APPLIED PROBLEMS OF MATHEMATICS AND MECHANICS

Kazım G. HASANOV, Leyla K. HASANOVA

THE OPTIMAL CONTROL PROBLEM FOR GOURSAT-DARBOUX LINEAR SYSTEM

Abstract

In the given work the optimal control problem in linear hyperbolic system is investigated by method of l -problem of moments.

By investigating various processes, such as sorption, drying and etc., optimal control problems, described by a system of hyperbolic equations [2, 4, 8, 9] arise. Let the controlled process be described by the equation:

$$x_{ts} = A_1(t, s) x_t + A_2(t, s) x_s + A_3(t, s) x + c(t, s) \omega(t, s) \in D$$
(1)

with conditions

$$x_t(t, s_0) = B_1(t) x(t, s_0) + c_1(t) u, \ t_0 \le t \le t_1,$$
(2)

$$x_{s}(t_{0},s) = B_{2}(s) x(t_{0},s) + c_{2}(s) v, \ s_{0} \le s \le s_{1},$$
(3)

$$x(t_0, s_0) = x^0, (4)$$

where $A_i(t, s)$ (i = 1, 2, 3), $B_1(t)$, $B_2(s)$ are $n \times n$ matrices, c(t, s) is $n \times m$ matrix, $c_1(t)$ is $n \times m_1$ matrix, $c_2(s)$ is $n \times m_2$ matrix, $(\omega(t, s) \ u(t), \ v(s))$ is $m + m_1 + m_2$ dimensional vector control, $D = [t_0, t_1] \times [s_0, s_1]$.

In future, as feasible controls $(\omega(t,s), u(t), v(s))$ we'll consider the elements of the space $W_p(D) = L_p^m(D) \times L_p^{m_1}[t_0, t_1] \times L_p^{m_2}[s_0, s_1]$, where $L_p^m(D)$ is a space of such measurable on D *m*-dimensional vector-functions $\omega(t, s)$, that

$$\|\omega\|_{p} = \left(\sum_{i=1}^{m} \iint_{D} |\omega^{i}(t,s)|^{p} \, ds \, dt\right)^{1/p} < \infty \quad \text{as } 1 \le p < \infty,$$

 and

$$\|\omega\|_{\infty} = \max_{1 \le i \le m} \left\{ vrai\max_{D} \left| \omega^{i}\left(t,s\right) \right| \right\} < \infty \quad \text{for} \quad p = \infty$$

Let us note, that the space $W_p(D)$ is a direct product of three Banach spaces $L_p^m(D)$, $L_p^{m_1}[t_0, t_1]$, $L_p^{m_2}[s_0, s_1]$. This space is also a Banach space with norm [10, page 47]

$$\|(\omega, u, v)\|_{W_p(D)} = \|\omega\|_{L_p^m(D)} + \|u\|_{L_p^{m_1}[t_0, t_1]} + \|v\|_{L_p^{m_2}[s_0, s_1]}.$$

The space $W_p(D)$ is adjoint to the space $W_q(D) = L_q^m(D) \times L_q^{m_1}[t_0, t_1] \times L_q^{m_2}[s_0, s_1]$ with norm [10, pp.47-48]

$$\|(\gamma, \alpha, \beta)\|_{W_q(D)} = \max\left\{ \|\gamma\|_{L^m_q(D)}, \|\alpha\|_{L^{m_1}_q[t_0, t_1]}, \|\beta\|_{L^{m_2}_q[s_0, s_1]} \right\},\$$

[K.G.Hasanov, L.K.Hasanova]

where $\frac{1}{p} + \frac{1}{q} = 1$, $(\gamma, \alpha, \beta) \in W_q(D)$.

The duality between $W_q(D)$ and $W_p(D)$ is defined by the functional

$$L[(\gamma, \alpha, \beta)] = \iint_{D} \gamma(t, s) \,\omega(t, s) \,ds dt + \int_{t_0}^{t_1} \alpha(t) \,u(t) \,dt + \int_{s_0}^{s_1} \beta(s) \,\upsilon(s) \,ds.$$
(5)

At that $||L|| = ||(\omega, u, v)||_{W_p(D)}$.

