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ON SOLVABILITY OF NEUMANN PROBLEM FORCORDESS TYPE QUASILINEAR ELLIPTICEQUATIONS
Abstract

In the paper the strong solvability of Neuman problemnX
i;j=1aij (x; u; ux) @2u@xi@xj � !2Tran� 1 u = b (x; u; ux)

a.e. x 2 D; @u@n = 0
in Sobolev space ~W 2;2 (D), for some class of quasilinear elliptic equations withparameter !, whose leading coe�cents satisfy Cordess condition has been proved.

x1. Introduction.
Let D � En be a bounded domain of n -dimensional Euclidean space of thepoints x = (x1; x2; :::; xn); n � 2. The boundary @D of the domain D belongs tothe class C2. Consider the second boundary value problem in the domaind:nX

i;j=1aij (x; u; ux)uij � !2 Tran� 1u = b (x; u; ux) ; (1)
@u@n
����@D = 0; (2)

where ! is a real number, Tra = nPi=1aii (x; u; ux) ; ux = (u1; u2; :::; un); ui = @u@xi ;uij = @2u@xi@xj ; i; j = 1; 2; :::; n; kaij(x; z; �)k is a real symmetric matrix whoseelements are the functions measurable in x 2 D for any �xed z 2 E1; � 2 En.For almost every x 2 D functions (z; �) ! aij (x; z; �) and (z; �) ! b (x; z; �) arecontinuous in E1 � En. Moreover, it is assumed that
a)� j�j2 � nX

i;j=1aij (x; z; �) �i�j � ��1 j�j2 ; a:e: x 2 D; z 2 E1; � 2 En; � 2 En; (3)

b) supx2D;z2E1;�2En
0@ nX

i;j=1a2ij (x; z; �)
, nX

i=1aij (x; z; �)
1A2 < 1n� 1 ; (4)
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c) jb (x; z; �)j � b1 (x) (1 + j�j�) ; b1 2 Lp (D) for p > 2; � 2 �0; n (p� 2)p (n� 2)
� ; (5)

or p = 2; � = 0 for any x 2 E1; � 2 En a.e. x 2 D.Here � 2 (0; 1] is a constant number. Condition (4) is said to be Cordes conditionand is understood in the sense of equivalence of the nondegenerate linear transfor-mation; by means of the non degenerate linear substitution of variables equation(1) is reduced to the form L0u = b; whose leading coe�cients satisfy the condition(4). We'll assume that the function b (x; z; �) is measurable with respect to x in thedomain D for any �xed z 2 E1; � 2 En. The goal of the paper is to prove the strongsolvability of problems (1), (2) in the Sobolev spaces W 22 (D). Related problems forlinear equations were studied in [1].The questions of classic solvability of Neumann problem for linear equations withsmooth coe�cients were studied by several authors as M. Schecter, Ya. Lopatinskii,Z.Shapiro, S.Agmon, A.Duglis, L.Nierenberg (see ref. in [1]). Concerning a strongsolvability of the mentioned problem for linear equations with continuous coe�cientswe note O.A. Ladyzhenskaya's papers (see ref. of [1], and [2]). On solvability ofDirichlet problem for elliptic and parabolic equations with discontinuous coe�cientssatisfying Cordes condition we note the papers by I.Talenti [3], Yu.Alkhutov andI.T. Mamedov [4], [5]. For elliptic equations with leading coe�cients from the classVMO the corresponding results were obtained in the papers by C.Vitanza [6], [7]and D.Palagachev [8]. We also note the recent papers by M.Tain [9] and J.Wen [10]devoted to a strong solvability of a mixed boundary value problem for some class ofnon-linear parabolic equations satisfying the condition close to (3).Let 1 � p < 1; W 1p (D) and W 2p (D) be Banach space of the functions u (x) 2Lp (D) having partial derivatives ui and uij in the sense of distributions theory inD belonging to Lp (D) respectively. The norm of spaces W 1p (D) and W 2p (D) aregiven by the forms
kukW 1p (D) =

