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Vidadi S. MIRZOYEV

ON CLOSURE OF ALGEBRA OF
PIECEWISE-CONTINUOUS FUNCTIONS

Abstract

In the paper the closure of any algebra of piecewise-continuous functions is
described and analogy of Stone-Weierstrass theorem in the space of piecewise-
continuous functions is obtained.

Stone-Weierstrass approximation theorem on closure of algebras in CR (K) (see
[1], p.296) is well known. The similar question arises in studying the completeness of
a system of eigen-functions of some discontinuous differential operators in algebra of
piecewise-continuous functions. The similar directions are studied in the suggested
paper.

First we introduce some denotation and notion that will be used in sequel.
Let c ∈ (a, b) (−∞ < a < b < ∞). By CR ([a, b]; c) we denote a space with sup

norm of real functions f continuous on [a, c]∪ (c, b] and having f (c + 0) finite right
limits at the point c.

Similarly, let a < c1 < ... < cn < b and S = {c1, ..., cn} be the set of finite
number of points; by CR ([a, b];S) we denote a space with sup norm of real functions
f continuous on [a, , c1]∪(c1, c2]∪...∪(cn, b] and having right f (ci + 0) , i = 1, 2, ..., n
limits at the points ci, i = 1, 2, ..., n.

Obviously, the spaces CR ([a, b]; c) and CR ([a, b];S) are Banach spaces.
Let A be some sub-algebra of algebra CR ([a, b]; c). In [a, b] we introduce equiv-

alence relation in the following form:

x ∼ y
def
≡ ∀f ∈ A : f (x) = f (y) .

This relation decomposes the set [a, b] into non-intersecting classes

ξ ≡ [x]A = {y ∈ [a, b] |∀f ∈ A : f (y) = f (x)}.

Denote by K̃ a set of equivalence classes ξ = [x]A, and consider the projection
function p : [a, b] → K̃ defined by the equality p (x) = [x]A. For any f ∈ A,
respectively, on the set K̃ define the function f̃ :

f̃ (ξ) ≡ f̃ ([x]A) = f (x)
(
ξ ∈ K̃

)
. (1)

Obviously f = f̃ ◦ p and

‖f‖CR(K̃) ≡ sup
ξ∈K̃

∣∣∣f̃ (ξ)
∣∣∣ = ‖f‖CR(K) .

By [A] denote a set of functions f̃ : K̃ → R defined by equality (1). It is easily
seen that the set [A] forms algebra of functions and there is one-to-one correspon-
dence between the algebras A and [A].

Denote:
ξc

def
= [c]A = {x ∈ |∀f ∈ A : f (x) = f (c)},
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ξc+0
def
= [x]c+0

A = {x |∀f ∈ A : f (x) = f (c + 0)},

ξ0
def
= [x]0A = {x |∀f ∈ A : f (x) = 0}.

Note that if ξ 6= ξ0 and ξ 6= ξc+0, then the set ξ = [x]A 6= ∅. In fact, therewith
always x ∈ x[x]A. In this case, it may happen that the set ξ = [x]A is one-element,
i.e. ξ = [x]A = {x}.

Note some properties of classes ξ, ξc+0 and ξ0 and some related notions.(
A0

)
ξ0 = ∅ ⇐⇒ ∀x ∈ [a, b],∃f ∈ A : f (x) 6= 0.(

B0
)
∃h ∈ A : h (c + 0) 6= 0.

If the conditions A0 and B0 are fulfilled, then we’ll say that algebra A doesn’t
vanish on the set [a, b].(

C0
)
∀h ∈ A : h (c + 0) = 0.(

D0
)

ξc = ξc+0 ⇐⇒ A ⊂ CR[a, b] i.e. all the functions of algebra A are
continuous.(

E0
)

ξc 6= ξc+0 ⇐⇒ ∃g ∈ A : g (c) 6= g (c + 0) i.e. there exists a discontinuous
function in algebra A.(

F 0
)

ξc+0 = ∅ ⇐⇒ ∀x ∈ [a, b],∃f ∈ A : f (x) 6= f (c + 0) .(
K0

)
If ξc+0 = ∅, (condition F 0) and all the equivalence classes ξ = [x]A = {x}

are one-element, then
K0 a) ∀x1, x2 ∈ [a, b],∃g ∈ A : g (x1) 6= g (x2);
K0 b) ∀x ∈ [a, b],∃g ∈ A : g (x) 6= g (c + 0).
In this case we’ll say that algebra A divides the points of the set [a, b].
Lemma 1. For any ξ, η ∈ K̃ (ξ 6= η) there exists such f̃ ∈ [A] that

f̃ (ξ) 6= f̃ (η).
Proof. Let ∃ξ, η ∈ K̃ (ξ 6= η) be such that for ∀f̃ ∈ [A] it holds f̃ (ξ) = f̃ (η).

