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HOMOTOPY RELATION ON THE GATEGORY OF

INVERSE AND DIRECT SPECTRA OF
TOPOLOGICAL SPACES

Abstract

In this article, a homotopy relation is introduced on the category of inverse
and direct spectra of topological spaces. This relation is a generalizition of the
usual homotopy relation in the class of topological spaces. It is proved that the
given relation is an equivalence relation and the composition operation is in-
variant with respect to this relation. Later a link between the homotopy relation
of inverse spectra and the homotopy relation of the limits of inverse spectra is
stated.

1.Introduction. In algebraic topology many homology and cohomology the-
ories have been built on subcategories of the category of topological spaces. For
example, K-theory was built on the category of the finite CW-complexes [2]. It
is natural to study the problem of expansion of the K-theory on a wider category.
One of the approaches is to approximate a topological space by “good” spaces.
Such an approximation has been introduced by P.S. Alexandrov by using an inverse
spectrum. He proved that each compact space is a limit of the inverse spectrum
of finite polyedra [1]. Further this result has been expanded by V.I. Zaytsev, V.I.
Ponomaryov and others for a wider category of topological spaces [10],[12].

Inverse and direct spectra have many applications in algebra and topology. By
using inverse spectra homology and cohomology theories are defined [7]. Thus the
K-functor is firstly expanded on the category of locally finite CW-complexes, then
on the category of all topological spaces [4],[5],[6],[7]. In recent years shape theory
has been built on the basis of inverse spectra [3],[9].

In cited works inverse spectra are used as a tool to study different problems.
However in order to expand the function of the tool it is natural to introduce a new
equivalence relation involving also the usual equivalence relations. In this work a
new homotopy relation is introduced on the category of inverse and direct spectra
that is an expansion of the homotopy relation in the category of topological spaces.
Further the relationship within homotopics of inverse spectra and limit spaces of
these spectra is established.

2. Homotopy relation on the category of inverse and direct spectra

Inv (Top) and Dir (Top) are the appropriate categories of inverse and direct
spectra of the topological spaces. Consider the inverse spectra :

X =
(
{Xα }α∈A ,

{
pα

′
α : Xα

′ → Xα }α≺α′

)
,

Y =
(
{Yβ}β∈B ,

{
qβ′
β : Yβ′ → Yβ

}
β≺β′

)
.
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For the morphisms of the above inverse spectra

f =
(
π : B → A,

{
fβ : Xπ(β) → Yβ

}
β∈B

)
,

g =
(
ρ : B → A,

{
gβ : Xρ(β) → Yβ

}
β∈B

)
we give the following definition [7],[11].

Definition 2.1. If ∀β ∈ B ∃α ∈ A satisfying α � π (β) , α � ρ (β) and mappings
fβ ◦ pα

π(β) and gβ ◦ pα
ρ(β) are homotopic (fβ ◦ pα

π(β) ∼ gβ ◦ pα
ρ(β)), then the morphisms

f, g :X → Y are said to be spectrally homotopic morphisms. If fβ ◦ pα
π(β) = gβ ◦

pα
ρ(β), then the morphisms f and g are called canonically homotopic morphisms. We

indicate that the morphisms f and g are spectrally homotopic by f
s∼ g.

Similarly we define the concept of homotopy in a category of direct spectra of
topological spaces.

Note that, if both inverse and direct spectra are formed from one space, the
morphisms of the spectra (spectral homotopy) will give the continuous maps of
topological spaces. Spectral homotopy will be transformed into an ordinary homo-
topy.

Theorem 2.2. The spectral homotopy relation of Inv(Top) [Dir (Top)] in the
category of inverse [direct] spectra of topological spaces is an equivalence relation.

Proof. It is obvious that this relation is reflexive and symmetric. We show that
spectral homotopy is transitive. Let f

s∼ g and g
s∼ h.

Because f
s∼ g,∀β ∈ B ∃α ∈ A such that α � π (β) , α � ρ (β), and

fβ ◦ pα
π(β) ∼ gβ ◦ pα

ρ(β).

Because g
s∼ h, ∀β ∈ B ∃α′ ∈ A such that α′ � ρ (β) , α′ � σ (β) and

gβ ◦ pα′
ρ(β) ∼ hβ ◦ pα′

σ(β).
Because set A is a directed set, for α and α′, there is α′′ ∈ A such that α′′ � α,

α′′ � α′.
Consider the following diagram:
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Now (1) and (2) are homotopy commutative so by using the equations

pα
π(β) ◦ pα′′

α = pα′′
π(β), pα′

σ(β) ◦ pα′′
α′ = pα′′

σ(β), pα
ρ(β) ◦ pα

′′
α = pα

′

ρ(β) ◦ pα
′′

α′

we find,
fβ ◦ pα

′′

π(β) hβ ◦ pα
′′

σ(β).