0@ZD
 jujp + nX

i=1 juij jp
! dx

1A1=p

and
kukW 2p (D) =

0@ZD
0@jujp + nX

i=1 juijp +
nX

i;j=1 juij jp
1A dx

1A1=p

respectively. For brievity of denotation we shall write the norms of the spacesW 1p (D) ;W 2p (D) and Lp(D) as kuk1;p ; kuk2;p and kukp ; respectively. We'll say thatthe function u (x) 2W 22 (D) belongs to ~W 22 , if for any function � (x) 2W 12 (D) it isful�lled the identity Z
D ��udx = �ZD

 nX
i=1�iui

! dx; (6)



Transactions of NAS of Azerbaijan [On solvability of Neumann problem] 111
where � is a Laplace operator in En. It is clear that ~W 22 (D) is a space of func-tions from ~W 22 (D) where all the functions u (x) 2 C1 � �D� are dense, for which@u@n
����@D = 0. By mesnD we'll denote n-dimensional Lebesque measure of the do-main D. Everywhere in this paper by C;C1; C2; ::: we'll denote the constants whosevalues depend on n and constants in the conditions (1)-(4).

x2. Strong solvability of Neumann problem
For linear equations let Q = D ��0; 2�!

�, ~L be an operator nX
i;j=1~�ij (x) @2@xi@xjwhere faij (x)gni;j=1 is a positive matrix of functions satisfying the conditions (3),

(4), ~�ij (x) = (n� 1) aij (x)Tra ; i; j = 1; 2; :::; n; Tra = nX
i=1aii (x). Denote ~� = �+ @2@t2

Laplace operator of (n+ 1) variables. For the function ~u : D � �0; 2�!
� ! R1 we

denote u2xx = nX
i;j=1u2ij ; u2xt =

nX
i=1u2it where ut; uit and utt mean @u@t ; @2u@xi@t and @2u@t2respectively. Let �Q denote a mean value of the function � (x; t) on the domain Q:

�Q = 1mesn+1Q
Z Z
Q � (x; t) dxdt:

Let
� = supx2D

0@ nX
i;j=1

�n� 1Tra aij (x)� �ij�21A1=2 :
By condition (4) we get � < 1, in fact,

�2 = supx2D
0@ nX

i;j=1
(n� 1)2(Tra)2 a2ij (x)� 2 nX

i=1
(n� 1) aij (x)Tra �ij

1A+
+ nX
i;j=1�2ij < n� 1� 2 (n� 1) + n = 1; (7)

where �ij is a Kronecker symbol, �ij = ( 1; i = j;1; i 6= j:Auxilary problem 1. Let ~f (x; t) 2 L2 (Q) be an arbitrary function. Find sucha function � (x; t) 2 ~W 22 (Q) ; �Q = 0 that for any ' (x; t) 2 ~W 22 (Q) ; 'Q = 0 it holdsthe integral identityZ Z
Q
�~L� + �tt� ~�'dxdt = Z ZQ ~f (x; t) ~�'dxdt: (8)
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Proposition 1. Let the conditions (3)-(4) be ful�lled for the coe�cients faij (x)g;i; j = 1; 2; :::; n. Then for any function ~f (x; t) 2 L2 (Q) the problem 1 has a uniquesolution � (x; t) 2 ~W 22 (Q) ; �Q = 0 and for the solution the estimation

k�k2;2 � C 


 ~f


2 ; (9)
is valid, where

C = C1
s
1 + C0�mesnD!

� 2
n+1 + C20 �mesnD!

