Vidadi S. MIRZOYEV

ON CLOSURE OF ALGEBRA OF PIECEWISE-CONTINUOUS FUNCTIONS

Abstract

In the paper the closure of any algebra of piecewise-continuous functions is described and analogy of Stone-Weierstrass theorem in the space of piecewisecontinuous functions is obtained.

Stone-Weierstrass approximation theorem on closure of algebras in $C_R(K)$ (see [1], p.296) is well known. The similar question arises in studying the completeness of a system of eigen-functions of some discontinuous differential operators in algebra of piecewise-continuous functions. The similar directions are studied in the suggested paper.

First we introduce some denotation and notion that will be used in sequel.

Let $c \in (a, b)$ $(-\infty < a < b < \infty)$. By $C_R([a, b]; c)$ we denote a space with sup norm of real functions f continuous on $[a, c] \cup (c, b]$ and having f(c + 0) finite right limits at the point c.

Similarly, let $a < c_1 < ... < c_n < b$ and $S = \{c_1, ..., c_n\}$ be the set of finite number of points; by $C_R([a, b]; S)$ we denote a space with sup norm of real functions f continuous on $[a, c_1] \cup (c_1, c_2] \cup ... \cup (c_n, b]$ and having right $f(c_i + 0), i = 1, 2, ..., n$ limits at the points $c_i, i = 1, 2, ..., n$.

Obviously, the spaces $C_R([a,b];c)$ and $C_R([a,b];S)$ are Banach spaces.

Let A be some sub-algebra of algebra $C_R([a,b];c)$. In [a,b] we introduce equivalence relation in the following form:

$$x \sim y \stackrel{def}{\equiv} \forall f \in A : f(x) = f(y).$$

This relation decomposes the set [a, b] into non-intersecting classes

$$\xi \equiv [x]_A = \{ y \in [a, b] \, | \forall f \in A : f(y) = f(x) \}.$$

Denote by \tilde{K} a set of equivalence classes $\xi = [x]_A$, and consider the projection function $p : [a,b] \to \tilde{K}$ defined by the equality $p(x) = [x]_A$. For any $f \in A$, respectively, on the set \tilde{K} define the function \tilde{f} :

$$\tilde{f}(\xi) \equiv \tilde{f}([x]_A) = f(x) \qquad \left(\xi \in \tilde{K}\right). \tag{1}$$

Obviously $f = \tilde{f} \circ p$ and

$$\|f\|_{C_R(\tilde{K})} \equiv \sup_{\xi \in \tilde{K}} \left| \tilde{f}(\xi) \right| = \|f\|_{C_R(K)}.$$

By [A] denote a set of functions $\tilde{f}: \tilde{K} \to R$ defined by equality (1). It is easily seen that the set [A] forms algebra of functions and there is one-to-one correspondence between the algebras A and [A].

Denote:

$$\xi_c \stackrel{def}{=} [c]_A = \{ x \in | \forall f \in A : f(x) = f(c) \},\$$

[V.S.Mirzoyev]

$$\begin{aligned} \xi_{c+0} &\stackrel{def}{=} [x]_A^{c+0} = \{ x \, | \forall f \in A : f(x) = f(c+0) \}, \\ \xi_0 &\stackrel{def}{=} [x]_A^0 = \{ x \, | \forall f \in A : f(x) = 0 \}. \end{aligned}$$

Note that if $\xi \neq \xi_0$ and $\xi \neq \xi_{c+0}$, then the set $\xi = [x]_A \neq \emptyset$. In fact, therewith always $x \in x[x]_A$. In this case, it may happen that the set $\xi = [x]_A$ is one-element, i.e. $\xi = [x]_A = \{x\}$.

Note some properties of classes ξ, ξ_{c+0} and ξ_0 and some related notions.

 $(A^0) \quad \xi_0 = \varnothing \iff \forall x \in [a, b], \exists f \in A : f(x) \neq 0.$

 $(B^0) \quad \exists h \in A : h (c+0) \neq 0.$

If the conditions A^0 and B^0 are fulfilled, then we'll say that algebra A doesn't vanish on the set [a, b].