Then ∀x ∈ ξ and ∀y ∈ η and for ∀f ∈ A

f (x) = f̃ ([x]A) = f̃ (ξ) = f̃ (η) = f̃ ([y]A) = f (y) ,

And this means, that x ∼ y and ξ = η. The obtained contradiction proves the
lemma.

Lemma 2. If ξc+0 6= ∅ and ξc+0 6= ξ0, then for any ξ1, ξ2 ∈ K̃\{ξc+0, ξ0} {ξ1 6=
ξ2} and any real numbers c1, c2, d ∈ R there exists such a function f̃ ∈ [A] that
f̃ (ξ1) = c1, f̃ (ξ2) = c2, f̃

(
ξc+0

)
= d.

Proof. If there exist the functions
ûi, ν̂i, ŵi ∈ [A], i = 1, 2 such that
û1 (ξ1) = 1, û1 (ξ2) = 0; û2 (ξ1) = 1, û2

(
ξc+0

)
= 0;

ν̂1 (ξ1) = 0, ν̂1 (ξ2) = 1; ν̂2 (ξ2) = 1, ν̂2

(
ξc+0

)
= 0;

ŵ1 (ξ1) = 0, ŵ1

(
ξc+0

)
= 1; ŵ2 (ξ2) = 0, ŵ2

(
ξc+0

)
= 1,

then denoting ũ = û1û2, ν̃ = ν̂1ν̂2 and w̃2 = ŵ1ŵ2, we have that the desired function
will be f̃ = c1ũ1 + c2ũ2 + dw̃ .

Prove the existence of the function w1 ∈ [A]. The existence of the functions
ûi, ν̂i (i = 1, 2) and ŵ2 are similarly proved.

Since ξc+0 6= ξ0, then there exist such functions g̃, h̃ ∈ [A] that g̃
(
ξc+0

)
6= g̃ (ξ1)

and h̃
(
ξc+0

)
6= 0. Assuming w̃ = g̃+λh̃ (λ ∈ R), we choose the number λ as follows:

if g̃
(
ξc+0

)
6= 0, then λ = 0; if g̃

(
ξc+0

)
= 0, then the number λ is chosen from the

conditions:

w̃
(
ξc+0

)
− w̃ (ξ1) = −g̃ (ξ1) + λ[h̃

(
ξc+0

)
− h̃ (ξ1)] 6= 0.
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Consequently, for the functions w̃ the conditions w̃
(
ξc+0

)
6= 0 and w̃

(
ξc+0

)
6=

w̃ (ξ1) are fulfilled. Then the function

w̃1 (ξ) =
w̃ (ξ)

w̃
(
ξc+0

) w̃ (ξ)− w̃ (ξ1)
w̃

(
ξc+0

)
− w̃ (ξ1)

∈ [A]

satisfies the conditions w̃
(
ξc+0

)
= 1, w̃ (ξ1) = 0. Lemma 2 is proved.

Lemma 3. If ξc+0 6= ∅ and ξc+0 = ξ0 then fore any ξ1, ξ2 ∈ K\{ξc+0} (ξ1 6= ξ2)
and any real numbers c1, c2 ∈ R there exists such a function f̃ ∈ [A] that
f̃ (ξ1) = c1, f̃ (ξ2) = c2.

Proof is similar to the one of lemma 2.
Introduce the following denotation:

CA
R ([a, b]; c) = {f ∈ CR ([a, b]; c)

∣∣ f |[x]A
≡ f (x)},

where f |M is the contraction of the function f ∈ CR ([a, b]; c) on the set M ⊂ [a, b].
Further, if ξ0 = [x]0A 6= ∅, we assume

CA,0
R ([a, b]; c) = {f ∈ CR ([a, b]; c)

∣∣∣ f |[x]0A
≡ 0},

and if ξ0 = [x]0A = ∅ we’ll assume that CA,0
R ([a, b]; c) = CA

R ([a, b]; c).
If for ∀h ∈ A, h (c + 0) = 0 (condition C0), then we assume

CA,c+0
R ([a, b]; c) = {f ∈ C ([a, b]; c)

∣∣∣ f (c + 0) ≡ 0},

and if there exists such a function h ∈ A, that h (c + 0) 6= 0 (condition B0), then
we’ll assume CA,c+0

R ([a, b]; c) = CA
R ([a, b]; c). Further, assume

EA
R ([a, b]; c) = CA

R ([a, b]; c) ∩ CA,0
R ([a, b]; c) ∩ CA,c+0

R ([a, b]; c) .