� 4
n+1 : (10)

C0; C1 > 0 depend on n; �; �.Proof. Consider the bilinear form
B (�; ') = Z ZQ

�~L� + �tt� ~�'dxdt;
in ~W 22 (Q)� ~W 22 (Q), where 8' 2 ~W 22 (Q) ; 'Q = 0; �Q = 0.Problem 1 will be written in the form

B (�; ') = Z ZQ ~f (x; t) ~�'dxdt: (11)
8' 2 ~W 22 (Q) ; � 2 ~W 22 ; �Q = 0; 'Q = 0.Apply the Lax-Millgram principle to the solvability of problem 1.The form B (�; ') is continuous. Really,

jB (�; ')j � 


 ~�'


2 


~L� + �tt


2 �

� 


 ~�'


2
0B@Z ZQ

�2��~L��2 + �2tt� dxdt� dxdt
1CA

1=2
: (12)

By H}older inequality and (4)
�~L��2 �

0@ nX
i;j=1

a2ij (n� 1)2(Tra)2
1A nX

i;j=1�2ij � (n� 1) nX
i;j=1�2ij = (n� 1) �2xx:

By this inequality we get from (12)
jB (�; ')j �p2 (n� 1) 


 ~�'


2 k�k2:2 �p2 (n2 � 1) k'k2:2 k�k2:2 : (13)

The coerciveness of the form B (�; '):
B (�; �) Z ZQ

h~L�2 + �tti ~��dxdt =
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= Z ZQ
240@ nX

i;j=1
n� 1Tra aij (x)� �ij

1A �ij ~��
35 ~��dxdt � (14)

� Z ZQ
� ~���2 dxdt�Z ZQ

0@ nX
i;j=1

�n� 1Tra aij (x)� �ij�21A1=20@ nX
i;j=1�2ij

1A1=2 ��� ~����� dxdt:
By condition (7) we get from (14)

B (�; �) � Z ZQ
� ~���2 dxdt� �

0B@Z ZQ
� ~���2 dxdt

1CA
1=20B@Z ZQ �2xxdxdt

1CA
1=2

: (15)
Now use the estimationZ Z

Q
��2xx + 2�2xt + �2tt� dxdt � Z ZQ

� ~���2 dxdt (16)
for the functions � (x; t) 2 ~W 22 (Q) proved in the paper [1]. Then we'll get from (15),(16) B (�; �) � (1� �) Z ZQ

� ~���2 dxdt �
� (1� �)Z ZQ

"�2xx + �@2�@t2
�2 + 2�2xt

# dxdt � 1� �C k�k22:2 : (160)
In the last inequality we used the fact that for the functions � (x; t) 2 ~W 22 (Q) ; �Q =0 it is valid the estimation

k�k2:2 � CZ ZQ
��2xx + 2�2xt + �2tt� dxdt;

where C > 0 is a constant from (10). Really, integrating the identity
~�� = 2� ~�� + 2�2x + 2�@�@t

�2
on Q, allowing for � 2 ~W 22 (Q) we getZ Z

Q
h� ~�� + �2x + �2t i dxdt = 0:

Whence by H}older inequality
Z Z
Q
��2x + �2t � dxdt �

0B@Z ZQ �2 (x; t) dxdt
1CA

1=20B@Z ZQ
� ~���2 dxdt

1CA
1=2

: (17)



114 [F.I.Mamedov, M.M.Mirheydarli] Transactions of NAS of Azerbaijan
By Poincare inequality (see [11, theorem 4.2]) and that �Q = 0 we have0B@Z ZQ �2 (x; t) dxdt

1CA
1=2

=
0B@Z ZQ (� � �Q)2 dxdt

1CA
1=2

�

�
0BB@
0B@Z ZQ j� � �Qj 2(n+1)

n�1 dxdt
1CA

n�1
2(n+1) mesn+1Q

1CCA
1

n+1

�

� C
0B@Z ZQ

"�2x + �@�@t
�2# dxdt

1CA
1=2�mesnD2�!

� 1
n+1 :

� C
0B@Z ZQ

"�2x + �@�@t
�2# dxdt

1CA
1=2�mesnD2�!

