Sadiq G. VELIYEV

BASES OF EXPONENTS WITH DEGENERATE COEFFICIENTS

Abstract

In this paper the basicity theorem of some systems of exponents in the space $L_p(-\pi,\pi)$ is obtained.

Basicity in $L_2(-\pi,\pi)$ of classic system of exponents with degenerate coefficients $\left\{\frac{1}{\sqrt{2\pi}}t(x)e^{inx}\right\}$, $n = 0, \pm 1, ...$, was considered earlier by V.F.Gaposhkin [1]. Concrete conditions, for carrying out of which relatively harmonic function, constructed with the help of this function, M.Riesz inequality takes place, are put on the function $\varphi(x) \equiv t^2(x)$.

The following system of exponents in $L_p \equiv L_p(-\pi, \pi)$

$$\left\{A^{+}(t)\,\omega^{+}(t)\,e^{int};\ A^{-}(t)\,\omega^{-}(t)\,e^{-ikt}\right\}_{n\geq 0,k\geq 1},\tag{1}$$

which also covers the case, if $\varphi(x)$ has power form, is considered in the proposed paper. In our case the functions $\omega^{\pm}(t)$ have the following presentations

$$\omega^{\pm}\left(t\right) \equiv \prod_{i=1}^{l^{\pm}} \left\{ \sin\left|\frac{t-\tau_{i}^{\pm}}{2}\right| \right\}^{\beta_{i}^{\pm}}, \qquad (2)$$

where $\{\tau_i^{\pm}\}: -\pi \leq \tau_1^{\pm} < \dots < \tau_{l^{\pm}}^{\pm} < \pi$ are some sets, and

$$\left\{\tau_i^{\pm}\right\} \cap \left\{\tau_i^{-}\right\} = \left\{\varnothing\right\},\tag{3}$$

 $A^{\pm}(t) \equiv |A^{\pm}(t)| e^{i\alpha^{\pm}(t)}$ are complex-valued functions on $[-\pi, \pi]$. Note, that particular cases of system (1) are eigen-functions of discontinuous differential operators with degenerate coefficients. Earlier the basicity of the system (1) in L_p was studied by Bilalov B.T. (see, for example [2,3]) in the cases, if the functions $\omega^{\pm}(t)$ are absent.

We require satisfying the following condition.

1) $\alpha^{\pm}(t)$ are piecewise-Hölder functions on $[-\pi,\pi]$, $\{s_i\}_1^r \subset [-\pi,\pi)$ is the set of discontinuity points of the function $\theta(t) \equiv \alpha^{\pm}(t) - \alpha^{-}(t)$. Moreover, $\{\tau_i^{\pm}\} \cap \{s_i\}_1^r = \{\emptyset\}$ and it takes place

$$0 < \|A^{\pm}; A^{-}\|_{\infty}^{\pm 1} < +\infty,$$

where $\|\cdot\|_{\infty}$ is the norm in L_{∞} .

Denote by $\{h_i\}_1^r$ the jumps of the function $\theta(t)$ at the points $s_i : h_i = \theta(s_i + 0) - \theta(s_i - 0)$, $i = \overline{1, r}$.

Thus, the following theorem is true.

168_____[S.G.Veliyev]

Theorem. Let the following conditions be fulfilled

$$-\frac{1}{p} < \beta_i^{\pm} < \frac{1}{q}, \ i = \overline{1, l^{\pm}}, \tag{4}$$

$$-\frac{2\pi}{q} < h_k < \frac{2\pi}{p}, \ k = \overline{1, r}.$$
(5)

Then system (1) forms the basis in L_p , $1 , where <math>q: \frac{1}{q} + \frac{1}{q} = 1$, conjugate to p number.