Lemma 4. For any f ∈ EA
R ([a, b]; c) and any x, y,∈ [a, b] there exists such a

function hxy ∈ A that

hxy (x) = f (x) , hxy (y) = f (y) , hxy (c + 0) = f (c + 0) . (2)

Proof. Consider the there cases:

a) ξc+0 = ∅, ξc+0 6= ξ0; b) ξc+0 6= ∅, ξc+0 = ξ0; c) ξc+0 = ∅.

In case a) we apply lemma 2. Let x ∈ ξ, y ∈ η. Then, by lemma 2 ∃h̃ξη ∈ [A] is
such that h̃ξη (ξ) = f (x) , h̃ξη (η) = f (y) and h̃ξη

(
ξc+0

)
= f (c + 0) (in particular,

if ξ = ξ0 or η = ξ0, then h̃ξη (ξ) = f (x) = 0 or h̃ξη (η) = f (y) = 0). Hence for the
function hxy = h̃ξη ◦ p ∈ A condition (2) is fulfilled.

b) in this case, if x ∈ ξ and y ∈ η, then by lemma 3 there exists such a func-
tion h̃ξη ∈ [A], that h̃ξη (ξ) = f (x) , h̃ξη (η) = f (y). It is clear that in this case
h̃ξη

(
ξc+0

)
= h̃ξη (ξ0) = 0 = f (c + 0). Then for the function hxy = h̃ξη ◦ p ∈ A

condition (2) is fulfilled.
c) In this case condition F 0 is fulfilled, i.e. ∀x ∈ [a, b], ∃g ∈ A, such that

g (x) 6= g (c + 0).
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Consider the two cases: 1c) ∃h ∈ A such that h (c + 0) 6= 0 (condition B0); 2c)
∀f ∈ A; h (c + 0) = 0 (condition C0)

Case 1c). Let x ∈ ξ, y ∈ η
(
ξ, η ∈ K̃

)
and ξ 6= η. Consider the following

possible variants:

1.1c) ξ 6= ξ0, η 6= ξ0; 2.1c) ξ = ξ0, η 6= ξ0.

In case 1.1c) there exist such functions hi, gi ∈ A, i = 1, 2, 3 that
h1 (x) 6= 0, h2 (y) 6= 0, h3 (c + 0) 6= 0 and g1 (x) 6= g1 (y) , g2 (x) 6= g2 (c + 0) ,

g3 (y) 6= g3 (c + 0).
Then by means of the method of the proof of lemma 2 we can show that there

exist the functions ui, νi, wi ∈ A, i = 1, 2, such that

u1 (x) = 1, u1 (y) = 0; u2 (x) = 1, u2 (c + 0) = 0; (3)

ν1 (x) = 0, ν1 (y) = 1; ν2 (y) = 1, ν2 (c + 0) = 0; (4)

w1 (x) = 0, w1 (c + 0) = 1; w2 (x) = 0, w2 (c + 0) = 1. (5)

Assuming u = u1u2, ν = ν1ν2, w = w1w2 it can be easily seen that the function
hxy (t) = f (x) u (t) + f (y) ν (t) + f (c + 0) w (t) will be the desired function.

In case 2.1c) for ∀g ∈ S and ∀f ∈ EA
R ([a, b]; c) it holds f (x) = g (x) = 0 (x ∈ ξ).

Therefore, as in case 1.1c) we can prove the existence of the functions ν1, ν2, w1,
w2 ∈ A satisfying conditions (4-5). Then hxy (t) = f (y) ν (t)+ f (c + 0) w (t), where
ν = ν1ν2, w = w1w2 will be the desired function.

We are also to note that at case 1c) ξ = η (i.e. f (x) = f (y)) the proof is similar.
Case 2c). In this case ∀h ∈ A and ∀f ∈ EA

R ([a, b]; c) the conditions f (c + 0) =
= h (c + 0) = 0 are fulfilled. Therefore we must construct the function hxy ∈ A such
that hxy (x) = f (x) and hxy (y) = f (y).

If x ∈ ξ, y ∈ η
(
ξ, η ∈ K̃

)
in this case considering possible variances

1.2.c) ξ 6= ξ0, η 6= ξ0 (ξ 6= η) ; 2.2c) ξ = ξ0, η 6= ξ0; 3.2c) ξ = η

and arguing similarly, we can easily see that the proof of the existence of the function
hxy differs very little from the previous case 1 c). Lemma 4 is proved.