We can show that spectral homotopy in the category of Dir(Top) is an equiv-
alance relation in a similar way.

Theorem 2.3. The composition operation in the categories Inv(Top) and Dir(Top)
are invariant with respect to the spectral homotopy relation.

Proof. Consider the following:

X =
(
{Xα}α∈A ,

{
pα

′
α

}
α≺α′

)
, Y =

(
{Yβ}β∈B ,

{
qβ

′

β

}
β≺β

′

)
,

Z =
(
{Zγ}γ∈C ,

{
rγ

′
γ

}
γ≺γ′

)

and
f0 =

(
π0 : B → A, {f0β}β∈B

)
, f1 =

(
π1 : B → A, {f1β}β∈B

)
g0 =

(
ρ0 : C → B, {g0γ}γ∈C

)
, g1 =

(
ρ1 : C → B, {g1γ}γ∈C

)
and assume that f0

s∼ f1 and g0
s∼ g1.

Because f0
s∼ f1 then ∀β ∈ B∃α ∈ A such that α � π0 (β) , α � π1 (β) and

f0β ◦ pα
π0(β) ∼ f1β ◦ pα

π1(β)
.

Because g0
s∼ g1, hen ∀γ ∈ C ∃β ∈ B such that β � ρ0 (γ) , β � ρ1 (γ) and

g0γ ◦ qβ
ρ0(γ) ∼ g1γ ◦ qβ

ρ1(γ) .
Consider the following diagram
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In this diagram (1) and (2) are homotopy commutative, (3) and (4) are commu-
tative from the definition of inverse spectrum, and (5), (6) are commutative from
the definition of the morphism of inverse spectra. Using these, we obtain:

g0γ ◦ f0ρ0(γ) ◦ pα
π0(ρ0(γ)) ∼ g1γ ◦ f1ρ1(γ) ◦ pα

π1ρ1(γ)

i. e.
g0 ◦ f

0

s∼ g
1
◦ f1.

Analogously one can prove the theorem in the category Dir(Top).

3. Relation between spectral homotopy and usual homotopy

Let C be a category for which we can describe the categories Inv(C) and Dir(C),
and the limit definition of the inverse and direct spectra in these categories.

It is obvious that, we can define canonical homotopy in the categories Inv(C)
and Dir(C).

Let F : Top → C be any covariant (contravariant) functor. It is obvious that
the functor F in the categories Inv(Top) and Dir(Top) transforms the covariant
(contravariant) functors;

F∗ : Inv(Top) → Inv(C) (F ∗ : Inv(Top) → Dir(C))

F∗ : Dir(Top) → Dir(C) (F ∗ : Dir(Top) → Inv(C))

If F : Top → C is a homotopy invariant functor, then the indicated functor
F∗(F ∗) transforms the homotopy mappings fβ ◦ pα

π(β) ∼ gβ ◦ pα
ρ(β) (Definition 2.1)

into equal mappings:

F∗ (fβ) ◦ F∗
(
pα

π(β)

)
= F∗ (gβ) ◦ F∗

(
pα

ρ(β)

)
[
F ∗
(
pα

π(β)

)
◦ F ∗ (fβ) = F ∗

(
pα

ρ(β)

)
◦ F ∗ (gβ)

]
That is ,the images of spectrally homotopic morphisms are ctually canonically

homotopic.
Thus we have the following proposition.
Proposition 3.1. If the functor F : Top → C is homotopy invariant, then

the indicated functor F∗(F ∗) transforms the spectrally homotopic morphisms into
canonically homotopic morphisms. Let

f =
(
π : B → A,

{
fβ : Xπ(β) → Yβ

}
β∈B

)
, g =

(
ρ : B → A,

{
gβ : Xρ(β) → Yβ

}
β∈B

)

(f , g : X → Y ) be canonically homotopic in the category of Inv(C) (Dir(C)).Consider
the limits of these morphisms and

lim← f, lim← g : lim← X → lim← Y (lim→ f , lim→ g : lim→ X → lim→ Y )
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Proposition 3.2. If f, g : X → Y (f, g : X → Y ) are canonically homotopic,
then the limit morphisms are equal:

lim← f = lim← g (lim→ f = lim→ g).