 $(C^0) \quad \forall h \in A : h (c+0) = 0.$

 (D^0) $\xi_c = \xi_{c+0}$ \iff $A \subset C_R[a, b]$ i.e. all the functions of algebra A are continuous.

 (E^0) $\xi_c \neq \xi_{c+0} \iff \exists g \in A : g(c) \neq g(c+0)$ i.e. there exists a discontinuous function in algebra A.

 $(F^0) \quad \xi_{c+0} = \varnothing \iff \forall x \in [a,b], \exists f \in A : f(x) \neq f(c+0).$

 (K^0) If $\xi_{c+0} = \emptyset$, (condition F^0) and all the equivalence classes $\xi = [x]_A = \{x\}$ are one-element, then

 K^{0} a) $\forall x_{1}, x_{2} \in [a, b], \exists g \in A : g(x_{1}) \neq g(x_{2});$

 $K^0 \ \text{ b) } \forall x \in [a,b], \exists g \in A : g(x) \neq g(c+0).$

In this case we'll say that algebra A divides the points of the set [a, b].

Lemma 1. For any $\xi, \eta \in \tilde{K}$ $(\xi \neq \eta)$ there exists such $\tilde{f} \in [A]$ that $\tilde{f}(\xi) \neq \tilde{f}(\eta)$.

Proof. Let $\exists \xi, \eta \in \tilde{K} \quad (\xi \neq \eta)$ be such that for $\forall \tilde{f} \in [A]$ it holds $\tilde{f}(\xi) = \tilde{f}(\eta)$. Then $\forall x \in \xi$ and $\forall y \in \eta$ and for $\forall f \in A$

$$f(x) = \tilde{f}([x]_A) = \tilde{f}(\xi) = \tilde{f}(\eta) = \tilde{f}([y]_A) = f(y),$$

And this means, that $x \sim y$ and $\xi = \eta$. The obtained contradiction proves the lemma.

Lemma 2. If $\xi_{c+0} \neq \emptyset$ and $\xi_{c+0} \neq \xi_0$, then for any $\xi_1, \xi_2 \in \tilde{K} \setminus \{\xi_{c+0}, \xi_0\} \{\xi_1 \neq \xi_2\}$ and any real numbers $c_1, c_2, d \in R$ there exists such a function $\tilde{f} \in [A]$ that $\tilde{f}(\xi_1) = c_1, \ \tilde{f}(\xi_2) = c_2, \ \tilde{f}(\xi_{c+0}) = d.$

Proof. If there exist the functions

 $\hat{u}_i, \hat{\nu}_i, \hat{w}_i \in [A], \ i = \overline{1, 2}$ such that

 $\hat{u}_1(\xi_1) = 1, \ \hat{u}_1(\xi_2) = 0; \ \hat{u}_2(\xi_1) = 1, \ \hat{u}_2(\xi_{c+0}) = 0;$

 $\hat{\nu}_1(\xi_1) = 0, \ \hat{\nu}_1(\xi_2) = 1; \hat{\nu}_2(\xi_2) = 1, \ \hat{\nu}_2(\xi_{c+0}) = 0;$

 $\hat{w}_1(\xi_1) = 0, \ \hat{w}_1(\xi_{c+0}) = 1; \ \hat{w}_2(\xi_2) = 0, \ \hat{w}_2(\xi_{c+0}) = 1,$

then denoting $\tilde{u} = \hat{u}_1 \hat{u}_2$, $\tilde{\nu} = \hat{\nu}_1 \hat{\nu}_2$ and $\tilde{w}_2 = \hat{w}_1 \hat{w}_2$, we have that the desired function will be $\tilde{f} = c_1 \tilde{u}_1 + c_2 \tilde{u}_2 + d\tilde{w}$.