� 1
m+1 ; (18)

the constant C0 > 0 depends only on n. By (18) we get from (17)0B@Z ZQ
"�2x + �@�@t

�2# dxdt
1CA

1=2
�

� C0�mesnD2�!
� 1

n+1

0B@Z ZQ
� ~���2 dxdt

1CA
1=2

: (19)
By (18) it follows0B@Z ZQ �2xdxdt

1CA
1=2

� C20 �mesnD2�!
� 2

n+1

0B@Z ZQ
� ~���2 dxdt

1CA
1=2

: (20)
We get from (16), (19) and (20)

k�k2:2 � C 


 ~��


2 ; (200)
whereC0 > 0 depends only on n, Q.E.D.By ~f (x; t) 2 L2 (Q) the functionalZ Z

Q ~f (x; t) ~�'dxdt
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belongs to � ~W 22 �� : �������

Z Z
Q ~f (x; t) ~�'dxdt

������� �

�
0B@Z ZQ

��� ~f (x; t)���2 dxdt
1CA

1=20B@Z ZQ
��� ~�'���2 dxdt

1CA
1=2

�
� pn+ 1 


 ~f


2 k'k2:2 : (21)

Now, after that we established the continuity and coerciveness of the formB (�; ') we can apply the Lax-Millgram principle to the solvability of problem 1.Then for any ~f (x; t) 2 L2 (Q) we'll get the existence of a unique function � (x; t) 2~W 22 (Q) ; �Q = 0 satisfying the integral identity (11) for any 8' 2 ~W 22 (Q) ; 'Q = 0.By (16') and (21) for ' = � from (11) we get the estimation
k�k2:2 � C1� �p2 (n+ 1) 


 ~f


2 ;

where C > 0 is the same that in (12). Proposition 1 is proved.Let the operator
L0 = nX

i;j=1aij (x) @2@xi@xj :
Consider the problem

L0u� !2 Tran� 1u = f (x) ; x 2 D; (22)
@u@n
����@D = 0: (23)

De�nition. Let f (x) 2 L2 (D). The function u (x) 2 ~W 22 (D) satisfying equa-

tion (22) a.e. x 2 D is said to be the solution of problem (22), (23).Theorem 1. Let the system of function faij (x)g; ij = 1; 2; :::; n satisfy the

conditions (3) and (4). Then for any f (x) 2 L2 (D) ; ! 6= 0 problem (22), (23)

has a unique solution from the space ~W 22 (Q). And for the solution it is valid the

estimation kuk2:2 � C kfk2 ; (24)
where

C = C1
s
1 + C0�mesnD!

� 2
n+1 + C20 �mesnD!

� 4
n+1 ; (25)

C0; C1 > 0 are the constants dependent on �; n; �.
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Proof. Let the denotation given before proposition 1 be ful�lled. Let � be thesolution of problem 1 for ~f = f (x) n� 1Tra cos!t from the space ~W 22 (Q) ; �Q = 0.Then for any ' 2 ~W 22 (Q) ; 'Q = 0 we'll haveZ Z

Q
h~L� + �tt � ~fi ~�'dxdt = 0: (250)

Assume that 	 is an arbitrary function from L2 (Q) provided 	Q = 0. Choosethe function ' in identity (25') as the solution of the following Neumann problem
~�' = 	; (x; t) 2 Q;
@'@n
����@Q = 0; 'Q = 0:

9>>>=>>>; : (26)
Problem (26) is uniquely solvable in the class ~W 22 (Q) in view of the condition	Q = 0 on the function 	 and @D � C2 on the boundary of the domain D (see[12]). Then it follows from (25')Z Z

Q
�~L� + �tt � ~f�	(x; t) = 0: (27)

If 	 2 L2 (Q) is an arbitrary function for which 	Q 6= 0 then assuming 	�	Qinstead of 	 we get from (27)Z Z
Q
�~L� + �tt � ~f�	dxdt = 	Q (x; t)Z ZQ

�~L� + �tt � ~f� dxdt:
Whence Z Z

Q
�~L� + �tt � ~f � C1�	dxdt = 0; (28)

where C1 = 1mesn+1Q
Z Z
Q
�~L� + �tt � ~f � C1� dxdt:

From (28) by the arbitrariness of the function 	 2 L2 (Q) we get
~L~u+ ~utt � ~f � C1: (29)