Before we prove this theorem, we introduce some classes of functions. Let $\nu^+(t)$ be some measurable, non-negative function on $(-\pi,\pi)$. H^+_{δ} , $\delta > 0$ is usual Hardy class of analytical functions in a unit circle. Introduce the following weight Hardy class H_{p,ν^+}^+ :

$$H_{p,\nu^{+}}^{+} \stackrel{def}{\equiv} \left\{ f \in H_{1}^{+} : \int_{-\pi}^{\pi} \left| f^{+} \left(e^{it} \right) \right|^{p} \nu^{+} \left(t \right) dt < +\infty \right\},$$

where $f^{+}(\tau)$ is nontangential boundary values of the function f(z) at the point τ : $|\tau| = 1$, inside the unit circle. Class $H^{-}_{p,\nu^{-}}$ is introduced analogously. Further, denote by $L_{p,\nu}$ the class of measurable on Lebesgue functions on $(-\pi,\pi)$ with the norm

$$\|f\|_{p,\nu} \equiv \left(\int_{-\pi}^{\pi} |f(t)|^p \nu(t) dt\right)^{1/p}.$$

So, let

$$\nu^{\pm} \equiv [\omega^{\pm}]^p, \tag{6}$$

$$G(e^{it}) \equiv \frac{\omega^{-}(t) A^{-}(t)}{\omega^{+}(t) A^{+}(t)}.$$
(7)

Consider the following conjugation problem in classes $H_{p,\nu^{\pm}}^{\pm}$:

$$\begin{cases} F^{+}(\tau) + G(\tau) F^{-}(\tau) = g(\arg \tau), & |\tau| = 1, \\ F^{-}(\infty) = 0. \end{cases}$$
(8)

Any pair of functions $\{F^+; F^-\} : F^{\pm} \in H_{p,\nu^{\pm}}^{\pm}$, boundary values $F^{\pm}(\tau)$ of which on the unit circle satisfy the equation (8) almost everywhere and F^- is equal to zero at infinity, is called the solution of conjugation problem (8) in class $H_{p,\nu^{\pm}}^{\pm}$.

As usually, the general solution of the problem (8) is presented in the form

$$F\left(z
ight)=F_{1}\left(z
ight)+F_{0}\left(z
ight),$$

where $F_1(z)$ is a general solution of corresponding homogenous problem

$$F_1^+(\tau) + G(\tau) F_1^-(\tau) = 0, \ |\tau| = 1$$
(9)

Transactions of NAS of Azerbaijan [Bases of exponents with degenerate coefficients]

and $F_0(z)$ is any particular solution of nonhomogeneous problem (8).

First of all we'll find the general solution of homogeneous problem (9), which has the order $\leq m$ at infinity. Introduce the following analytical functions inside and outside the unit circle:

$$\begin{split} X_{1}^{\pm}(z) &= \exp\left\{ \pm \frac{1}{4\pi} \int_{-\pi}^{\pi} \ln \frac{\omega^{-}(t)}{\omega^{\pm}(t)} \frac{e^{it} + z}{e^{it} - z} dt \right\},\\ X_{1}^{\pm}(z) &= \exp\left\{ \pm \frac{1}{4\pi} \int_{-\pi}^{\pi} \ln \left| \frac{A^{-}(t)}{A^{\pm}(t)} \right| \frac{e^{it} + z}{e^{it} - z} dt \right\},\\ X_{1}^{\pm}(z) &= \exp\left\{ \pm \frac{1}{4\pi} \int_{-\pi}^{\pi} \theta(t) \frac{e^{it} + z}{e^{it} - z} dt \right\}, \end{split}$$

where $\theta(t) \equiv \alpha^{-}(t) - \alpha^{+}$. Let

$$Z_{i}(z) \equiv \begin{cases} X_{i}(z), & |z| < 1, \\ [X_{i}^{-}(z)]^{-1}, & |z| > 1, i = \overline{1,3} \end{cases}$$

Formally we'll call the function $Z(z) \equiv \prod_{i} Z_{i}(z)$ canonical solution of homogenous problem (9). So, the following lemma is true.

Lemma 1. The general solution of homogeneous problem (9) in class $H_{p,\nu^{\pm}}^{\pm}$, 1 < $p < +\infty$ is presented in the form

$$F_{1}(z) = Z(z) \cdot P_{m}(z),$$

if all conditions of theorem are fulfilled, where P_m is a polynomial of degree $\leq m$.