Prove the existence of the function $w_1 \in [A]$. The existence of the functions $\hat{u}_i, \hat{\nu}_i \ (i = 1, 2)$ and \hat{w}_2 are similarly proved.

Since $\xi_{c+0} \neq \xi_0$, then there exist such functions $\tilde{g}, h \in [A]$ that $\tilde{g}(\xi_{c+0}) \neq \tilde{g}(\xi_1)$ and $\tilde{h}(\xi_{c+0}) \neq 0$. Assuming $\tilde{w} = \tilde{g} + \lambda \tilde{h} (\lambda \in R)$, we choose the number λ as follows: if $\tilde{g}(\xi_{c+0}) \neq 0$, then $\lambda = 0$; if $\tilde{g}(\xi_{c+0}) = 0$, then the number λ is chosen from the conditions:

$$\tilde{w}(\xi_{c+0}) - \tilde{w}(\xi_1) = -\tilde{g}(\xi_1) + \lambda [h(\xi_{c+0}) - h(\xi_1)] \neq 0.$$

114

Transactions of NAS of Azerbaijan [On closure of algebra of piecewise-contin.funct.] 115

Consequently, for the functions \tilde{w} the conditions $\tilde{w}(\xi_{c+0}) \neq 0$ and $\tilde{w}(\xi_{c+0}) \neq 0$ $\tilde{w}(\xi_1)$ are fulfilled. Then the function

$$\tilde{w}_{1}\left(\xi\right) = \frac{\tilde{w}\left(\xi\right)}{\tilde{w}\left(\xi_{c+0}\right)} \frac{\tilde{w}\left(\xi\right) - \tilde{w}\left(\xi_{1}\right)}{\tilde{w}\left(\xi_{c+0}\right) - \tilde{w}\left(\xi_{1}\right)} \in [A]$$

satisfies the conditions $\tilde{w}(\xi_{c+0}) = 1$, $\tilde{w}(\xi_1) = 0$. Lemma 2 is proved.

Lemma 3. If $\xi_{c+0} \neq \emptyset$ and $\xi_{c+0} = \xi_0$ then fore any $\xi_1, \xi_2 \in K \setminus \{\xi_{c+0}\}$ $(\xi_1 \neq \xi_2)$ and any real numbers $c_1, c_2 \in R$ there exists such a function $\tilde{f} \in [A]$ that $f(\xi_1) = c_1, \ f(\xi_2) = c_2.$

Proof is similar to the one of lemma 2.

Introduce the following denotation:

$$C_R^A([a,b];c) = \{ f \in C_R([a,b];c) \mid f|_{[x]_A} \equiv f(x) \},\$$

where $f|_M$ is the contraction of the function $f \in C_R([a, b]; c)$ on the set $M \subset [a, b]$. Further, if $\xi_0 = [x]_A^0 \neq \emptyset$, we assume

$$C_R^{A,0}([a,b];c) = \{ f \in C_R([a,b];c) | f|_{[x]_A^0} \equiv 0 \},\$$

and if $\xi_0 = [x]_A^0 = \emptyset$ we'll assume that $C_R^{A,0}([a,b];c) = C_R^A([a,b];c)$. If for $\forall h \in A$, h(c+0) = 0 (condition C^0), then we assume

$$C_R^{A,c+0}([a,b];c) = \{ f \in C([a,b];c) | f(c+0) \equiv 0 \},\$$

and if there exists such a function $h \in A$, that $h(c+0) \neq 0$ (condition B^0), then we'll assume $C_R^{A,c+0}([a,b];c) = C_R^A([a,b];c)$. Further, assume

$$E_R^A([a,b];c) = C_R^A([a,b];c) \cap C_R^{A,0}([a,b];c) \cap C_R^{A,c+0}([a,b];c)$$

Lemma 4. For any $f \in E_R^A([a,b];c)$ and any $x, y, \in [a,b]$ there exists such a function $h_{xy} \in A$ that

$$h_{xy}(x) = f(x), \quad h_{xy}(y) = f(y), \quad h_{xy}(c+0) = f(c+0).$$
 (2)

Proof. Consider the there cases:

a)
$$\xi_{c+0} = \emptyset$$
, $\xi_{c+0} \neq \xi_0$; b) $\xi_{c+0} \neq \emptyset$, $\xi_{c+0} = \xi_0$; c) $\xi_{c+0} = \emptyset$.

