Ibrahim M. NABIEV

CHARACTERISTIC OF SPECTRAL DATA OF DIRAC OPERATORS

Abstract

In the paper we found necessary and sufficient conditions to which must satisfy a collection of some quantities in order that it be spectral data of two self-adjoint boundary value problems generated on the segment by Dirac equation and non-separated boundary conditions.

Consider the boundary value problem $D(\omega, \beta, \gamma)$

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix} + \begin{pmatrix} p(x) & q(x) \\ q(x) & -p(x) \end{pmatrix} \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix} =$$
$$= \lambda \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}, \quad x \in [0, \pi],$$
$$\begin{pmatrix} \beta & 1 \\ -\bar{\omega} & 0 \end{pmatrix} \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} + \begin{pmatrix} \omega & 0 \\ \gamma & 1 \end{pmatrix} \begin{pmatrix} y_1(\pi) \\ y_2(\pi) \end{pmatrix} = 0,$$
(1)

where p(x) and q(x) are real functions from $L_2[0,\pi]$, ω is a complex number, and β, γ are real numbers.

In the paper we consider the case when $|\omega|^2 \neq \gamma^2 + 1$.

The characteristic of spectra of two boundary value problems of the form $D(\omega, \beta_1, \gamma)$, $D(\omega, \beta_2, \gamma)$ in the case $\omega^2 = \gamma^2 + 1$ (Im $\omega = 0$) was obtained in [1]. The inverse problem on reconstruction of the boundary value problems $D(0, \beta_1, \gamma)$ and $D(0, \beta_2, \gamma)$ was solved in [2]. The inverse periodic problem was studied in [3-4] by different methods.

Note that the main theorem on the inverse problem in the considered case without proof was announced in author's paper [5].

By $\begin{pmatrix} c_1(\lambda, x) \\ c_2(\lambda, x) \end{pmatrix}$ and $\begin{pmatrix} s_1(\lambda, x) \\ s_2(\lambda, x) \end{pmatrix}$ we denote the solution of equation (1) satisfying the conditions $\begin{pmatrix} c_1(\lambda, 0) \\ c_2(\lambda, 0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} s_1(\lambda, 0) \\ s_2(\lambda, 0) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Using the identity

$$c_1(\lambda, x) s_2(\lambda, x) - c_2(\lambda, x) s_1(\lambda, x) \equiv 1,$$
(2)

we easily get that the characteristic function of the problem $D(\omega, \beta, \gamma)$ is of the form

$$d(\lambda) = V_{+}(\lambda) + \beta \left[s_{2}(\lambda, \pi) + \gamma s_{1}(\lambda, \pi) \right] + 2 \operatorname{Re} \omega, \qquad (3)$$

where

$$V_{+}(\lambda) = |\omega|^{2} s_{1}(\lambda, \pi) - c_{2}(\lambda, \pi) - \gamma c_{1}(\lambda, \pi).$$
(4)

Consider the function

$$V_{-}(\lambda) = -|\omega|^{2} s_{1}(\lambda, \pi) - c_{2}(\lambda, \pi) - \gamma c_{1}(\lambda, \pi).$$

$$(5)$$

162 ______ [I.M.Nabiev]

We can easily be convinced that

$$V_{-}(\nu_{k}) = signV_{-}(\nu_{k})\sqrt{V_{+}^{2}(\nu_{k}) - 4|\omega|^{2}},$$
(6)

where ν_k $(k = 0, \pm 1, \pm 2, ...)$ are the zeros of the function $s_2(\lambda, \pi) + \gamma s_1(\lambda, \pi)$, i.e. eigen values of the boundary value problem generated by equation (1) and boundary conditions

$$y_1(0) = y_2(\pi) + \gamma y_1(\pi) = 0.$$
(7)

By (2) and (5) we have

$$V_{-}(\nu_{k}) = \frac{1}{s_{1}(\nu_{k},\pi)} - |\omega|^{2} s_{1}(\nu_{k},\pi) = \frac{1 - |\omega|^{2} s_{1}^{2}(\nu_{k},\pi)}{s_{1}(\nu_{k},\pi)} .$$
(8)

Spectral data of two boundary value problems $D(\omega, \beta_1, \gamma)$, $D(\omega, \beta_2, \gamma)$ are the totality of their spectra, sequences of signs $\{\sigma_k\}$ $(\sigma_k = sign(1 - |\omega s_1(\lambda_k, \pi)|))$ and the number ω .