At the given control $(\omega(t,s), u(t), v(s)) \in W_p(D)$ the solution of problem (1)-(4) is *n* -dimensional vector-function x(t,s), absolutely continuous [7, p.246] and satisfying equations (1)-(3) and condition (4) almost everywhere.

Suppose, that the following conditions are fulfilled:

1. The matrices $A_i(t,s)$, $\frac{\partial A_i}{\partial t}$, $A_2(t,s)$, $\frac{\partial A_2}{\partial s}$, $A_3(t,s)$, $B_1(t)$, $B_2(s)$ are measurable and their norms are integrated by Lebesgue,

2. The rows $(c(t,s), c_1(t), c_2(s))^j$ (j = 1, 2, ..., n) of the matrix $(c(t,s), c_1(t), c_2(s))$ belong to the space $W_q(D)$.

Under indicated conditions, the existence and uniqueness of the solutions of problem (1)-(4) can be proved by the ordinary successive approximations method [8, 9].

For finding the correlation, expressing the solution of system (1)-(4), we'll introduce $n \times n$ -matrices $\Phi_0(t,s)$ $(t_0 \le t \le t_1, s_0 \le s \le s_1)$, $\Phi_1(t,s,\tau)$, $(t_0 \le t \le t_1, s_0 \le s \le s_1, t_0 \le \tau \le t)$, $\Phi_2(t,s;\sigma)$ $(t_0 \le t \le t_1, s_0 \le s \le s_1, s_0 \le \sigma \le s)$, $\Phi_3(t,s;\tau,\sigma)$ $(t_0 \le t \le t, s_0 \le s \le s_1, t_0 \le \tau \le t, s_0 \le \tau \le s)$, defined as solution of the system

$$\frac{\partial^2 \Phi}{\partial t \partial s} = A_1(t,s) \frac{\partial \Phi}{\partial t} + A_2(t,s) \frac{\partial \Phi}{\partial s} + A_3(t,s) \Phi$$
(6)

satisfying the conditions

$$\frac{\partial \Phi_{0}(t,s_{0})}{\partial t} = B_{1}(t) \Phi_{0}(t,s_{0}), \quad \frac{\partial \Phi_{0}(t_{0},s)}{\partial s} = B_{2}(s) \Phi_{0}(t_{0},s),$$

$$\Phi_{0}(t_{0},s_{0}) = I; \quad \frac{\partial \Phi_{1}(t,s;t)}{\partial s} = A_{1}(t,s) \Phi_{1}(t,s,t),$$

$$\frac{\partial \Phi_{1}(t,s_{0};\tau)}{\partial t} = B_{1}(t) \Phi_{1}(t,s_{0};\tau), \Phi_{1}(t,s_{0},t) = I,$$

$$\frac{\partial \Phi_{2}(t,s;s)}{\partial t} = A_{2}(t,s) \Phi_{2}(t,s;s), \quad \frac{\partial \Phi_{2}(t_{0},s;\sigma)}{\partial s} = B_{2}(s) \Phi_{2}(t_{0},s;\sigma),$$

$$\Phi_{2}(t,s;s) = I, \quad \frac{\partial \Phi_{3}(t,s;\tau,s)}{\partial t} = A_{2}(t,s) \Phi_{3}(t,s;\tau,s),$$

$$\frac{\partial \Phi_{3}(t,s;t,\sigma)}{\partial s} = A_{1}(t,s) \Phi_{3}(t,s;t,\sigma), \quad \Phi_{3}(t,s;t,s) = I.$$
(7)

I is a unique $n \times n$ -matrix.