In case a) we apply lemma 2. Let $x \in \xi$, $y \in \eta$. Then, by lemma 2 $\exists \tilde{h}_{\xi\eta} \in [A]$ is such that $\tilde{h}_{\xi\eta}(\xi) = f(x)$, $\tilde{h}_{\xi\eta}(\eta) = f(y)$ and $\tilde{h}_{\xi\eta}(\xi_{c+0}) = f(c+0)$ (in particular, if $\xi = \xi_0$ or $\eta = \xi_0$, then $\tilde{h}_{\xi\eta}(\xi) = f(x) = 0$ or $\tilde{h}_{\xi\eta}(\eta) = f(y) = 0$. Hence for the function $h_{xy} = \tilde{h}_{\xi\eta} \circ p \in A$ condition (2) is fulfilled.

b) in this case, if $x \in \xi$ and $y \in \eta$, then by lemma 3 there exists such a function $\tilde{h}_{\xi\eta} \in [A]$, that $\tilde{h}_{\xi\eta}(\xi) = f(x)$, $\tilde{h}_{\xi\eta}(\eta) = f(y)$. It is clear that in this case $\tilde{h}_{\xi\eta}\left(\xi_{c+0}\right) = \tilde{h}_{\xi\eta}\left(\xi_{0}\right) = 0 = f\left(c+0\right)$. Then for the function $h_{xy} = \tilde{h}_{\xi\eta} \circ p \in A$ condition (2) is fulfilled.

c) In this case condition F^0 is fulfilled, i.e. $\forall x \in [a,b], \exists g \in A$, such that $g(x) \neq g(c+0).$

[V.S.Mirzoyev]

Consider the two cases: 1c) $\exists h \in A$ such that $h(c+0) \neq 0$ (condition B^0); 2c) $\forall f \in A$; h(c+0) = 0 (condition C^0)

Case 1c). Let $x \in \xi$, $y \in \eta$ $(\xi, \eta \in \tilde{K})$ and $\xi \neq \eta$. Consider the following possible variants:

1.1c)
$$\xi \neq \xi_0, \ \eta \neq \xi_0;$$
 2.1c) $\xi = \xi_0, \ \eta \neq \xi_0.$

In case 1.1c) there exist such functions $h_i, g_i \in A, i = 1, 2, 3$ that

 $h_1(x) \neq 0, \ h_2(y) \neq 0, \ h_3(c+0) \neq 0 \text{ and } g_1(x) \neq g_1(y), \ g_2(x) \neq g_2(c+0), \ g_3(y) \neq g_3(c+0).$

Then by means of the method of the proof of lemma 2 we can show that there exist the functions $u_i, \nu_i, w_i \in A$, $i = \overline{1, 2}$, such that

$$u_1(x) = 1, \ u_1(y) = 0; \ u_2(x) = 1, \ u_2(c+0) = 0;$$
 (3)

$$\nu_1(x) = 0, \ \nu_1(y) = 1; \ \nu_2(y) = 1, \ \nu_2(c+0) = 0;$$
(4)

$$w_1(x) = 0, w_1(c+0) = 1; w_2(x) = 0, w_2(c+0) = 1.$$
 (5)

Assuming $u = u_1 u_2$, $\nu = \nu_1 \nu_2$, $w = w_1 w_2$ it can be easily seen that the function $h_{xy}(t) = f(x) u(t) + f(y) \nu(t) + f(c+0) w(t)$ will be the desired function.