Theorem. In order the number ω and sequences $\left\{c_{1,k}^{\pm}\right\}$ and $\left\{c_{2,k}^{\pm}\right\}$ and $\left\{\sigma_{k}\right\}$ be spectral data of boundary value problems of the form $D(\omega, \beta_{1}, \gamma)$, $D(\omega, \beta_{2}, \gamma)$ $\left(eta_1 < eta_2, \; \left|\omega\right|^2 < \gamma^2 + 1
ight)$ it is necessary and sufficient that the following conditions be fulfilled:

1)
$$c_{j,k}^{\pm} = 2k + r_j^{\pm} + \delta_{j,k}^{\pm},$$
 (9)

where $r_j^{\pm} = \frac{2}{\pi} arctg \frac{a_j \pm \sqrt{a_j^1 + b_j^2 - 4r^2}}{2r - b_j}, \ a_j = \beta_j \gamma + |\omega|^2 + 1, \ b_j = \beta_j - \gamma, \ r = \operatorname{Re}\omega$ are real numbers, $\sum_{k=-\infty}^{\infty} \left(\delta_{j,k}^{\pm}\right)^2 < \infty$

2) the numbers $c_{1,k}^{\pm}, c_{2,k}^{\pm}$ $(k = 0, \pm 1, \pm 2, ...)$ for $\operatorname{Im} \omega \neq 0$ alternate:

$$\dots < c_{1,k}^- < c_{2,k}^- < c_{1,k}^+ < c_{2,k}^+ < c_{1,k+1}^- < c_{2,k+1}^- < \dots,$$

and for $\operatorname{Im} \omega = 0$ satisfy the inequalities

$$\dots \leq c_{1,k}^- \leq c_{2,k}^- \leq c_{1,k}^+ \leq c_{2,k}^+ \leq c_{1,k+1}^- \leq c_{2,k+1}^- \leq \dots,$$

moreover, if two sequential terms of the sequence $\left\{c_{1,k}^{\pm}\right\}\left(\left\{c_{2,k}^{\pm}\right\}\right)$ are equal, then the term of the sequence $\left\{c_{2,k}^{\pm}\right\}$ $\left(\left\{c_{1,k}^{\pm}\right\}\right)$ coinciding with these two terms differ from other terms of the sequence $\left\{c_{1,k}^{\pm}\right\}$ $\left(\left\{c_{2,k}^{\pm}\right\}\right)$ 3)

$$c_k| \ge 2 \left| \omega \right|,\tag{10}$$

where $c_k = d_i (\nu_k) - 2r$,

$$d_{j}(z) = (b_{j} + 2r) \prod_{k=-\infty}^{\infty} \frac{\left(c_{j,k}^{-} - z\right)\left(c_{j,k}^{+} - z\right)}{\left(2k + r_{j}^{-}\right)\left(2k + r_{j}^{+}\right)}, \qquad (11)$$

Transactions of NAS of Azerbaijan______ [Characteristic of spectral data of dirac operat.]

 ν_k are the zeros of the function $d_1(z) - d_2(z)$; j = 1, 2;

4) $\sigma_k = 0$ if $|c_k| = 2 |\omega|$, and $\sigma_k = \pm 1$ otherwise, and there exists such a natural number N that $\sigma_k = 1$ for |k| > N.

Proof. Necessity. Let $\left\{c_{1,k}^{\pm}\right\}$, $\left\{c_{2,k}^{\pm}\right\}$ and $\{\sigma_k\}$, ω be spectral data of boundary value problems $D(\omega, \beta_1, \gamma)$, $D(\omega, \beta_2, \gamma)$. The necessity of the first and second conditions was established in [6]. By relation (2), (3) and (4) we have

$$c_{k} = d_{j} (\nu_{k}) - 2r = V_{+} (\nu_{k}) = |\omega|^{2} s_{1} (\nu_{k}, \pi) - c_{2} (\nu_{k}, \pi) - \gamma c_{1} (\nu_{k}, \pi) =$$
$$= |\omega|^{2} s_{1} (\nu_{k}, \pi) + \frac{1}{s_{1} (\nu_{k}, \pi)} .$$

Hence, the validity of inequality (10) is easily obtained. If $|c_k| = 2 |\omega|$, then $V^2_+(\nu_k) = 4 |\omega|^2$. Then by (6) $V_-(\nu_k) = 0$ holds.