Applying Sokhotsky-Plemel formulae, we obtain that the equality

$$\frac{A^{-}(t)\,\omega^{-}(t)}{A^{\pm}(t)\,\omega^{+}(t)} = \frac{Z^{+}\left(e^{it}\right)}{Z^{-}\left(e^{it}\right)},\tag{10}$$

is fulfilled almost everywhere.

We present the function $\theta(t)$ in the form: $\theta(t) = \theta_0(t) + \theta_1(t)$, where $\theta_0(t)$ is continuous part, $\theta_1(t)$ is the jump function, which is determined by the formula: $\theta(t) \equiv \alpha^{-}(t) - \alpha^{+}(t),$

$$\theta_1(-\pi) = 0, \theta_1(t) = \sum_{-\pi < S_k < t} h_k + [\theta(t) + \theta(t-0)], \\ -\pi < t \le \pi.$$

Let

$$h_0 = h_0^{(1)} - h_0^0,$$

where

$$h_{0}^{(1)}= heta_{1}\left(-\pi
ight)- heta_{1}\left(\pi
ight),\,\,h_{0}^{(0)}= heta_{0}\left(\pi
ight)- heta_{0}\left(-\pi
ight).$$

169

170 ______ Transactions of NAS of
[S.G.Veliyev]
Denote by
$$u(t) \equiv \prod_{k} \left\{ \sin \left| \frac{t - s_{k}}{2} \right| \right\}^{-\frac{h_{k}}{2\pi}},$$
 $u_{0}(t) \equiv \left\{ \sin \left| \frac{t - \pi}{2} \right| \right\}^{\frac{h_{0}^{0}}{2\pi}} \cdot \exp \left\{ -\frac{1}{4} \int_{-\pi}^{\pi} \theta_{0}(s) ctg \frac{t - s}{2} ds \right\}.$

Applying Sokhotsky-Plemel formulae, it is not difficult to obtain the following correlations:

$$|Z_{1}^{-}(e^{it})| = \left[\frac{\omega^{+}(t)}{\omega^{-}(t)}\right]^{1/2},$$

$$0 < ||Z_{2}^{-}(e^{it})||_{\infty} < +\infty,$$

$$|Z_{3}^{-}(e^{it})| = u_{0}(t) \cdot u(t) \cdot \left\{\sin\left|\frac{t-\pi}{2}\right|\right\}^{-\frac{h_{0}}{2\pi}}$$

As it follows from the results of the paper [4, p.79], the functions $u_0^{\pm}(t)$ are summable with any degree $p < +\infty$ on the segment $[-\pi, \pi]$. Further, we'll take into consideration (10) in (9). We have

$$\frac{F_1^+(\tau)}{Z^+(\tau)} = -\frac{F_1^-(\tau)}{Z^-(\tau)}, \quad |\tau| = 1.$$

We introduce the new piecewise-analytical function $\Phi(z)$:

$$\Phi(z) = \begin{cases} \frac{F_1^+(z)}{Z^+(z)}, & |z| < 1, \\ -\frac{F_1^-(z)}{Z^-(z)}, & |z| > 1. \end{cases}$$

As Z(z) has no zeros and poles for $|z| \neq 1$, then the functions $\Phi(z)$ and $F_1(z)$ have the same orders at the infinity. We'll investigate belonging of the function $\Phi(z)$ to the class H_{1}^{\pm} . According to definition $F_{1}^{+} \in H_{1}^{+}$. Moreover, $Z(z) \in H_{\delta}^{\pm}$ for sufficiently small $\delta > 0$. Consequently, $\Phi^+ \in H^+_{\mu}$ for some $\mu > 0$. According to definition $F_1 \in H^{\pm}_1$. On the other hand $F^-_1(e^{it}) \cdot \omega^-(t) \in L_p$. It remains to investigate belonging of the function $[Z^{-}(e^{it}) \cdot \omega^{-}(t)]$ to the class L_q , $\frac{1}{p} + \frac{1}{q} = 1$. And it follows directly from the lemma conditions. As a result we have $\Phi(\tau) \in$ $L_{1}\left(\Gamma\right), \ \Gamma: |\tau| = 1$, and thus $\Phi(z) \in H_{1}^{\pm}$. Consequently, $\Phi(z)$ is a polynomial of degree $\leq m$, i.e. $\Phi(z) \equiv P_m(z)$, and as a result

