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TWO-DIMENSIONAL EVOLUTIONALY EQUATION
IN VISCOELASTIC SOILS THE PREPOTENT
FREQUENCIES

Abstract

Two-dimensional evolutional equation, describing non-linear wave process in
viscoelastic and linearly-hereditary soils has been introduced. It is shown, that
the volume perturbation doesn’t reduce to rise of non-linear waves are the prod-
uct to cross waves of shear deformations. In particular case, an exact solutions
describing the structures both of shock waves, and solutions are reduced. The
conditions for the existence of prepotent frequences of harmonic oscillations are
found.

Some one-dimenstional mathematic models of non-linear waves in elastic and
viscoellastic soils [1-5] have been constructed to the present time. The one dimen-
sional distribution of non-linear waves in porous media saturated by fluid, and also
in multiphase media have been generalized in [1,6-9].

In the given paper, two-dimensional evolutionary equation, describing non-linear
wave process in viscoelastic and linear ly-hereditary soils has been derived. In turns
out, that these waves are the product of just cross waves of shear deformations. In
particular case, the exact solutions, describing the structures both of show waves,
and solutions are reduced. The conditions for the existence of prepotent frequences
of hormonic oscillations are found.

1. By describing soil’s motion we’ll suppose, that the sizes of microcracks, pores
and grains of rock are small with respect to (X7, X2) with macrocoordinates and
length of the wave, and also L >> X1, Xo.

On the base of above-stated assumption we’ll take the system of equations of
masses, impulses, tensor of speeds deformations on sense of Oldroyd’s derivative

and thermodinamic condition [3,9].
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DDei1 _ 3;;1 + vy g;l + ggi}l + 2e11 88;)( + 2e19 g;f(lg g;)(ll, (1.3)
DD6§2 = % + vy 312,2 + vg gi? + 2e19 gX + 2e99 g;g 68;)(22’

Let’s remark, that in experiments [3,10] some viscoelastic dynamic properties
fragmentation rocks, which correspond to more complicated models, with including
to the defining rhelogical correlations also higher time derivatives were detected.

Let us formulate the corresponding laws with sharing of sphere and deviator

constituents for stress and strain tensors [3.9]
m n
D! D!
<bo + Zbl_Dtl> o = <a0 + Zal_Dtl) €, (15)
=1 =1
/ / Dl
<bo + Zblw) o192 = (]/0 + Zal Dtl (16)

Similarly, for linearly-hereditary soils, we’ll take

o=3K e—/Ho(t—T)edT ; (1.7)

g19 — 2G €12 — /H (t — T) elng . (18)

Here 0 = 011 + 099, € = e11 + €29, Hy (t) H (t) are the memory functions,
K=E/3(1-3v), G=E/2(1+v), ag,...
are defined from concrete viscoelastic models.

In general case of equations (1.1)-(1.6) or (1.1)-(1.4), (1.7), (1.8) is closed with

ah,bo, ..., b, constant coefficients which

respect to unknown variables: o11, 022,012, €11, €29, €12, V1, V2, p. It is naturally to
assume, that the forms of these functions slowly change with distance from entry,

i.e we introduce new variables [1-6].
z=nX1,y=nXo,T=(ct—n-7)Jc=t—c; ' X] —c; ' Xo. (1.9)

Here n (ny,n2),7 (X1, X2) ,c1 = ¢/ni,c2 = ¢/ng2,n << 1. Substituting (1.9) into

f
equations (1.1)-(1.8), we have

9p 0puy 0puo _10pvy _10pvy
_ — =0; 1.1
ar " ox g oy “ Tar 2 Tar 0 (1.10)
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The Rheological equations (1.13), (1.14) are written only for viscoelastic rocks,
and for linearly-hereditary rocks the notation will be similar.