Transactions of NAS of Azerbaijan _____

[The optimal control problem]

Let x(t, s) be a unique absolutely continuous solution of problem (1)-(4) at the control $(\omega(t, s), u(t), v(s)) \in W_p(D)$. Then x(t, s) is represented by the formula

$$x(t,s) = \Phi_0(t,s) x^0 + \int_{t_0}^t \Phi_1(t,s;\tau) c_1(\tau) u(\tau) d\tau +$$

$$+\int_{s_0}^{s} \Phi_2(t,s;\sigma) c_2(\sigma) \upsilon(\sigma) d\sigma + \int_{t_0}^{t} \int_{s_0}^{t} \Phi_3(t,s;\tau,\sigma) c(\tau,\sigma) \omega(\tau,\sigma) d\sigma d\tau, \qquad (8)$$

where $\Phi_0(t,s)$, $\Phi_1(t,s;\tau)$, $\Phi_2(t,s;\sigma)$, $\Phi_3(t,s;\tau,\sigma)$ are defined from conditions (6), (7).

The following problem is stated: it is required to find such a control $(\omega(t, s), u(t), v(s)) \in W_p(D)$, that its corresponding solution x(t, s) of system (1)-(4) satisfies the condition

$$x(t_1, s_1) = x^* (9)$$

and has, at that, the least norm.

$$\left\| (\omega, u, v) \right\|_{W_p(D)},$$

where $x^* \in R$ is the given point.

Let the solution x(t,s) of problem (1)-(4) at the control $(\omega(t,s), u(t), v(s))$ satisfy condition (9). Then from (8) we obtain, that for such a control the equality

$$\iint_{D} f(t,s) \omega(t,s) \, ds dt + \int_{t_0}^{t_1} g(t) \, u(t) \, dt + \int_{s_0}^{s_1} h(s) \, v(s) \, ds = a \tag{10}$$

where

$$a = x^* - \Phi_0(t_1, s_1) x^0, f(t, s) = \Phi_3(t_1, s_1; t, s) c(t, s),$$

$$g(t) = \Phi_1(t_1, s_1; t) c_1(t), \ h(s) = \Phi_2(t_1, s_1; s) c_2(s)$$
(11)

is fulfilled.

The fulfilment of equality (10) is the necessary and sufficient condition in order that the solution x(t,s) of problem (1)-(4), corresponding to the control ($\omega(t,s)$, u(t), v(s)) satisfy condition (9). Equality (10) expresses the problem of moments, noted in vector-matrix form [1, 3, 5, 6]. Using equalities (5) and (10) the problem of l-problem of moments it is possible to formulate in the following form. It is required to find such a linear functional L, defined on elements of the space W(D), that

$$L[(f, g, h)^{j}] = a^{j}, \ j = 1, 2, ..., n,$$
(12)

$$||L|| \le l \ (l > 0), \tag{13}$$

be fulfilled, where $(f, g, h)^j$ is the j -th row of the matrix f(t, s), g(t), h(s) and a^j is the j -th component of the vector a.

223

[K.G.Hasanov, L.K.Hasanova]

Taking into account, $||L|| = ||(\omega, u, v)||_{W_p(D)}$, we obtain, that for solution of the stated problem it is required to find the linear functional L, which is a solution of l-problem of moments (12), (13), at that l is the least number.

Lemma. Let the rows $(f, g, h)^j$ (j = 1, 2, 3, ..., n) of the matrix (f(t, s), g(t), h(s)) be linear independent and $a \neq 0$.

Then the problem

$$\lambda = \max_{\xi} \xi a, \tag{14}$$

$$\|\xi(f,g,h)\|_{W_q(D)} = 1,$$
(15)

has a solution, where ξ is an *n*-dimensional vector-row.

Proof. First of all let us note, that the dual to problem (14), (15) is the following equivalent problem (see [6])

$$\frac{1}{\lambda} = \min_{\eta} \left\| \eta\left(f, g, h\right) \right\|_{W_q(D)}$$
(16)

provided

$$\eta a = 1. \tag{17}$$

Under the conditions of lemma the set η (f(t, s), g(t), h(s)) forms n-dimensional space E_n , stretched on the rows of the matrix (f(t, s), g(t), h(s)), where η is any n-dimensional vector-row. In the space E_n the norm is defined as in the space $W_q(D)$.