Theorem 1. Let A be some algebra of algebra CR ([a, b]; c). Then Ā =
= EA

R ([a, b]; c), where Ā is closure A by the norm of the space CR ([a, b]; c).
Proof. Following the proof of Stone-Weierstrass theorem (see [2], p.183) we can

show that if f ∈ A, then |f | ∈ Ā. Hence, if f1, ..., fn ∈ Ā that max{f1 (x) , ..., fn (x)} ∈
Ā and min{f1 (x) , ..., fn (x)} ∈ Ā.

Let any ε > 0 and the function f ∈ EA
R ([a, b]; c) be given. Prove that f ∈ Ā.

Since A ⊂ Ā then it follows from lemma 4 that for any x, y ∈ [a, b] we can find
such a function hxy ∈ Ā that hxy (x) = f (x) , hxy (y) = f (y) and hxy (c + 0) =
f (c + 0). Then there exists the vicinity Uxy of the point y such that for any t ∈ Uxy it
holds hxy (t) > f (t)−ε. We fix x; then open sets Uxy considered at all y ∈ [a, b], form
a covering of the compact [a, b]. Then there exist a finite number of y1, y2, ..., ym ∈
[a, b] (here we assume y1 = c), for which [a, b] =

m
∪

i=1
Uxyi and at t ∈ Uxyi it holds

hxyi > f (t) − ε. Consider the function gx (t) = max{hxy1 (t) , ..., hxym (t)} ∈ Ā.
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Obviously, gx (x) = f (x) , gx (c + 0) = f (c + 0) and for any t ∈ [a, b]gx (t) >
max{hxyk

(t) , k = 1,m} > f (t)− ε.
Continuing in a similar way, for the function gx (t) at all x we construct a system

of neighborhoods of Vx, covering [a, b] where the inequality gx (x) < f (t)+ε (t ∈ Vx)
is fulfilled and using the compactness of the segment [a, b] we choose a finite number
of the functions gx1 (t) , ..., gxn (t). Assuming ϕ (t) = min{gx1 (t) , ..., gx (t)} ∈ Ā we
can easily show that at all t ∈ [a, b] the inequality f (t) − ε < ϕ (t) + ε is fulfilled.
This means that f ∈ Ā and Ā = EA

R ([a, b]; c). Theorem 1 is proved.
Note some corollaries from theorem 1 related with conditions

(
A0 −K0

)
.

Corollary 1. If the conditions D0, A0 and K0 are fulfilled for algebra A, then
Ā = CR[a, b].

This is a classic Stone-Weierstrass theorem.
Corollary 2. If the condition D0 is fulfilled for algebra A, then

Ā = {f ∈ CR[a, b]
∣∣ f

∣∣
[x]A ≡ f (x) } ∩ {f ∈ CR[a, b]

∣∣∣ f
∣∣∣[x]0A

≡ 0 }.

This result was obtained in [3].
Corollary 3. If the conditions A0, B0,K0 are fulfilled for A, i.e. algebra A

doesn’t vanish on the set [a, b] and separates the points [a, b], then Ā = CR[a, b] [4].
Let CA

R ([a, b];S) = {f ∈ CR ([a, b];S)
∣∣ f

∣∣
[x]A ≡ f (x)} . If [x]0A = ∅, then we

assume
CA,0

R ([a, b];S) = {f ∈ CR ([a, b];S)
∣∣ f

∣∣
[x]A ≡ 0},

if ξ0 = [x]0A = ∅, then we’ll assume that

CA,0
R ([a, b];S) = CA

R ([a, b];S) .

Further, let for some ik ∈ {1, n}, k = 1, 2, ...,m (m < n) and for any
h ∈ A, h (cik + 0) = 0. Assume I = {ik}m

k=1 and

CA,I
R ([a, b];S) = {f ∈ CR ([a, b];S) | f (cik + 0) = 0, ik ∈ I} .

If I = ∅, we’ll adopt CA,I
R ([a, b];S) = CA

R ([a, b];S). Assume

EA
R ([a, b];S) = CA

R ([a, b];S) ∩ CA,0
R ([a, b];S) ∩ CA,I

R ([a, b];S) .

The following theorem is proved in a similar way.
Theorem 2. Let A be some subalgebra of algebra CR ([a, b];S) then

Ā = EA
R ([a, b];S) , where Ā is a closure of A by the norm of the space CR ([a, b];S).

The author expresses his deep gratitude to d.ph.math.sc. B.T. Bilalov for his
attention to the paper.
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