Taking formula (8) into account we get

$$\sigma_k = sign\left(1 - |\omega s_1(\nu_k, \pi)|\right) = (-1)^{k+1} signV_-(\nu_k) = 0.$$

Let $|c_k| \neq 2 |\omega|$. Then, it is clear that σ_k attains -1 or 1. Using the representation of the function $s_1(\lambda, \pi)$ (see [3]) and taking into account the asymptotic formula $\nu_k = k + \frac{1}{\pi} \operatorname{arcctg} \gamma + m_k, \sum_{k=-\infty}^{\infty} m_k^2 < \infty \text{ and the inequality } |\omega|^2 < \gamma^2 + 1 \text{ we get}$ that as $|k| \to \infty |1-|\omega s_1(\nu_k, \pi)| = 1-|\omega \sin(\operatorname{arcctg} \gamma)| + o(1) = 1-\frac{|\omega|}{\sqrt{1+\gamma^2}} + o(1).$

Consequently, $\sigma_k = 1$ at sufficiently large values of |k|.

Sufficiency. Similar to the lemma in [7] it is easily proved that for the function $d_i(z)$ constructed by formula (11) it holds the representation

$$d_j(z) = b_j \cos \pi z - a_j \sin \pi z + 2r + f_j,$$
(12)

where $f_j(z) = \int_{-\pi}^{\pi} \tilde{f}_j(t) e^{itz} dt$, $\tilde{f}_j(t) \in L_2[-\pi,\pi]$. Since the function

$$\sigma(z) = \frac{d_1(z) - d_2(z)}{\beta_1 - \beta_2}$$
(13)

by formula (12) has the form $\sigma(z) = \cos \pi z - \gamma \sin \pi z + \frac{f_1(z) - f_2(z)}{\beta_1 - \beta_2}$, then by [2] its zeros ν_k satisfy the asymptotic formulae

$$\nu_k = k + \frac{1}{\pi} \operatorname{arcctg} \gamma + \tau_k, \ \sum_{k=-\infty}^{\infty} \tau_k^2 < \infty \ . \tag{14}$$

Construct the fucntion

$$V_1(z) = \frac{\beta_1 d_2(z) - \beta_2 d_1(z)}{\beta_1 - \beta_2} - 2r .$$
(15)

163

By (12) we have

$$V_{1}(z) = \frac{1}{\beta_{1} - \beta_{2}} \left[\beta_{1} \left(b_{2} \cos \pi z - a_{2} \sin \pi z\right) - \beta_{2} \left(b_{1} \cos \pi z - a_{1} \sin \pi z\right) + \beta_{1} f_{2}(z) - \beta_{2} f_{1}(z)\right] =$$

$$= \frac{\beta_{1}(\beta_{2} - \gamma) - \beta_{2}(\beta_{1} - \gamma)}{\beta_{1} - \beta_{2}} \cos \pi z - \frac{\beta_{1}a_{2} - \beta_{2}a_{1}}{\beta_{1} - \beta_{2}} \sin \pi z + \frac{\beta_{1}f_{2}(z) - \beta_{2}f_{1}(z)}{\beta_{1} - \beta_{2}} = -\gamma \cos \pi z - \left(1 + |\omega|^{2}\right) \sin \pi z + f_{3}(z),$$
(16)

where $f_{3}(z) = \int_{-\pi}^{\pi} \tilde{f}_{3}(t) e^{itz} dt, \ \tilde{f}_{3}(t) \in L_{2}[-\pi,\pi]$.