Let’s represent the desired variables as series small parameter 7
1 2 1 2
Oij = O'Z] + 770( ) +n 0'( ) + T = r]ez(-j) + T]2UZ(-J-) +..,0; = nvz(- ) + 7]2’UZ(- ) + ..,

2
p=py+nD1 <a§!1) + 0%12)) + 7]2[D1 (0521) + 0522)) + Do (Ugll) + 0512)) |+ ... (1.15)
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Herei,j =1,2,D; = (8,0/80)00 <0, Dy = (1/2) (8277“/802)0_0, 092,0?1,092,00
are values of stress in stationary state of rock.
Substituting expansion (1.15) to the system of equations (1.10)-(1.14) and equate

the coefficients of members with the same degrees 7 in the first approximation we

have
Dy (o) + o)) = po ("ol + 5 0d)), (1.16)
povi) = —citol) — g loly), pult) = —c ol — g lol)y (L)
el = =7l el = gl o)) = (Gl + T tel) 2 (1a8)
bo (o)) +08)) = ao (el + b)), (1.19)
b0ty = apety. (1.20)

The closed system of linear homogeneous equations (1.16)-(1.20) has a non-zero

solution if and only if the determinant of this system equals zero:

(D1ao/bopy + 1) [1 — af (ci?+¢%) / (260p)] =

From the first two equations (1.18) and (1.19), (1.16) we’ll obtain:

1,0 4 o1 (Y
<leoﬂo +1) (ol + e 1ofV) = 0. (1.21)
Similarly, from the third equation (1.18) and (1.20), (1.17) we find
1.2 —2
(1), 0 _ ap (" +¢7) 1) 4 1) 199
Oi1 T 099 = PoCic2 ( 20 (CQ v et ) (1.22)

It is known, that volumetric and cross waves extend independently from each
other.

On the other hand, at distribution of the volumetric waves e(!) = cflvgl) +
cy 1051) # 0, therefore from (1.21) follows

an \ 172
= (-1/D)'/* = (bogo> : (1.23)

m _ —1,.(1) 1, (1)

On the other hand, at distribution of the cross waves ejy = ¢, vy’ 4+¢c| vy’ # 0,
therefore from (1.22) and (1.19) it follows: o(1) =0 = () =0

/ 2 .2
g _ a2 (1) _ (1)
= =c;, Uy’ = —(co/c1)vy . 1.24
2b6p0 C% +C% s 2 ( 2/ 1) 1 ( )

Let us note, that the speeds of volumetric ¢, and cross s; waves are connected

with ¢, ¢z correlations ¢; = ¢, 5/ sina, c3 = — — ¢, 5/ cosa, where a (0 < a < 7/2)
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is an angle of irridence and Snellews correlation sina/c, ; = const connects a with
speed of waves .

Similarly to the first, in the second approximation we have

oot eot) o

1 (2 1 (2 0 1 1)) 2
Dy g ~ Py G o) + 5ol )> =—Da7- (051) +U§2)> + (1.25)

or

o/ - 2 vt gull
+Po§ <C1 1“%” + ¢ 1”5”) — Po ( a; + 3;/ ;

2 2 2 1 1
ng) 0—18051) 6—18052) _ 3051) + 3‘752)

Po or ta or T or Oz oy’ (1.26)
oo | ool _ool) ool
P~y L 2 Tar oz | ay
T R (R
or L ar ox Lol 2 72 or
€8]
1 1)) Ov
+2 (crtef) + 5ely) A (1.27)
86%2) -1 6052) aUgl) n ( ~1,(D) (1)) 8622)+
or 2 o7 oy L 2 72 or
e8]
1 1)) v
+2 (Clleg; "‘021 ;2)) 83 )
86522) 10 7 _, (2) @) 1 81)&1) avgl)
St ga (@) = o (S S )+
(1) (1)
1 (1 _1 (1) Oe 1 (2 1 (D Ov
<C1 1U§)+02 lvg )> 8172 + (011652)"‘021652)) 8; +
(1
1 (1 1 (1) Ov
+<C11651)+0218g2)> (,; )
1
0 ( 11 22) 0 ( 11 22) n ( )
1
bo'3 — apely) = ETH- (1.30)