Multiply equation (29) by cos!t and integrate with respect to �0; 2�!
�:

2�=!Z
0 ~L (� cos!t) dt+ 2�=!Z

0 �tt cos!tdt� 2�=!Z
0 ~f cos!tdt = 0;
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integrating by parts in the second summand we get

~Lz � !2z = !�
2�=!Z
0 ~f cos!tdt; (30)

a.e. x 2 D, where z (x) = !� 2�=!R0 � (x; t) cos!tdt.
Allowing for the form ~f (x; t) = f (x) (n� 1)Tra cos!t of the function ~f (x; t) weget from (28) ~Lz � !2z = n� 1Tra f (x) a.e. x 2 D: (31)
Multiplying by Tran� 1 equation (31) we get that the function z (x) is the so-lution of equation (22). Obviously, z (x) 2 ~W 22 (Q) ; thereby we prove the ex-istence of the solution of problem (22), (23). Using the representation z (x) =!� 2�=!R0 � (x; t) cos!tdt and a priori estimation (9) for � (x; t) we show (24). Obvi-ously,

zij (x) = !�
2�=!Z
0 �ij (x; t) cos!tdt a.e x 2 D:

Integrating this identity with respect to D by means of Minkovskii inequality weget i.e.
kzijk2 = !�

2�=!Z
0 kcos!tk k�ij (:; t)k2 dt �

� !�
0B@2�=!Z

0 cos2 !tdt
1CA

1=20B@2�=!Z
0 k�ij (:; t)k22 dt

1CA
1=2

=
= !�

r�! k�ijk2 �
r!�C 


 ~f


2 =

=r!�C
0B@2�=!Z

0
Z
Q f

2 (x)�n� 1Tra
�2 cos2 !tdxdt

1CA
1=2

=

= C
0@ZD f2 (x) dx

1A1=2 n� 1n� ;
i.e. kzijk2 � C kfk2. The similar estimations are valid also for zi; z; i; j = 1; 2; :::; n.Then kzk2:2 � C kfk2 ; (32)
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where C > 0 is dependent only on n; �; �. Estimation (32) yields the uniqueness ofproblem (22), (23) for any ! 6= 0; f (x) 2 L2 (D).Passage to the limit. In estimation (32) the constant C is of the form

C = C11� �
s
1 + C40 �mesnD2�!

� 4
n+1 + C20 �mesnD2�!

� 4
n+1 ;

whence it follows that it depends on L2 (D), moreover C !1 as ! ! 0. Below we'llre�ne some constants for the L2 (D) norm of functions ux and uxx. By estimations[1, theorem 2] for u 2 ~W 22 (D) we haveZ
D u2xxdx � ZD (�u)2 dx � CZDLu�udx: (33)

Let u (x) 2 ~W 22 (D) be the solution of the equation
~Lu� !2u = fu;

then ~Lu�u� !2u�u = f�u;
Z
D ~Lu�udx+ !2ZD u2xdx =

0@ZD f2dx
1A1=2 Z

D (�u)2 dx;
Z
D ~Lu�udx �

0@ZD f2dx
1A1=20@ZD (�u)2 dx

1A1=2 ; (34)
whence Z

D u2xxdx � C
0@ZD f2dx

1A1=20@ZD u2xxdx
1A1=2 ;

Z
D u2xxdx � CZD f2dx; (35)

where C > 0 is independent on !.On the other hand, by u 2 ~W 22 (D) we haveZ
D u2xxdx� ZD u�udx = ZD�u (uD � u) dx� uDZD�udx � ZD ju� uDj j�uj dx:
By Poincare inequality hence and (35) we have

Z
D u2xdx �

0@ZD ju� uDj2 dx
1A1=20@ZD (�u)2 dx

1A1=2 �
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� C

0@ZD u2xdx
1A1=20@ZD f2dx

1A1=2 ;
Z
D u2xdx � CZD f2dx; (36)

here again C > 0 is independent on !. We get from (35), (36)Z
D
�u2x + u2xx� dx � CZD f2dx: (37)