Proof. If
{
xπ(β)

}
is any element of lim← X , then

lim← f
({

xπ(β)

})
=
{
fβ

(
xπ(β)

)}
.

Because the morphisms f, g are canonically homotopic, for each β, ∃α such that

α � π (β) , α � ρ (β)

and
fβ

(
pα

π(β) (xα)
)

= gβ

(
pα

ρ(β) (xα)
)

Therefore

fβ

(
xπ(β)

)
= fβ

(
pα

π(β) (xα)
)

= gβ

(
pα

ρ(β) (xα)
)

= gβ

(
xρ(β)

)
.

Thus
lim← f = lim← g.

Now we look at
lim→ f, lim→ g : lim→ X → lim→ Y .

Assume [xα] ∈ lim→X and xα ∈ Xα. We need to show the following

[fα (xα)] = [gα (xα)]

Because f and g are canonically homotopic, for each α ∈ A, ∃β such that
β � π (α) , β � ρ (α), and qβ

π(α) ◦ fα = qβ
ρ(α) ◦ gα is obtained. Thus

qβ
π(α)(fα (xα)) = qβ

ρ(α)(gα(xα)).

This means that the elements fα (xα) and gα (xα) are equivalent and hence

[fα (xα)] = [gα (xα)] .

From Proposition 3.1. and Proposition 3.2. the theorem below is derived
Theorem 3.3 Let F : Top → C be a homotopy invariant functor. Then, the

composition of the induced functor F∗ (F ∗) and one of the functors lim← or lim→ will
be a spectral homotopy invariant functor.

From Theorem 3.3, It is proved that Chech extension is homotopy invariant.
Therefore we are able to extend the homotopy invariant functor to a wider category
without changing its invariant characteristic since the topological spaces could be
given as the limit of inverse spectrum of the ”good” spaces. Here ”good” spaces are
the CW -complexes [1],[3],[9],[12].



34
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Now, we show the relationship between homotopy of limit spaces and the spectral
homotopy of inverse spectra. Let

X =
(
{Xα}α∈A ,

{
pα

′
α

}
α≺α′

)
, Y =

(
{Yβ}β∈B ,

{
qβ

′

β

}
β≺β

′

)

be the inverse spectra of topological spaces f, g : X → Y be morphisms, and

f = lim← f, g = lim← g : X = lim← X → Y = lim← Y

be the limit morphisms of the limit spaces. Then we can prove following.
Theorem 3.4. If f, g : X → Y are homotopic maps and for ∀α ∈ A, pα : X →

Xα is a cofibration and map onto Xα [8],[11], then the morphisms f, g : X → Y of
the inverse spectra are spectrally homotopic.

Proof. Let β ∈ B. Because π (β) , ρ (β) ∈ A and A is a directed set, there is
α ∈ A such that α � π (β) and α � ρ (β). If F : X × I → Y is a homotopy between
f and g that is F (x, 0) = f (x) , F (x, 1) = g (x) and qβ : Y → Yβ is the projection,
then H and h could be defined as follows:

H = qβ ◦ F : X × I → Yβ and h = fβ ◦ pα
π(β)

Consider at the diagram below;

Note that (1) commutes. Therefore, the condition of cofibration is provided.
Because of this, a homotopy F

′′
: Xα × I → Yβ having the following properties is

obtained

F
′′
(xα, 0) = h (xα) = fβ

(
pα

π(β) (xα)
)

H (x, t) = F
′′
(pα (x) , t) = F

′′
(xα, t)

Then

F
′′
(xα, 1) = H (x, 1) = (qβ ◦ F ) (x, 1) = qβ (F (x, 1)) = qβ (g (x)) = gβ

(
pα

ρ(β) (xα)
)

Therefore

F
′′
(xα, 0) = fβ

(
pα

π(β) (xα)
)

, F
′′
(xα, 1) = gβ

(
pα

ρ(β) (xα)
)

,
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that is ∀β ∈ B there is α ∈ A such that fβ ◦ pα
π(β) ∼ gβ ◦ pα

ρ(β). Thus the morphisms
f, g : X → Y are spectrally homotopic. Hence, the theorem is proved.

Theorem 3.4 is proved under the cofibration condition of the maps pα : X → Xα.
Can we omit this condition?

Consider the class of homotopy types of mappings of topological spaces. It means
that the homotopic mappings are equal.

Theorem 3.5. If f, g : X → Y are homotopic mappings in the class of homo-
topy types then the morphisms of the inverse spectra f, g : X → Y are spectrally
homotopic.