Let $\{\eta^k\}$ be a minimizing sequence of vector-rows, i.e.

$$\begin{split} \frac{1}{\lambda} &= \min_{\eta} \left\| \eta \left(f, g, h \right) \right\|_{W_q(D)} = \lim_{k \to \infty} \left\| \eta^k \left(f, g, h \right) \right\|_{W_q(D)}, \\ \eta a &= 1, \ \eta^k a = 1, \ k = 1, 2, \dots. \end{split}$$

Hence it follows, that the sequence $\{\eta^k(f, g, h)\}$ is uniformly bounded in E_n .

Therefore, from this sequence it is possible to choose such a sequence (we'll again define it by $\{\eta^k(f, g, h)\}$), for which the limit exists:

$$\lim_{k \to \infty} \eta^k \left(f, g, h \right) = \eta^{\circ} \left(f, g, h \right).$$

Hence, we have

$$\begin{split} \|\eta^{\circ}\left(f,g,h\right)\|_{W_{q}(D)} &= \lim_{k \to \infty} \left\|\eta^{k}\left(f,g,h\right)\right\|_{W_{q}(D)} = \frac{1}{\lambda},\\ \eta^{\circ} &= \lim_{k \to \infty} \eta^{k}, \eta^{\circ}a = 1. \end{split}$$

The lemma is proved.

Theorem 1. Let the conditions of the lemma be fulfilled. Then for the existence of the solution of problem (12), (13) it is necessary and sufficient, that the condition $\lambda \leq l$, where λ is a solution of problem (14), (15), be fulfilled.

Proof of necessity. Let there exist the linear functional L, defined on elements of the space $W_q(D)$, which will give the solution of the problem of moments (12), (13).

Transactions of NAS of Azerbaijan _

[The optimal control problem]

From equalities (12) we have

$$L[\eta(f,g,h)] = \eta a.$$

From here, taking into account inequality (13) we obtain

$$\begin{split} |\eta a| &= |L[\eta \, (f,g,h)]| \leq \|L\| \ \|\eta \, (f,g,h)\|_{W_q(D)} \leq \\ &\leq l \, \|\eta \, (f,g,h)\|_{W_q(D)} \, . \end{split}$$

With regard to (17) we have

$$\left\|\eta\left(f,g,h\right)\right\|_{W_{q}(D)} \geq \frac{1}{l}.$$

Consequently, and minimal value $\|\eta(f, g, h)\|_{W_q(D)}$ under all η , satisfying equality (17), is no less than 1/l, i.e.

$$\min_{\eta} \|\eta(f, g, h)\|_{W_q(D)} = \frac{1}{\lambda} \ge \frac{1}{l}, \quad \eta a = 1.$$

From here, $l \ge \lambda$. The necessity is proved. To prove the sufficiency we'll assume, that the condition $l \ge \lambda$ is fulfilled. Let's define on n dimensional linear space E_n the linear functional L_0 in the following form $L_0[\eta(f, g, h)] = \eta a$ with the norm $\|L_0\| = \lambda$, where λ is a solution of problem (14), (15).

By Khan-Banach theorem on extension of linear functional, with norm preservation, there exists the linear functional L defined on the elements of the space $W_q(D)$, such that $L[(\gamma, \alpha, \beta)] = L_0[(\gamma, \alpha, \beta)]$ for $(\gamma, \alpha, \beta) \in E_n$ and $||L|| = ||L_0|| = \lambda$ (see: [10], p.97).

The linear functional L, defined on the space $W_q(D)$ has form (5) and $||L|| = ||(\omega, u, v)||_{W_n(D)}$.

Thus, L is the required functional, which gives us the solution of problem (12), (13).

The theorem is proved.

Theorem 2. Under the lemma's condition, there exists the solution of problem (1)-(4), (9).