By (11) and (13) it follows from the second and third conditions of the theorem that $\xi \sigma \left(c_{j,k}^{-} \right) \geq 0, \ \xi \sigma \left(c_{j,k}^{+} \right) \leq 0, \ \xi \sigma \left(c_{j,k+1}^{-} \right) \geq 0, \dots$, where $\xi = -1$ or $\xi = 1$. Therefore the arrangement of sequences $\left\{ c_{1,k}^{\pm} \right\}, \ \{\nu_k\}$ are defined by the inequality

$$\dots \le c_{1,k}^- \le c_{2,k}^- \le \nu_{2k} \le c_{1,k}^* \le c_{2,k}^* \le \nu_{2k+1} \le c_{1,k+1}^- \le c_{2,k+1}^- \le \dots,$$
(17)

where $\nu_m < \nu_{m+1}, \ m = 0, \pm 1, \pm 2...$.

By formula (13) it holds $d_1(\nu_k) = d_2(\nu_k)$. Then we get from (15) $V_1(\nu_k) = d_j(\nu_k) - 2r = c_k$. By inequality (10) $c_k \ge 2 |\omega|$ or $c_k \le -2 |\omega|$. Hence and from inequalities (17) it follows that the signs of the terms of the sequence $\{c_k\}$ alternate. Using representation (16) and asymptotic formula (14), for sufficiently great values of |k| we have

$$c_{k} = -\gamma \cos \pi \nu_{k} - \left(1 + |\omega|^{2}\right) \sin \pi \nu_{k} + f_{3}\left(\nu_{k}\right)$$
$$= (-1)^{k+1} \left[\gamma \cos \left(\operatorname{arcctg} \gamma\right) \cos \pi \tau_{k} - \gamma \sin \left(\operatorname{arcctg} \gamma\right) \sin \pi \tau_{k} + \left(1 + |\omega|^{2}\right) \sin \left(\operatorname{arcctg} \gamma\right) \cos \pi \tau_{k} + \left(1 + |\omega|^{2}\right) \cos \left(\operatorname{arcctg} \gamma\right) \sin \pi \tau_{k}\right] +$$

$$+f_3(\nu_k) = (-1)^{k+1} \frac{1+\gamma^2 + |\omega|^2}{\sqrt{1+\gamma^2}} + \eta_k, \quad \sum_{k=-\infty}^{\infty} \eta_k^2 < \infty .$$
 (18)

Consequently, there exists such a number h_k that

$$c_k = 2 (-1)^{k+1} |\omega| ch h_k.$$
(19)

It is clear that

$$\sqrt{c_k^2 - 4|\omega|^2} = 2|\omega \ sh \ h_k| \ . \tag{20}$$

Assume

$$V_2(z) = -\gamma \cos \pi z - \left(1 - |\omega|^2\right) \sin \pi z + \theta(z), \qquad (21)$$

where

$$\theta(z) = \sigma(z) \sum_{k=-\infty}^{\infty} \frac{\theta_k}{(z - \nu_k) \sigma'(\nu_k)},$$

 $\frac{165}{[Characteristic of spectral data of dirac operat.]}$

$$heta_k = \gamma \cos \pi
u_k + \left(1 - |\omega|^2\right) \sin \pi
u_k + 2 \left(-1\right)^{k+1} \sigma_k |\omega \ sh \ h_k| \;\;.$$

Using relations (14), (18), (20) and estimate $\sqrt{1+x} = 1 + O(x)$ $(x \to 0)$ we get $\theta_k = \frac{(-1)^k}{\sqrt{1+\gamma^2}} \left(\gamma^2 + 1 - |\omega|^2 - \sigma_k \left|\gamma^2 + 1 - |\omega|^2\right|\right) + r_k, \sum_{k=-\infty}^{\infty} r_k^2 < \infty.$ Since $|\omega|^2 < \gamma^2 + 1$ and $\sigma_k = 1$ for sufficiently great values of |k| then $\sum_{k=-\infty}^{\infty} \theta_k^2 < \infty$. Therefore the function $\theta(z)$ admits the representation

$$\theta(z) = \int_{-\pi}^{\pi} \tilde{\theta}(t) e^{itz} dt, \quad \tilde{\theta}(t) \in L_2[-\pi, \pi]$$
(22)

(according to theorem 28 of the paper [8] and Paley-Wiener theorem [8, p.47]). It is easily seen that $\theta(\nu_k) = \theta_k$, consequently

$$V_2(\nu_k) = 2(-1)^{k+1} \sigma_k |\omega \ sh \ h_k| \ . \tag{23}$$

Introduce the function

$$s(z) = \frac{1}{2|\omega|^2} \left[V_1(z) - V_2(z) \right] .$$
(24)

By (16), (21) and (22) for this function it holds the representation

$$s(z) = -\sin \pi z + \int_{-\pi}^{\pi} \psi(t) e^{itz} dt, \ \psi(t) \in L_2[-\pi,\pi]$$
.