The expression 7" and T2, which is present at equations (1.29) and (1.30) are
simplified under the conditions ¢;'v18/91 ~ ¢ 'v20/07, since amplitudes of the

speeds of displacements greatly less, than the speeds of the waves ¢, or c;

w0 (W) m g (o) g
T:Zal< ”871 22) - b (”871 22), (1.31)

=1 =1
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n 1, (1) m 1 (1)
T = Za'a% _sy? ‘7712 . (1.32)

In the second approximation the volume perturbation doesn’t reduce to rise of
two-dimensional waves. Really, equation with unknown e(2) = c ( ) + 02 2) #£0
obtained from the system of equation (1.16), (1.18), (1.31) and (1.25), (1.27), (1.29)
identically vanishes.

In this connection in the second approximation we deduce evolution equation
of shear deformation of perturbations. Using expression (1.24), we’ll express from

equations (1.18), (1.20) and (1.17) egl),. .,0%12) though vgl)

1 e n _ _ 1
651) =79 1“5 )aegz) =G 1”% )v 652) =—(1/2) ez (e° = %) Ug )a (1.33)
1 apes , et aer , _ 1
UgQ):_ 0/ (022_012)05)7‘751): 0/ (022_012)_:0001 Ug)’
20, 20,
ay _ [aper!

-2 -2 2 1 1 1 1
05y = T (c2 - ) + pycicy ] u§ ),agl) + agg) =0.
0¢1

Then, with help of relations (1.32) and (1.33) from the system of equations (1 30),
(1.26), (1.28) we’ll obtain the equation with the unknown cglvg )+ ¢ 02 # 0,
whose coefficient is equal to expression (1.24) (og/ (2bypy) — c2 =0). The right-
hand side of this equation is a two-dimensional equation with Kortweg-de Vries

(Kdv) non-linearlity, containing higher derivatives with respect to ordinary Kdv

equation.
ool ¢ oulV mal) Ry~ ol
T R L+ 3%, 5L~ 1.34
oz cy Oy v or T n l:zl T 5T ) ( )
where
A +c3 o
Ry = 1 2 R S b 0 B r 1.35
! (2 —ca3)’ 3= ob' 725141 = Pny lb/ Loy (1.35)

To get rid of n and the distortion of length’s scale we’ll substitute in (1.34)

V= anvgl) = Ryvy and X; = z/n, X9 =y/n

v ¢ v ov " oty
X 6%, Vo +R3ZS”16 = =0 (1.36)

The obtained equation (1.36) describes evolution of non-linear two-dimensional
waves in soils. After solution of this equation under the given boundary conditions

the other parameters of the problem are found. If we substitute the differentiable



Transactions of NAS of Azerbaijan 211
[Two-dimensional evolutionaly equation...]

operator (1.6) by intepral operator (1.8), then we’ll get the evolution of non-linear

waves in the linearly-hereditary mediua

ov c1 Ov ov 0 y
- It 7 — 4+ Ry— [H(t—T)vdT =0 1.37
X, ©oX, Yar " 337/ (r=T)v ’ (1.37)
0
where 5
3 ‘ G e Clc? = Cg’ v = an'Ugl) (138)

=532 T 73 2
265 Po 01-1—02

In particular case the viscoelastic models [3.9] are used.
Sy = —FE\0) — E.0,, S3=— (B, — E,) 0,10, — My

E _ _ _ _ - I+ E
Sy = EQGIMI — (M1 + M) 6, <M1 + M22E*> 0.,
1 1

- My M M,
= M (000, + 22, Sg=— ..
Sy 1 (010 + B > Sg B, 0

2. Take in (1.36) { =2 (61 =0, =0, M = 0) and substitute v — —v,7 — —7

ov c1 Ov ov 93 _
_ i Z = RaMs. 2.1
0%, e 0x, Vor Pas =0 A= Rl (2.1)

Obtained equation (2.1) is Kdv equation in two variables. Search its solution in

the form of stationary travelling wave & = 7 — 5 '[ X1 — (c2/c1) X2]
—2651’05 +vve + Bugge = 0, (2.2)

