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ON SOLUTION OF ONE BOUNDARY VALUE
PROBLEM FOR THE MIXED TYPE EQUATION
WITH TWO DEGENERATION LINES BY THE

FINITE DIFFERENCES METHOD
Abstract

Considered is a boundary value problem for a mixed type equation with twodegeneration lines. Solution of the problem is brought to that of a boundaryproblem in the elliptic part of the domain under consideration, and the obtainedproblem is solved by the �nite di�erences method. Proved are the existence ofa unique solution and its convergence. The convergence rate of the di�erenceproblem is determined.
1. Problem statement and passage to the corresponding boundaryvalue problem in the elliptic part of the considered domain.Consider the equation of mixed type

uxx + sign (xy)uyy = 0: (1:1)
Let 
 be a domain bounded by the arc � = AB : x2 + y2 = 1; x � 0; y � 0 andthe characteristics BC : y � x = 1; CD : x + y = 0; DA : x � y = 1 of equation(1.1). 
1 and 
2 are hyperbolic parts at x > 0 and x < 0 respectively, and 
3 is anelliptic part of the domain 
; I1 = OA and I2 = OB are unit intervals.Problem. Find the function u = u (x; y) satisfying the following conditions:1) u = u (x; y) satis�es equation (1.1) in the domain 
nI1nI2;2) u 2 C �
nI1nI2� \ C(1) (
nI1nI2);3) ux (x; 0) ; uy (x; 0) 2 C (I1) ; ux (0; y) ; uy (0; y) 2 C (I2), moreover they canreduce to in�nity of order below unit at the points A (1; 0) ; O (0; 0) ; B (0; 1);4) u = u (x; y) satis�es the boundary conditions:

ujAB = ' (�) ; 0 � � � �2 ; (1:2)
ujOD =  1 (x) ; 0 � x � 12 ; (1:3)
ujOC =  2 (y) ; 0 � y � 12 ; (1:4)

where ' 2 C h0; �2
i ;  i (t) 2 C

�0; 12
� \ C(1)�0; 12

� ; i = 1; 2;  1 (0) =  2 (0).
5) The functions u (x; y) ; @u@x; @u@y satisfy the sewing conditions
6) u (x;�0) = �11 (x)u (x;+0) + �12 (x) ; (1:5)

uy (x;�0) = �21 (x)uy (x;+0) + �22 (x) ; (1:6)
u (�0; y) = �31 (y)u (+0; y) + �32 (y) ; (1:7)
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ux (�0; y) = �41 (y)ux (+0; y) + �42 (y) ; (1:8)

where 0 � x � 1; 0 � y � 1; �ij 2 C(1) [0; 1] ; i = 1; 2; 3; 4; j = 1; 2.It should be noted that in [1] the following su�cient conditions of a uniquesolvability of the following problem were formulated:
�02i�1;2 (t) � �2i;2 (t) ; �02i�1;1 (t) � �2i;1 (t) � 0; i = 1; 2: (1:9)

We can show that the function u = u (x; y) satisfying in hyperbolic domain 
1equation (1.1) and boundary conditions (1.3), (1.5), (1.6) satis�es also the condition
�11 (x) @u (x;+0)@x � �21 (x) @u (x;+0)@y + �011 (x)u (x;+0) =

 01 �x2
�� �012 (x) + �22 (x) : (1:10)

Similarly the function u = u (x; y) satisfying in hyperbolic domain 
2 equation(1.1) and boundary conditions (1.4) , (1.7), (1.8) satis�es also the condition
�31 (y) @u (+0; y)@y � �41 (y) @u (+0; y)@x + �031 (y)u (+0; y) =

=  02 �y2
�� �032 (y) + �42 (y) : (1:11)

Subject to conditions (1.10)-(1.11) for �nding the exact solution, problems (1.1)-(1.8) in the elliptic part 
3 of domain 
 we have the following problem:Find continuous in 
3[�[I1[I2 the function u = u (x; y) satisfying the equation
@2u@x2 + @2u@y2 = 0 in 
3 (1:12)

and the boundary conditions uj� = '; (1:13)
�11 (x) @u (x; 0)@x � �21 (x) @u (x; 0)@y + �011 (x)u (x; 0) = �1 (x) ; x 2 I1; (1:14)
�31 (y) @u (0; y)@y � �41 (y) @u (0; y)@x + �031 (y)u (0; y) = �2 (y) ; y 2 I2; (1:15)
�1 (x) =  01 �x2

�� �012 (x) + �22 (x) ; �2 (y) =  02 �y2
�� �032 (y) + �42 (y) :