Hence, by the paper [3] we get that the zeros λ_k $(k = 0, \pm 1, \pm 2, ...)$ of the function s(z) satisfy the asymptotic formula

$$\lambda_k = k + \alpha_k, \ \sum_{k = -\infty}^{\infty} \alpha_k^2 < \infty$$
(25)

assuming $z = \lambda_k$ in (24) and taking into account (19), (23)

$$s(\nu_k) = \frac{1}{|\omega|^2} \left[V_1(\nu_k) - V_2(\nu_k) \right] =$$
$$= \frac{1}{2 |\omega|^2} \left[2 (-1)^{k+1} |\omega| ch h_k - 2 (-1)^{k+1} \sigma_k |\omega| sh h_k \right] =$$
$$= \frac{(-1)^{k+1}}{|\omega|} (1 - \sigma_k |th| h_k|)$$

and since $|th h_k| < 1$, then sign $s(\nu_k) = (-1)^{k+1}$. Consequently, the zeros of the function $\sigma(z)$ and s(z) alternate. Besides, the sequences $\{\nu_k\}$ and $\{\lambda_k\}$ satisfy asymptotic formulae (14) and (25). Then by the paper [2] there exists a unique

166 ______ __[I.M.Nabiev]

matrix-function $\begin{pmatrix} p(x) & q(x) \\ q(x) & -p(x) \end{pmatrix}$ (where $p(x), q(x) \in L_2[0,\pi]$) such that the sequences $\{\nu_k\}$ and $\{\lambda_k\}$ are the spectra of boundary value problems generated on $[0,\pi]$ by equation (1) (with this matrix-function) and boundary conditions (7) and $y_1(0) = y_1(\pi) = 0.$

We can easily be convinced that the characteristic function of the constructed boundary value problem $D(\omega, \beta_j, \gamma)$ coincides with the function $d_j(z)$. The theorem is proved.

References

[1]. Nabiev I.M. On reconstruction of Dirac operator on the segment. Proc. of IMM of NASA, 2003, v.XVIII, pp.97-102.

[2]. Gasymov M.G., Jabiev T.T. Solution of the inverse problem on two spectrums for Dirac equations on a finite segment. DAN Azerb. SSR, 1966, v.22, No7, pp.3-6. (Russian)

[3]. Misyura T.V. Characteristics of spectrums of periodical and antiperiodical boundary value problems generated by Dirac operator. II. Teoriya funktsiy, funk. analiz i ikh prilozheniya. Kharkov, 1979, issue 31, pp.102-109. (Russian)

[4]. Nabiev I.M. The inverse periodic problem for the Dirac operator. Proc. of IMM of NASA, 2003, v.XIX, pp. 177-180.

[5]. Nabiev I.m. The inverse problem for Dirac operator with non-separated self-adjoint boundary conditions. Vestnik BGU, 1992, No1, pp.134-138. (Russian)

[6]. Nabiev I.M. Properties of eigen-values of Dirac operator. Vestnik BGU, 2003, No2, pp.38-46. (Russian)

[7]. Nabiev I.M. Solution of a class of inverse problems for the Dirac operator. Transactions of ASA, 2001, No1, pp.146-157.

[8]. Levin B.Ya. Entire functions. M., MGU, 1971. (Russian)

Ibrahim M. Nabiev

Institute of Mathematics and Mechanics of NAS of Azerbaijan. 9, F.Agayev str., AZ1141, Baku, Azerbaijan. Tel.: (99412) 439 47 20 (off.)

Received September 10, 2004; Revised October 15, 2004. Translated by Nazirova S.H.