Proof. Let the number λ be defined as a solution of problem (14), (15). By Theorem 1 there exists the control $(\omega(t,s), u(t), v(s)) \in W_p(D)$ such, that for the

functional
$$L[(\gamma, \alpha, \beta)] = \int_{D} \int_{D} \gamma(t, s) \omega(t, s) \, ds dt + \int_{t_0}^{t_1} \alpha(t) \, u(t) \, dt + \int_{s_0}^{s_1} \beta(s) \, v(s) \, ds$$

equality (10) is fulfilled and $\|L\| = \|(\omega, u, v)\|_{W(D)} = \lambda.$

From here, it follows, that $(\omega(t,s), u(t), v(s)) \in W_p(D) = \lambda$. The theorem is proved.

Let's suppose, that 1 and consider the sequence of solutions of the optimization problem by method of moments:

1. Define the number λ^* and the vector ξ^* as a solution of the problem

$$\lambda^* = \xi^* a = \max_{\xi} \xi a \tag{18}$$

provided

$$\|\xi^*(f,g,h)\|_{W_q(D)} = 1,$$
(19)

225

[K.G.Hasanov, L.K.Hasanova]

where (f(t,s), g(t), h(s)) is defined by formula (11),

$$\|\xi^*(f,g,h)\|_{W_q(D)} = \max\left\{\|\xi^*f\|_{L^m_q(D)}, \|\xi^*g\|_{L^m_q(t_0,t_1)}, \|\xi^*h\|_{L^{m_2}_q[s_0,s_1]}\right\}.$$

2. From condition (19) it follows, that at least one of the equalities

$$\|\xi^*f\|_{L^m_q(D)} = 1, \ \|\xi^*g\|_{L^{m_1}_q[t_0,t_1]} = 1, \ \|\xi^*h\|_{L^{m_2}_q[s_0,s_1]} = 1$$

is fulfilled.

If just the first equality is fulfilled, then the optimal control $(\omega^*(t,s), u^*(t), v^*(s)) \in W_p(D)$ is defined in the following form:

$$\omega_{k}^{*}(t,s) = \lambda^{*} \left| \left(\xi^{*}f(t,s)\right)^{k} \right|^{q-1} sign\left(\xi^{*}f(t,s)\right)^{k}, \quad k = 1, 2, ...m,$$

 $u^{*}\left(t\right)=0, \ v^{*}\left(s\right)=0$ where $\left(\xi^{*}f\left(t,s\right)\right)^{k}$ is the k -th component of the vector $\xi^{*}f\left(t,s\right).$

At that

$$\|(\omega^*, u^*, v^*)\|_{W_p(D)} = \lambda^*.$$

Other cases is analyzed in a similar way

References

[1]. Butkovskii A.G. The methods of control by the systems with distributed parameters. M.: "Nauka", 1975, 568 p. (Russian)

[2]. Vasilyev F.P. The methods of solution of extrimal problems. M.: "Nauka", 1980, 400 p. (Russian)

[3]. Gabasov F., Kirillova F.M. The optimization of linear systems. Minsk, BSU, 1973, 248 p. (Russian)

[4]. Hasanov K.K., Hasanova L.K. Necessary conditions of optimality in Goursat-Darboux problem with generalized controls. Problemy upravleniya informatiki. Kiev, No3, 2001, pp.86-96. (Russian)

[5]. Krasovskii N.N. The control theory of motion. M.: "Nauka", 1968, 476 p.

[6]. Krein M.G., Nudelman A.A. The Markov's moments problem and extremal problems. M.: "Nauka", 1973, 552 p. (Russian)

[7]. Smirnov V.I. The course of higher mathematics. M., phys.math.lit., 1969, v.V, 655 p. (Russian)

[8]. Sobolev S.L. The equations of math. physics. M.: "Nauka", 1966, 444 p. (Russian)

[9]. Tricomi F. Lectures in partial equations. M., I.L. 1957, 444 p. (Russian)
[10]. Functional analysis. S.M.B.M., "Nauka", 1972, 544 p. (Russian)

Kazım G. Hasanov, Leyla K. Hasanova

Baku State University.

23, Z.I.Khalilov str., AZ1148, Baku, Azerbaijan. Tel.: (99412) 438 64 74 (apt.)

Received March 01, 2003; Revised May 26, 2004. Translated by Mamedova Sh.N.