$$F_1(z) \equiv Z(z) \cdot P_m(z). \tag{11}$$

Now we'll show that $F_1(z) \in H_{p,\nu^{\pm}}^{\pm}$. Again from the conditions of theorem it follows that $F_1^{\pm}(e^{it}) \cdot \omega^{\pm}(t) \in L_p$ and $Z^{\pm}(e^{it}) \in L_1$. From (11) and from Smirnov theorem we have $F_1(z) \in H_1^{\pm}$. Thus, according to definition $F_1 \in H_{p,\nu}^{\pm}$. Lemma is proved.

And now let's prove the theorem. Let's research the solution of non-homogeneous conjugation problem (8) in classes $H_{p,\nu}^{\pm}$. Consider the function

$$F_0(z) = \frac{Z(z)}{2\pi} \int_{-\pi}^{\pi} \frac{g(\sigma)}{Z^+(e^{i\sigma})} \cdot \frac{d\sigma}{1 - z \cdot e^{-i\sigma}},$$
(12)

where Z(z) is a canonical solution of homogenous problem. Sokhotsky-Plemel formulae direct application gives us that the boundary values of the function $F_0(z)$ satisfy the equation (8) almost everywhere and $F_0(\infty) = 0$, i.e.

$$F_{0}^{+}\left(e^{it}\right) + \frac{A^{-}\left(t\right) \cdot \omega^{-}\left(t\right)}{A^{+}\left(t\right) \cdot \omega^{+}\left(t\right)} \cdot F_{0}^{-}\left(e^{it}\right) = g\left(t\right), \quad t \in \left(-\pi, \pi\right),$$

where $g \in L_{p,\nu^+}$ is an arbitrary function. Denote by $f(t) \equiv g(t) \cdot \omega^+(t)$. It is clear, that $f \in L_p$. Let $Z_0(e^{it}) \equiv Z^+(e^{it}) \cdot \omega^+(t)$.

Applying Sokhotsky-Plemel formulae and transforming, we obtain:

$$F_0^+\left(e^{it}\right)\cdot\omega^+\left(t\right) = f\left(t\right) + \frac{Z_0\left(e^{it}\right)}{2\pi} \int_{-\pi}^{\pi} \frac{g\left(\sigma\right)}{Z_0\left(e^{i\sigma}\right)} \cdot \frac{d\sigma}{1 - e^{i(t-\sigma)}}$$

From this presentation according to theorem 8.4 [4, p. 141] it follows that $F_0^+(e^{it}) \cdot \omega^+(t) \in L_p$, i.e. $F_0^+ \in L_{p,\nu^+}$. As $g(\sigma) \cdot [Z^+(e^{i\sigma})]^{-1} \in L_1$, then it is clear that

$$\int_{-\pi}^{\pi} \frac{g\left(\sigma\right)}{Z^{+}\left(e^{i\sigma}\right)} \frac{d\sigma}{1 - ze^{i\sigma}} \in H_{1}^{\pm}.$$

Consequently, $F_0 \in H^+_{\mu}$ for some $\mu > 0$. From $[\omega^+(t)]^{-1} \in L_q$ we obtain that $F_0^+(e^{it}) \in L_1$ and as a result from Smirnov theorem $F_0^+(z) \in H_1$. Thus, $F_0^+(z) \in H_{p,\nu^+}^+$. Analogously we can prove that $F_0^-(z) \in H_{p,\nu^-}^-$. As a result the constructed function is the solution. From $F(\infty) = 0$ it follows that homogeneous problem has only trivial solution, consequently, non-homogeneous problem has a unique solution (12). Thus, we obtain the following conclusion.