In case 2.1c) for $\forall g \in S$ and $\forall f \in E_R^A([a,b];c)$ it holds f(x) = g(x) = 0 $(x \in \xi)$. Therefore, as in case 1.1c) we can prove the existence of the functions $\nu_1, \nu_2, w_1, w_2 \in A$ satisfying conditions (4-5). Then $h_{xy}(t) = f(y)\nu(t) + f(c+0)w(t)$, where $\nu = \nu_1\nu_2, w = w_1w_2$ will be the desired function.

We are also to note that at case 1c) $\xi = \eta$ (i.e. f(x) = f(y)) the proof is similar. Case 2c). In this case $\forall h \in A$ and $\forall f \in E_R^A([a,b];c)$ the conditions f(c+0) = h(c+0) = 0 are fulfilled. Therefore we must construct the function $h_{xy} \in A$ such that $h_{xy}(x) = f(x)$ and $h_{xy}(y) = f(y)$.

If $x \in \xi$, $y \in \eta$ $\left(\xi, \eta \in \tilde{K}\right)$ in this case considering possible variances

1.2.c)
$$\xi \neq \xi_0, \ \eta \neq \xi_0 \ (\xi \neq \eta); \ 2.2c) \ \xi = \xi_0, \ \eta \neq \xi_0; \ 3.2c) \ \xi = \eta$$

and arguing similarly, we can easily see that the proof of the existence of the function h_{xy} differs very little from the previous case 1 c). Lemma 4 is proved.

Theorem 1. Let A be some algebra of algebra $C_R([a,b];c)$. Then $\bar{A} = E_R^A([a,b];c)$, where \bar{A} is closure A by the norm of the space $C_R([a,b];c)$.

Proof. Following the proof of Stone-Weierstrass theorem (see [2], p.183) we can show that if $f \in A$, then $|f| \in \overline{A}$. Hence, if $f_1, ..., f_n \in \overline{A}$ that $\max\{f_1(x), ..., f_n(x)\} \in \overline{A}$ and $\min\{f_1(x), ..., f_n(x)\} \in \overline{A}$.

Let any $\varepsilon > 0$ and the function $f \in E_R^A([a,b];c)$ be given. Prove that $f \in \overline{A}$.

Since $A \subset \overline{A}$ then it follows from lemma 4 that for any $x, y \in [a, b]$ we can find such a function $h_{xy} \in \overline{A}$ that $h_{xy}(x) = f(x)$, $h_{xy}(y) = f(y)$ and $h_{xy}(c+0) = f(c+0)$. Then there exists the vicinity U_{xy} of the point y such that for any $t \in U_{xy}$ it holds $h_{xy}(t) > f(t) - \varepsilon$. We fix x; then open sets U_{xy} considered at all $y \in [a, b]$, form a covering of the compact [a, b]. Then there exist a finite number of $y_1, y_2, ..., y_m \in$ [a, b] (here we assume $y_1 = c$), for which $[a, b] = \bigcup_{i=1}^m U_{xy_i}$ and at $t \in U_{xy_i}$ it holds $h_{xy_i} > f(t) - \varepsilon$. Consider the function $g_x(t) = \max\{h_{xy_1}(t), ..., h_{xy_m}(t)\} \in \overline{A}$.

116

Transactions of NAS of Azerbaijan [On closure of algebra of piecewise-contin.funct.] 117

Obviously, $g_x(x) = f(x), g_x(c+0) = f(c+0)$ and for any $t \in [a,b]g_x(t) > 0$ $\max\{h_{xy_k}(t), k = \overline{1, m}\} > f(t) - \varepsilon.$

Continuing in a similar way, for the function $g_x(t)$ at all x we construct a system of neighborhoods of V_x , covering [a, b] where the inequality $g_x(x) < f(t) + \varepsilon$ $(t \in V_x)$ is fulfilled and using the compactness of the segment [a, b] we choose a finite number of the functions $g_{x_1}(t), ..., g_{x_n}(t)$. Assuming $\varphi(t) = \min\{g_{x_1}(t), ..., g_x(t)\} \in \overline{A}$ we can easily show that at all $t \in [a, b]$ the inequality $f(t) - \varepsilon < \varphi(t) + \varepsilon$ is fulfilled. This means that $f \in \overline{A}$ and $\overline{A} = E_R^A([a, b]; c)$. Theorem 1 is proved.