2. Approximation and determination of approximation error
Let's construct the net domain !h in the closed domain 
3 = 
3[I1[I2[�. LetN � 2 be a �xed natural number. Let's divide the segments I1 = OA and I2 = OBinto N equal parts, and points of division we denote by xi and yj :

xi = ih; i = 0; 1; :::; N; yj = jh; j = 0; 1; :::; N; h = 1=N:
respectively.
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Through the points of division x = xi and y = yj we draw the straight linesparallel to the coordinates axes Oy and Ox, respectively. Denote by �h the set ofpoints of intersection of the straight lines x = xi and y = yj with the boundary �.Let h;1 = fxi = ih; i = 1; 2; :::; N � 1; h = 1=Ng ;

h;2 = fyj = jh; j = 1; 2; :::; N � 1; h = 1=Ng ;
h = h;1 [ h;2 [ �h; !h = f(xi; yj) 2 
3g ; !h = !h [ h:

As in [2] the set of internal nodes !h we divide into three sets of nodes !0h; !�hand !��h , where !0h is a set of strongly internal, !�h is a set of boundary, !��h is a setof non-regular boundary nodes.Denote by Wij the value of the net function W = W (x; y) in nodes (xi; yj) ofthe net !h.Associate the following di�erence problem to problem (1.12)-(1.15):
L(1)Wij � 4Wij �Wi+1;j �Wi+1;j �Wi;j�1 �Wi;j+1 = 0; (xiyj) 2 !hn!��h ; (2:1)

L(2)Wij �Wij � h2(h+ h1) (h1 + h2)
�hWi+ 1

2 ;j + h1Wi�1;j��
� h1(h+ h2) (h1 + h2)

�hWi;j+ 1
2
+ h2Wi;j�1� = 0; (xi; yj) 2 !��h ; (2:2)

L(3)Wi0 � �11 (xi) (Wi0 �Wi�1;0)� �21 (xi) (Wi1 �Wi0)+
+h�011 (xi)Wi0 = h�1 (xi) ; i = 1; 2; :::; N � 1; (2:3)

L(4)W0j � �31 (yj) (W0j �W0;j�1)� �41 (yj) (W1j �W0j)+
+h�031 (yj)W0j = h�2 (yj) ; j = 1; 2; :::; N � 1; (2:4)

Wij j�h = ': (2:5)
Here Wi� 1

2 ;j or Wi;j� 1
2
is a value of the net function W = W (x; y) in the node�xi� 1

2
yj� 2 �h or �xi; yj� 1

2

� 2 �h whose distance from the non-regular neighboringnode (xi; yj) is smaller than h. In equation (2.2) these distances in directions Ox andOy are denoted by the h1 and h2, respectively. Note that this di�erence equationhas most general form. In this equation in particular h1 or h2 can be equal to h.For determining the error of approximation of di�erence problem (2.1)-(2.5) writethe di�erence problem relative to the net function Zij =Wij � u (xi; yj):
L(1)Zij =  ij ; (xi; yj) 2 !hn!��h ; (2:6)
L(2)Zij =  ��ij ; (xi; yj) 2 !��h ; (2:7)
L(3)Zi0 =  i0; i = 1; 2; :::; N � 1; (2:8)
L(4)Z0j =  0j ; i = 1; 2; :::; N � 1; (2:9)

Z ijj�h = 0: (2:10)
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Here  ij ;  ��ij ;  i0;  0j determine the error of approximation in the nodes hn ��h ;  ��h ; h;1 and h;2;, respectively. Using Taylor formula for these errors wecan easily obtain the corresponding expressionsLet " > 0� be a su�ciently small number and


0 (") = �(x; y) 2 
3; x2 + y2 � "2	 ; 
1 (") = n(x; y) 2 
3; (x� 1)2 + y2 � "2o


2 (") = n(x; y) 2 
3; x2 + (y � 1)2 � "2o ; 
3 (") = 
3n
0 (") n
1 (") n
2 (")
Assume that solution of equation (1.12) the function u = u (x; y) in 
3 (") hasbounded partial derivatives till the third order inclusively and����@ku@xk

���� �M; ����@ku@yk
���� �M; k = 1; 2; 3: (2:11)

We simultaneously assume that in domains 
m (") ; m = 0; 1; 2; the solutionu = u (x; y) satis�es the conditions����@ku@xk
���� � C"k�� ;

����@ku@yk
���� � C"k�� ; k = 1; 2; 3; (2:12)

where M > 0; C > 0; 0 < � � 1 are constants.Subject to conditions (2.11) and (2.12) after the elementary transformations forerror approximation we have:a) Let (xi; yj) 2 
3 ("). Then
�� ij�� � 2M3 h3; �� ��ij �� � 2h2h1h23 (h1 + h2)M;

j i0j � h2LM; �� 0j�� � h2LM; (2:13)
where L = max0�t�l j�i1 (t)j ; i = 1; 2; 3; 4:

b) Let (xi; yj) 2 
m ("). Then
�� ij�� � 2C3 h3"3�� ; �� ��ij �� � 2C3 h2h1h2(h1 + h2) "3�� ;

j i0j � CL h2"2�� ; �� 0j�� � CL h2"2�� : (2:14)
3. Extremum principle and convergence of di�erence problem.Consider the di�erence problem