If all conditions of theorem are fulfilled, then conjugation problem (8) in classes $H_{p,\nu^{\pm}}^{\pm}$ has a unique solution in the form (12) for $\forall g \in L_{p,\nu^{\pm}}$. Further we'll show that any function f from L_p has decomposition on system (1) in L_p . First of all we'll introduce some subspaces L_p . Let $H_{p;m}^+$ H_p^- be usual Hardy classes of analytical functions inside and outside the unit circle, correspondingly, where m is the order of the main part of decomposition of the function from H_p^- into Laurent series at infinity. Denote by L_p^+ and L_p^- the restrictions of the functions from H_p^+ and $H_p^$ correspondingly of the unit circle. It is not difficult to note that L_p^+ and L_p^- are the subspaces of the space $L_p(-\pi,\pi)$. Consider the following weight subspaces:

$$L_{p,\nu}^{+def} \equiv \left\{ f \in L_1^+ : \|f\|_{p,\nu} < +\infty \right\},\$$
$${}_m L_{p,\nu}^{-def} \equiv \left\{ f \in L_1^- : \|f\|_{p,\nu} < +\infty \right\},\$$

171

172_____[S.G. Veliyev]

where $||f||_{p,\nu}^{p \, def} \equiv \int_{0}^{\pi} |f(t)|^{p} \nu(t) dt$, $\nu(t)$ is a measurable, almost everywhere nonnegative function. Using one result of Babenko K.I. [5] we can prove the following lemma.

Lemma 2. Let $\mu^{\pm}(x) = \prod_{i=0}^{l^{\pm}} |x - x_i^{\pm}|^{\alpha_i^{\pm}}$, where $-\pi \le x_0^{\pm} < x_1^{\pm} < ... < x_{l^{\pm}}^{\pm} < \pi$, $-1 < \alpha_i^{\pm} < p - 1$, $\forall i = \overline{0, l^{\pm}}$. Then the system $\{e^{int}\}_{n \ge 0} (\{e^{-int}\}_{n \ge m})$ forms the basis in the spaces $L_{p,\mu}^+(mL_{p,\mu^-}^-)$, 1 .

Passing to the proof of the theorem we note that $F_0^+(e^{it}) \in L_{p,\nu^+}^+$ and $F_0^- \in {}_1L_{p,\nu}^-$. From the conditions (4) it follows that the numbers $\alpha_i^{\pm} = p \cdot$ β , $i = \overline{0, l^{\pm}}$, satisfy the conditions of lemma 2. Then by this lemma the systems $\{e^{int}\}_{n\geq 0}, \{e^{-int}\}_{n\geq m}$ from the bases of subspaces L^+_{p,ν^+} and L^-_{p,ν^-} correspondingly. Decomposing the functions $F_0^+(e^{it})$ and $F_0^-(e^{it})$ on this systems we obtain that any function from L_p can be decomposed on system (1). As following step we'll prove the minimality of system (1) in L_p . For this we take $g(t) \equiv e^{int}$, $n \geq 0$ as the function g(t) in equation (8). As it was already shown, a unique solution of this problem in the class $H_{p,\nu^{\pm}}^{\pm}$ has the presentation (12).

We decompose the function (12) in series on the powers of z in zero and point at infinity. So, let

$$Z(z) = \sum_{n=0}^{\infty} a_n^+ \cdot z^n, \quad |z| < 1,$$
$$Z(z) = \sum_{n=0}^{\infty} a_n^- \cdot z^{-n}, \quad |z| > 1.$$

We have

$$I(z) \equiv \sum_{n=0}^{\infty} \int_{-\pi}^{\pi} \frac{e^{-in\sigma}}{2\pi Z^{+}(e^{i\sigma})} \cdot g(\sigma) \, d\sigma \cdot Z^{n}, \quad \text{for} \quad |z| < 1,$$

and

$$I(z) \equiv \sum_{n=0}^{\infty} \int_{-\pi}^{\pi} \frac{e^{-i(n-1)\sigma}}{2\pi Z^+ (e^{i\sigma})} \cdot g(\sigma) \, d\sigma \cdot Z^{-n}, \quad \text{for} \quad |z| > 1,$$

where

$$I(z) \equiv \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{g(\sigma)}{Z^{+}(e^{i\sigma})} \frac{d\sigma}{1 - z \cdot e^{-i\sigma}}.$$