3pvE = —v* + 6 ' v? + 64gv + 6By = f (v). (2.3)

It is known [4.5], that the sum of roots of equation (2.3) gives us the inverse value
of speed of wave propagation. If two roots of this equation are equal to v; = v9 # v3,

then solution (2.1) as £ — oo, v — 0 has the form [11]

1\ /2
v = 6061 sec h? { (2005) [(cf — cal) X1+ (051 + 60—101—102) X9 — t] } . (24)

In two-dimensional solution (2.4) An amplitude of the wave is twice greater than
in one-dimensional case, and it’s period (width) in /2 times decreasing equals to
2T (2006)1/2. If equation (2.3) has three different roots v # vy # v3, then solution
(2.1) takes the form:

v (€) = vy + (v3 — v3) en® [51 /“31;;1 : s] . (2.5)
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Hence, by coordinate ¢ we’ll define the period of the wave P

P:4< 26 >1/2K(s). (2.6)

U3 — U1

Here cn (x) is elliptical Jacobian’s function, K (s) is a first type of complete
elliptical function.
v9 — vy, § — 1 correspond to large values of amplitude of oscillations, at which
the limit value K (s) is simplified
16 1. vz —wy

1
K ~-In——==-1 .
(5) g 12 2nvz—v1

(2.7)

In this case, the sequence of wave families diverges with distance and closer to
each wave profile at s = 1 will take form (2.5)
If take in (1.36) My = My =0, 6, =0, 61 E; = p;, then we’ll obtain the Burges

equation
ov c1 Ov + ov 0%v
B e IS e il
X1 20X,  or Mor

In literature [ 7 ] the solution of this equation and structure of the wave are

=0, p = Rapy. (2.8)

well studied. The conditions for the existence of shock waves in solution (2.8) are
shown.

The analytical solutions of equation (1.36) in other values [ = 3,4 and etc., with
the help of Becklund’s transformation are obtained in [12-14].

In the linear approximation equation (1.36) allowing for (1.39) takes the form

ov c1 Ov A 0%v v o*v 9%v 9%

—_—— = — +A3—— +Ay— +As— + A— 2.9
0X; o ax, T A2gp thigs tAga tAsgstAys. (29)
where AQ = RgSQ,A3 = Rgsg, A4 = R354,A5 = R355, Aﬁ = R3SG.
The harmonic perturbations
v =wvgexpilwr — (k1 X1 + k2 X3)] (2.10)

reduce (2.9) to the dispersing correlation
—1 (k1 — k2q> = WU + w? (A2 — A4w2 + A6w4) + iw? (A3 — A5w2) , (2.11)
C2

where v, is a value speed, in circumference of which the linearization is realized.

For the existence of preportent frequences it is necessary, that
Ay — Agw?® + Agw* > 0. (2.12)

The given calculations show, that seismic signal with spectrum white noise,

within the propagation of waves passes to the oscillations of preportent frequency
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wq, corresponding to the wave number k;. However, that grows of amplitude can
be limited by nonlinear addends of Kdv, where generate the oscillation of higher
frequences out of the considered interval, and hence, provide dissipation of waves.
As a kernal of integrodifferential equation (1.37) we take damping exponential
function H (t) = 0. exp (—0' t) which is equivalent to use of model of viscoelastic
Kelvin’s soil [3]. Putting this in (1.3.7), often some transformations and lineariza-

tions we’ll get

4 2
v _adv 1 0v o Ov Rsb.0v _ (2.13)
6X1 (6] 8X2 0 878X1 C 878X2 0 87

Dispersional correlation, corresponding to (2.13) has the form

. C1 R30*w2 ,R30*0’w
—i |k —ko— ) =— — . 2.14
Z< ! 202) w? + 6" lw2+0'2 ( )

From here, it is easy to see, that in rheological medium the preportent frequences
don’t exist, since the real part of complex number (2.14) is always less than zero. So,
linearly-hereditary soils with exponentially damping memory reduce to the harmonic

perturbations.
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