L(1)Wij = gij ; (xi; yj) 2 !hn!��h ; (3:1)
L(2)Wij = g��ij ; (xi; yj) 2 !��h ; (3:2)

L(3)Wi0 = gi0; i = 1; 2; :::; N � 1; (3:3)
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L(4)W0j = g0j ; j = 1; 2; :::; N � 1; (3:4)

Wij j�h = ': (3:5)
Assume that the coe�cients �im (t) contained in expressions L(3)Wi0 and L(4)Wojsatisfy the conditions

�i1 (t) > 0; �i+1;1 (t) > 0; �0i1 (t) � 0; 0 < t < 1; i = 1; 3: (3:6)
Theorem 1 (Extremum principle). Let Wij be unequal constant net function

satisfy the di�erence problem (3.1)-(3.5). Assume that the coe�cients �im (t) satisfy
conditions (3.6). Then if gij � 0; g��ij � 0; g0j � 0 �gij � 0; g��ij � 0; g0j � 0� ;
then the net function Wij can't take on largest positive value in net point nodes!h [ h;1 [ h;2.Theorem 2. Let conditions (3.6) be ful�lled. Then if gij � 0; g��ij � 0; g0j �0; ' � 0 �gij � 0; g��ij � 0; g0j � 0; ' � 0� ; then for the net function Wij satisfy-

ing problem (3.1)-(3.5) it holds the inequality Wij � 0 (Wij � 0) in !h.Corollary. If gij � 0; g��ij � 0; gi0 � 0; ' � 0; then at ful�lling conditions (3.6)the di�erence scheme (3.1)-(3.5) has only trivial solution Wij � 0.From this corollary it follows the existence of a unique solution of di�erenceproblem (3.1)-(3.5).Theorem 3 (Comparison theorem). Let Wij be a solution of di�erence prob-

lem (3.1)-(3.5), and Wij be a solution of di�erence problem obtained from (3.1)-(3.5)

at substituting the functions gij ; g��ij ; gi0; g0j and ' respectively by gij ; g��ij ; gi0; g0j
and '. Let conditions (3.6) be ful�lled. Then if jgij j � gij ; ���g��ij ��� � g��ij ; jgi0j �gi0 ; jg0j j � g0j and j'j � ' then it holds the inequality

jWij j �W ij in !h:
Using the comparison theorem we prove the convergence of di�erence problem(2.1)-(2.5) and determine the convergence rate.Let the numbers a and "1 be determined by the equalities

a2 = � 1 at (xi; yj) 2 
3 (") nh;1nh;2;1 + bh� h2 at (xi; yj) 2 h;1 [ h;2n
0 (") ;
"21 =

� "2 at (xi; yj) 2 
0 (") nh;1nh;2;"2 + bh� h2 at (xi; yj) 2 �h;1 [ h;2� \ 
0 (") ;where b > 0 is some number.Determine the net function Zij by the equality

Zij =
8>>>><
>>>>:

Kh�a2 � x2i � y2j� at (xi; yj) 2 
3 (") ;
K h�"2

�"21 � x2i � y2j� at (xi; yj) 2 
0 (") ;
K h�"2

�a2 � x2i � y2j� at (xi; yj) 2 
m (") ; m = 1; 2;
where K > 0 is some constant.
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If the number b is determined by the equality

b = max (b1; b3) ; bi = max0�t�11 + 2�i1 (t)�i+1;1 (t) ; i = 1; 3;
then after the elementary transformations we'll obtain:

L(1)Zij = 4Kh3; L(2)Zij = 2h2h1h2h1 + h2 K; L(3)Zi0 � Kh2;
L(4)Z0j � Kh2 at (xi; yj) 2 
3 (") ;

L(1)Zij = 4Kh2+�"2 ; L(2)Zij = 2Kh1+�h1h2"2 (h1 + h2) ; L(3)Zi0 � Kh1+�"2 ;
L(4)Z0j � Kh1+�"2 at (xi; yj) 2 
0 (") [ 
2 (") ;

Zij j�h � 0:Compare the right hand-sides of the obtained relations for Zij with right hand-sides of corresponding equations in (2.6)-(2.10). Subject to inequalities (2.13)-(2.14)it is easy to be sure that the right parts (2.6)-(2.10) by module will be no more thancorrespoding expressions in the right hand-sides of obtained relations for Zij if theconstants K are determined by the equality
K = max�M3 ; LM

� : (3:7)
Then by virtue of comparison theorem we obtain the validity of the inequalityjZij j � Zij in !h:Thus it holds the following theorem:Theorem 4. Let the solutions u = u (x; y) of equation (1.12) satisfy conditions

(2.11)-(2.12). Assume that conditions (3.6) are ful�lled. Then the solution of dif-

ference problem (2.1)-(2.5) is converges to the solution of problem (1.12)-(1.15) and

at this the estimation

jWij � u (xi; yj)j � � Kh at (xi; yj) 2 
3 (") ;2Kh� at (xi; yj) 2 
m (") ; m = 0; 1; 2;
is true, where K is determined by equality (3.7).
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