Multiplying the corresponding decompositions, grouping by the powers of z and introducing the notation

$$\bar{h}_{n}^{+}(t) = \frac{\varphi_{n}^{+}(t)}{Z^{+}(e^{it})}, \ n \ge 0,$$
$$\bar{h}_{n}^{-}(t) = \frac{\varphi_{n}^{-}(t)}{Z^{+}(e^{it})}, \ n \ge 1,$$

Transactions of NAS of Azerbaijan [Bases of exponents with degenerate coefficients]

where φ_n^{\pm} are corresponding sums in the integrand, we have:

$$F_{0}(z) = \sum_{n=0}^{\infty} \int_{-\pi}^{\pi} \bar{h}_{n}^{+}(t) \cdot g(t) dt \cdot z^{n}, \text{ for } |z| < 1,$$

and

$$F_0(z) = \sum_{n=1}^{\infty} \int_{-\pi}^{\pi} \bar{h}_k^-(t) \cdot g(t) \, dt \cdot z^{-n}, \text{ for } |z| > 1,$$

where (\cdot) is complex conjugation.

From the conditions (4), (5) and the presentations for $Z^+(e^{it})$ it follows that $Z^+(e^{int}) \in L_q$. From the other side it is easy to note that the function

$$F_0(z) \equiv \begin{cases} z^n, \ |z| < 1, \\ 0, \ |z| > 1, \end{cases}$$

is also the solution of the problem (8) in the classes $H_{p,\nu^{\pm}}^{\pm}$. From comparisons of the corresponding coefficients we obtain:

$$\int_{-\pi}^{\pi} \bar{h}_k^+(t) \cdot \omega^+(t) e^{int} dt = \delta_{nk}, \quad \forall_{n,k\geq 0},$$
$$\int_{-\pi}^{\pi} \bar{h}_k^+(t) \cdot \omega^-(t) e^{int} dt = 0, \quad \forall k \geq 0, \quad \forall n \geq 1$$

Analogous analysis gives us:

$$\int_{-\pi}^{\pi} \bar{h}_k^+(t) \cdot \omega^+(t) e^{int} dt = 0, \ \forall k \ge 1, \ \forall n \ge 0,$$

and

$$\int_{-\pi}^{\pi} \bar{h}_{k}^{-} \cdot \omega^{-}(t) e^{-int} dt \ge \delta_{nk}, \ \forall_{n,k\ge 1},$$

where δ_{nk} is Kronecker symbol. Then the system $\{h_n^+(t); h_k^-(t)\}_{n \ge 0, k \ge 1}$ is biorthogonal to the system (1) and, consequently, (1) is minimal in L_p . As a result we obtain the basicity of the system (1) in L_p .

The theorem is proved.

Author is greatly thankful to prof. S.S. Mirzoyev for discussion of the obtained results.

173

174_____[S.G.Veliyev]

References

[1]. Gaposhkin V.F. A generalization of the Riesz's theorem on adjoint function. Math. Sbornik, 1958, v.46 (88), No3. (Russian)

[2]. Bilalov B.T. Basicity of some exponent systems, cosines and sinuses. Differen. equations, 1990, v.26, No1, pp.10-16. (Russian)

[3]. Bilalov B.T. Basicty properties of some exponent systems and degrees with shift. Dokl. RAN, 1994, v.334, No4, pp.416-419. (Russian)

[4]. Danilyuk I.I. Lectures on the boundary-value problems for analytical functions and singular integral equations. Novosibirsk, 1964, 226 p. (Russian)

[5]. Babenko K.I. On adjoint functions. DAN SSSR, 1948, v.62, No2, pp.157-160. (Russian)

Sadiq G. Veliyev

Institute of Mathematics and Mechanics of NAS of Azerbaijan. 9, F.Agayev str., AZ1141, Baku, Azerbaijan. Tel.: (99412) 439 47 20 (off.).

Received March 03, 2004; Revised July 23, 2004. Translated by author.