
eik(x cosϕ+y sinϕ) .

So, the action of fractional rotor operator on plane wave may be interpreted as
a rotation in the phase for angle πα/2.

3.2. The filament of current. Consider the action of fractional rotor in
radiation problems [8]. For this reason let’s consider the field

(
~E, η ~H

)
, radiated by

filament of electric current, located along the axis z. The density of electric current
is defined as ~je = ~zJeδ (x) δ (y).

The field will be written as

Ex = Ey = 0, Ez (x, y) = −kη
4π
Je

+∞∫
−∞

Q√
1− β2

dβ ,

ηHx = −kη
4π
Je

+∞∫
−∞

Qdβ, ηHy =
kη

4π
Je

+∞∫
−∞

Qβ√
1− β2

dβ, ηHz = 0

where it is denoted Q = Q (x, y, β) = e
ik
�
βx+

√
1−β2|y|

�
.

Let us apply to this field the fractional rotor and obtain the new fractional field

~Eα =
1

(ik)α
rotα ~E, η ~Hα =

1
(ik)α

rotα
(
η ~H
)

or by coordinates

Eαx = −AJe
kη

4π

+∞∫
−∞

Qdβ, Eαy =
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= AJe
kη

4π

+∞∫
−∞

Q√
1− β2

dβ, Eαz = −BJe
kη

4π

+∞∫
−∞

Q√
1− β2

dβ

ηHα
x = −BJe

kη

4π

+∞∫
−∞

Qdβ, ηHα
y =

= BJe
kη

4π

+∞∫
−∞

Q√
1− β2

dβ, ηHα
z = AJe

kη

4π

+∞∫
−∞

Q√
1− β2

dβ

It is easy to see, that the obtained fractional field represents the field, radiated
by combination of filaments of electric and magnetic currents with the densities

~jαe = ~zJe cos
πα

2
δ (x) δ (y) , ~jαm = ~zJe sin

πα

2
δ (x) δ (y) .

It is interesting to remark, that as α = 1 the fractional field passes to the field,
radiated by filaments of magnetic current with the density ~jm = ~zJeδ (x) δ (y).

3.3. The current sheet. In the following example, we’ll consider the field(
~E, η ~H

)
, radiated by sheet of electric current, distributed in the plane x − z with

the density
~je = ~xJee

−iψ0eiβ0xδ (y)

where Je is an amplitude, ψ0 is an initial phase, β0 is a coefficient of propagation.
The field of radiation has the form [8]

η ~H (0, 0,Hz) = ∓1
2
ηJee

iβ0xe±iγy~z , ~E (Ex, Ey, 0) =
1
2
η

k
Jee

iβ0xe±iγy (−γ~x∓ β0~y)

where it is denoted γ =
√
k2 − β2

0, β0 = k cosφ, γ = k sinφ;;
the upper sign is chosen at y < 0, the lower - at y > 0.
The fractional field

(
~Eα, η ~Hα

)
is defined as

~Eα =
1

(ik)α rotα
~E, η ~Hα =

1
(ik)α

rotα
(
η ~H
)

Using representation (21) for fractional rotor, the fractional field will be written
in the form:

~Eα
(
Eαx , E

α
y , E

α
z

)
=

=
1
2
ηJee

iβ0xe±iγy
(
cos
(πα

2

)
sinφ~x∓ cos

(πα
2

)
cosφ~y ∓ sin

(πα
2

)
~z
)

η ~Hα
(
Hα
x ,H

α
y ,H

α
z

)
=

=
1
2
ηJee

iβ0xe±iγy
(
− sin

(πα
2

)
sinφ~x± sin

(πα
2

)
cosφ~y ∓ cos

(πα
2

)
~z
)
.

The obtained fractional field is a field, radiated by the combination of sheets of
electric and magnetic currents with the densities

~jαe = ~xJe cos
πα

2
e−iψ0eiβ0xδ (y) , ~jαm = ~xJe sin

πα

2
e−iψ0eiβ0xδ (y) .
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