Note some corollaries from theorem 1 related with conditions $(A^0 - K^0)$.

Corollary 1. If the conditions D^0 , A^0 and K^0 are fulfilled for algebra A, then $\overline{A} = C_R[a, b].$

This is a classic Stone-Weierstrass theorem.

Corollary 2. If the condition D^0 is fulfilled for algebra A, then

$$\bar{A} = \{ f \in C_R[a, b] \mid f \mid_{[x]_A} \equiv f(x) \} \cap \{ f \in C_R[a, b] \mid f \mid_{[x]_A^0} \equiv 0 \}.$$

This result was obtained in [3].

Corollary 3. If the conditions A^0, B^0, K^0 are fulfilled for A, i.e. algebra A doesn't vanish on the set [a, b] and separates the points [a, b], then $\overline{A} = C_R[a, b]$ [4].

Let $C_R^A([a,b];S) = \{ f \in C_R([a,b];S) \mid f \mid_{[x]_A} \equiv f(x) \}$. If $[x]_A^0 = \emptyset$, then we assume

$$C_R^{A,0}([a,b];S) = \{ f \in C_R([a,b];S) \mid f \mid_{[x]_A} \equiv 0 \},\$$

if $\xi_0 = [x]^0_A = \emptyset$, then we'll assume that

$$C_{R}^{A,0}([a,b];S) = C_{R}^{A}([a,b];S).$$

Further, let for some $i_k \in \{\overline{1,n}\}, k = 1, 2, ..., m \quad (m < n)$ and for any $h \in A, \ h(c_{i_k} + 0) = 0.$ Assume $I = \{i_k\}_{k=1}^m$ and

$$C_R^{A,I}([a,b];S) = \{ f \in C_R([a,b];S) \mid f(c_{i_k}+0) = 0, i_k \in I \} .$$

If $I = \emptyset$, we'll adopt $C_R^{A,I}([a,b];S) = C_R^A([a,b];S)$. Assume

$$E_{R}^{A}\left([a,b];S\right) = C_{R}^{A}\left([a,b];S\right) \cap C_{R}^{A,0}\left([a,b];S\right) \cap C_{R}^{A,I}\left([a,b];S\right) \cap C_{R}^{A,I}\left([a,b];S\right)$$

The following theorem is proved in a similar way.

Let A be some subalgebra of algebra $C_R([a,b];S)$ then Theorem 2. $\bar{A} = E_R^A([a,b];S)$, where \bar{A} is a closure of A by the norm of the space $C_R([a,b];S)$.

The author expresses his deep gratitude to d.ph.math.sc. B.T. Bilalov for his attention to the paper.

References

[1]. Danford N., Schwartz Y. Linear operators. General theory. v.1, M.: "IL", 1962. (Russian)

[2]. Rudin U. Basis of mathematical analysis. M.: "Mir", 1976. (Russian)

[V.S.Mirzoyev] Transactions of NAS of Azerbaijan

[3]. Bilalov B.T. On Stone and Bishop approximation theorems (to appear). (Russian)

[4]. Mirzoyev V.S. Stone-Weierstrass approximation theorem for piece-wise continuous functions (to appear). Transactions of IMM, issue Mat. and Mech., Baku, 2004, v.XXIV, No4, pp.113-116.

Vidadi S. Mirzoyev

Institute of Mathematics and Mechanics of NAS of Azerbaijan. 9, F.Agayev str., AZ1141, Baku, Azerbaijan. Tel.: (99412) 439 47 20 (off.)

Received March 29, 2004; Revised June 16, 2004. Translated by Nazirova S.H.

118