Denote by fu! (x)g a family of solutions of the problem
~Lu! � !2u! = f; (38)

By estimation (37) a family of functions
fg! (x) = u! (x)� u!D; 0 < ! < !0g

have a uniformly bounded norm,
kg!k2:2 � C kfk2 ; (39)

where C > 0 is independent on !, since, g!D = 0 by Poincare inequality and (37) wehave kg!k2 = kg! � g!Dk2 � C kfk2 :Then from fg!g we can select a subsequence weakly convergent in ~W 22 (D), i.e
g!k ! g in ~W 22 (D) for !k ! 0:

From (38) we get 8' 2 ~W 22 (D)Z
D ~Lu!k�'dx� !2kZD u!k�'dx = ZD f�'dx;

integrating by partsZ
D ~Lu!k�'dx+ !2kZDru

!kr'dx = ZD f�'dx; (40)
whence Z

D ~Lg!k�'dx+ !2kZDrg
!kr'dx = ZD f�'dx;

passing to the limit by using the weak convergence
g!k ! g
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in ~W 22 (Q) and uniform boundedness of integrals������

Z
Drg

!kr'dx
������ � C krg!kk2 kr'k2 � C1 kfk2 kr'k2

with respect to !k; we getZ
D
�~Lg � f��'dx = 0; 8' 2 ~W 22 (D) (41)

whence as above, ~Lg � f � const a.e. x 2 D:
So, we proved that for any f (x) 2 L2 (D) the solution of a classic Neumannproblem (22) (! = 0) exists in the following sense: there will be found such a constantC, the function g 2 ~W 22 (D) ; gD = 0 that

Lg = f + C a.e. x 2 D:
Estimation (39) yields the estimation

kgk2;2 � C kfk2 ;
for the function g, where C > 0 depends on �; n; �. It follows from the mentionedestimation that the function g is de�ned uniquely according to the function f (x) 2L2 (D).We proved the following theorem:Theorem 2. Let conditions (3) and (4) be ful�lled with respect to the functionsfaij (x)g; i; j = 1; 2; :::; n. Then for any f (x) 2 L2 (D) the Neumann problem (22),

(23) for ! = 0 has a unique solution in the following sense: there will be found such

a constant C and the function u 2 ~W 22 (D) ; uD = 0 that

Lu = f + C a.e. x 2 D:
Moreover, for the function u it is valid the estimation

kuk2;2 � C1 kfk2 ;where the constant C1 > 0 is dependent on �; n; �; mesnD.Remark 1. Let fus (x)g; s = 1; 2; ::: be a sequence of solutions of the problem8>>>><>>>>:
Lsus � !2 Tran� 1 = fs (x) for a.e. x 2 D;
@us@n

����@D = 0; (42)
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where Ls = nX

i;j=1asij (x) @2@xi@xj �!, moreover fasij (x)g; ij = 1; 2; ::: satisfy conditions
(3), (4) uniformly on s. Then it is easy to see from the proof of theorem 1 that, itholds the estimation kusk2:2 � C kfsk2 ; (43)
where C > 0 depends only on �; n; �.

x3. Strong solvability of Neuman problem for nonlinear equations.
Theorem 3. Let ! 6= 0, conditions (3)-(5) be ful�lled for the data of problem

(1)-(2). Let � = 1 (p = n) and the measure of the domain D be su�ciently small

or � 6= 1 (p 6= n) and the measure of the domain D be arbitrary. Then any there

exists the solution of problem (1)-(2) from the space ~W 22 (D).Proof. Apply Schauder principle on the existence of a �xed point at continuousmapping of a convex compact onto its part in a Banach space. By A we denote theset fu (x) : u (x) 2 ~W 22 (D) \W 1q (D) ; kuk2;2 � Ng:
We'll select the numbers N; 1 � q < 2nn� 2 later. By a compact embedding

theorem W 22 (D) � W 1q for 1 � q < 2nn� 2 the set A is compact. The set A is alsoconvex, really for u1; u2 2 A; � 2 (0; 1]; u = �u1 + (1� �)u2 we have
kuk2:2 � � ku1k2;2 + (1� �) ku2k2;2 � �K + (1� �)K = K; i.e. u 2 A:

Let g 2 A, consider the subsidiary problem
~Lgu� !2Tran� 1 u = ~b (x) ; a.e. x 2 D; (44)

@u@n
����@D = 0; (45)

where ~Lg = X
i;j ~aij (x) @2@xi@xj ; ~aij (x) = aij (x; g; gx) ; ~b (x) = b (x; g; gx) ; i; j =

1; 2; :::n. By means of conditions (3) and (4) we �nd



~b


2 =

0@ZD b2 (x; g; gx) dx
1A1=2 �

0@ZD j(1 + jgxj�) b1 (x)j2 dx
1A1=2 �

� kb1kp k1 + jgxj�k1=2p=(p�2) � �k1k1=2p=(p�2) + 


jgxj2�


1=2p=(p�2)
� kb1kp ;
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whence allowing k1kp=(p�2) = (mesnD)(p�2)=p and 0 � � � n (p� 2)p (n� 2) for p � 2 by
compact imbedding theorem W 22 (D) �W 1q (D)�1 � q < 2nn� 2

� we have



jgxj2�


1=2p=(p�2) � C (D) kgk�2;2 � C (D)N� ;

where C (D)! 0 when mesnD ! 0; p > 2. As a result we get the estimation


~b


2 � C (D)N� for p � 2: (46)
The belongness ~b 2 L2 (D) follows from (46). The problem (44), (45) is uniquelysolvable in ~W 22 (D) and by remark 1 for its solution estimation (43) is valid. Considerthe mapping T : g 2 A ! u 2 ~W 22 (D) is the solution of problem (44), (45). Showthat the operator T transfers the function g 2 A to the function u 2 A . By (46)and theorem 1 (and remark 1) we get

kuk2;2 � C 


~b


2 � C (D)N� :
If b1 2 Lp (D) ; p > n, then � > 1. If we select 0 < N < 1 su�ciently small wecan obtain C kbkpC (D)N� � N; (47)here the measure of the domain D is arbitrary. If b1 2 Lp; 1 � p < n; then 0 � � < 1.We must select N > 1 su�ciently large in order that condition (47) be ful�lled; themeasure of the domain D is arbitrary. We should consider the case p = n; i.e � = 1.Then we are to consider the domain D with su�ciently small Lebesque measure inorder (46) be hold.We got kTgk2:2 � N i.e. T : A! A is established.Now show the continuity of the mapping T . Let fgsg; s = 1; 2; ::: be the sequenceof functions convergent on the norm W 1q (D) to the function g0. Show that sequencefTgsg will converge to u0 = Tg0. Obviously,

Ls �us � u0� = Lsus � Lsu0 = (L0 � Ls)u0 + Lsus � L0u0 =
= b (x; gs; gsx)� b �x; g0; g0x�+ nX

i;j=1
�aij (x; gs; gsx)� aij �x; g0; g0x��u0ij+

+Tras � Tra0n� 1 u0 =: F s (x) ; x 2 D;
where Ls = X

i;j=1aij (x; gs; gsx) @2@xi@xj � !2 Trasn� 1 ;
Tras = nX

i;j=1asii (x; gs; gsx) ; s = 0; 1; 2; :::.
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On the basis of theorem 1 and remark 1 to theorem 1 we have

us � u0

2;2 � C kF sk2 �

�
24C 


~bs � ~b0


2 +

nX
i;j=1



�aij (x; gs; gsx)� aij �x; g0; g0x��u0ij

2 +
+ 



Tras � Tra0n� 1 u0



2

� ; (48)
where ~b = b (x; gs; gsx) ; s = 0; 1; 2; :::; C > 0 is independent on s; gs; us (x). By

gs � g0

1;q as s!1:

There exists a subsequence of the sequence fgsg; that we'll denote as the sequenceitself fgsg and for which
gs ! g0; gsx ! g0x a.e. x 2 D:

Then 


~bs � ~b0


2 ! 0 as s!1; (49)
by Vitali theorem. Really, by the continuity of functions b (x; z; �) on (z; �) 2 E1�E1and that gs ! g0; gsx ! g0x a.e. x 2 D we have �s = bs�b0 ! 0 as s!1 a.e. x 2 D.On the other hand, the functions f�2sg have absolutely equicontinuous integrals, i.e.for any compact e � D on the basis of condition (5) we haveZ

e �
2sdx � CZe b

21 (x) (1 + jgsxj�)2 dx:
Now, if p = 2 i.e. � = 0 then we have.Z

e �
2sdx � CZe b

21 (x) dx: (50)
If p > 2 i.e. � > 0 by the H}older inequality we getZ

e �
2sdx � C1

0@Ze b
p1 (x) dx

1Ap (mesne) p�2p +

+C21
0@Ze b

p1 (x) dx
1A 2

p
0@Ze jg

sxj 2�pp�2 dx
1A

p�2
p : (51)

Now select summability exponent q of the space W 1q (D) ; so that 2�pp� 2 � q.
This is possible by the fact that 0 � � < n (p� 2)p (n� 2) . From the convergence in D



gs � g0

1;q as s!1:
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we'll get kgsk1;q � kgsk1;q + "; (52)
where " > 0 is an arbitrary number, the norms are calculated by the set e � D.Then Z

e jg
sxjq dx � Ze

��g0x��q dx+ " (53)
at su�ciently large s independent of e. By the arbitrariness of " we get from esti-mations (51), (53) Z

e �
2s (x) dx! 0

uniformly in s for mesne! 0.Now after that we established the absolute equicontinuity of integralsZ
e �

2s (x) dx
and that �s (x)! 0 a.e. x 2 D we can pass to the limit under the sign of integral

lims!1
Z
D �2s (x) dx = 0: (54)

Now show
qijs = 

�aij (x; gs; gsx)� aij �x; g0; g0x��u0ij

2 ! 0 as s!1; i; j = 1; 2; :::; n:
This statement follows from the Lebesque theorem:

aij (x; gs; gsx)! aij �x; g0; g0x� a.e. x 2 D as s!1;
by the convergence a.e. x 2 D gs ! g0; gsx ! g0x and continuity of the functionsaij (x; z; �) by the arguments (z; �) 2 E1 � En; i; j = 1; 2; :::; n. By condition (3)

���aij (x; gs; gsx)� aij �x; g0; g0x��u0ij��2 � 2�2 ��u0ij (x)��2 :The right hand side is the function integrable in D. Therefore
lims!1qijs = 0: (55)

Allowing for (54), (55) in (29) we get
lims!1 

us � u0

1;q = 0: (56)

It is easy to see that

�Tras � Tra0�u0

2 ! 0 as s!1;
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indeed, jTrasj � n� by (3) and function faij (x; z; �)g; i = 1; 2; :::; n are continuousby (z; �) 2 E1 � En for a.e. By x 2 D a.e. we'll get gs � g0 ! 0; gsx � g0x ! 0a.e. x 2 D we'll get Tras � Tra0 ! 0 a.e. x 2 D. It remains to apply Lebesque'smajorant theorem with regard to u0 2 L2 (D).We got relation (56) for the subsequence fusg. Show that in fact (56) holds forall the sequence of the functions fusg. Let for some subsequence fusjg it holds

limsj!1 

usj � u0

1;q = � > 0; (57)
then for corresponding subsequence of fgsjg it holds

limsj!1 

gsj � g0

1;q = 0:
Repeating the previous arguments with the sequence fgsjg we'll �nd its subse-quence for which (56) is valid, that contradicts the supposition (57). The continuityof the operator T :W 1q (D)!W 1q (D) is established. Now we are to apply Schaudertheorem.Theorem 3 is proved.
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