Proof. Let Zpα be the cylinder of the mapping pα, i : X → Zpαj : Xα → Zpα the
injection maps and r : Zpα → Xα be the retract map. It is known that i : X → Zpα

is a cofibration.
Define the maps q : Xα → Yβ, h : Zpα → Yβ and G : X × I → Yβ as follows:
Let q = fβ ◦ pα

π(β) and h = q ◦ r, and G is any homotopy satisfying the condition
G (x, 0) = h (i (x)). Then, because i : X → Zpα is a cofibration, there is H :
Zpα × I → Yβ which satisfies

H (z, 0) = h (z) and G (x, t) = H ◦ (i × 1I) (x, t) .

Consider the following diagram :
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For the homotopy
G,G (x, 0) = h (i (x)) = q ◦ r ◦ i (x) = q (pα (x)) is assumed. There F : Xα × I →

Yβ is defined to be H ◦ (j × 1I) . Consider the diagram:

We check whether the conditions are verified with the pα : X → Xα mapping of
F homotopy with respect to the cofibration rules.

F (xα, 0) = q (xα). Now, we check only the condition F ◦ (pα × 1I) = G. Hence
j ◦ r ∼ 1Zpα

and F = H ◦ (j × 1I) , so F ◦ (r × 1I) ∼ H On the other hand, there is
also F ◦ (pα × 1I) ∼ G

Therefore, the second condition of cofibration is provided with homotopy equiv-
alence exactness. Consequently this theorem has been proved.

If the morphisms of inverse spectra are homotopy the question follows the limit
morphisms are homotopy?

We pass to homotopy classes in the category of inverse spectra instead of maps,
denoting the new category by Inv [Top]. We can also define homotopy in the cate-
gory Inv [Top].

Consider the following special situation in the category Inv [Top]. Let the inverse
spectrum X derive from a single space X,

Y =
(
{Yβ}β∈B ,

{
qβ′
β

}
β≺β′

)

be any inverse spectrum and the morphisms

f =
(
c : B → {∗} , {fβ : X → Yβ}β∈B

)
, g =

(
c : B → {∗} , {gβ : X → Yβ}β∈B

)
are spectrally homotopic. Then ∀β ∈ B, fβ, gβ : X → Yβ are homotopic. Here,
qβ
β , fβ, gβ maps are homotopy classes of their own.

Lemma 3.6. If the morphisms f, g : X → {Yβ}β∈B are spectrally homotopic in
the category Inv [Top], then their limits lim← f, lim← g are homotopic.

Proof. Let f = lim← f and g = lim← g. Then it is enough to show that
[f ] = [g] .

[f ] (x) = {[fβ] (x)} = {[gβ ] (x)} = [g] (x) .
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This equation could be derived by using [fβ] = [gβ ] as a result of fβ and gβ being
homotopic.

Theorem 3.7. In the category Inv [Top] the limits of spectrally homotopic mor-
phisms are homotopic.

Proof. Assume that the morphisms f, g : X → Y are spectrally homotopic in
the category Inv [Top]. For any β′ � β ∈ B thus the following diagram:

In this diagram (1) and (2) are homotopy commutative and the others are com-
mutative. From this diagram, we will note

qβ′
β ◦ fβ′ ◦ pπ(β′) = fβ ◦ p

π(β′)
π(β) ◦ pπ(β′) = fβ ◦ pπ(β)

qβ′
β ◦ gβ′ ◦ pρ(β′) = gβ ◦ p

ρ(β′)
ρ(β) ◦ pρ(β′) = gβ ◦ pρ(β)

fβ ◦ pπ(β) ∼ gβ ◦ pρ(β),

fβ′ ◦ pπ(β′) ∼ gβ′ ◦ p
ρ
(
β
′)

and when we pass to homotopy classes,

[
fβ ◦ pπ(β)

]
=
[
gβ ◦ pρ(β)

]
,
[
fβ′ ◦ pπ(β′)

]
=
[
gβ′ ◦ pρ(β′)

]
follow. Thus the diagram



38
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is homotopy commutative.
From Lemma 3.6., their limits are equal to each other. Because(

lim← f ◦ pπ(β)

)
{xα} =

{
fβ

(
pπ(β) {xα}

)}
=
{
fβ

(
xπ(β)

)}
and (lim← fβ) {xα} =

{
fβ

(
xπ(β)

)}
it follows that lim← fβ ◦ pπ(β) = lim← fβ and the

theorem has been proved.
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