Hummet K. MUSAEV

COERCIVE PROPERTIES OF ANISOTROPIC DIFFERENTIAL-OPERATOR EQUATIONS

Abstract

The coercive solvability o boundary value problems for uniformly elliptic equation in bounded domains was considered in different papers.

In the present paper we study some class of differential-operator equations defined in R^{n} and having different derivatives by different variables it is main part, moreover, in general, with unbounded operator coefficients. The coercive solvability of the present paper in abstract L_{p} spaces is proved.

In half-space and on the whole space these questions were studied particularly in [3], [4] and others. The coercive properties were investigated in O.V.Besov's paper [1] for the system of differential operators in the Sobolev anisotropic spaces.

Introduce some definition.
Assume

$$
S_{\varphi}=\{\lambda: \lambda \in C, \quad|\arg \lambda-\pi| \leq \pi-\varphi, \quad 0<\varphi \leq \pi\}
$$

where C is a set of complex numbers.
Definition 1. The closed linear operator A is called positive in the Banach space E if $\overline{D(A)}=E$ and at $\lambda \in S_{\varphi}$ the estimation

$$
\left\|(A-\lambda J)^{-1}\right\|_{Z(E)} \leq M(1+|\lambda|)^{-1}
$$

holds, where $D(A)$ is a domain of determination of the operator A, J is a unit operator in $E, Z(E)$ is a space of linearly bounded operators acting from E to E.

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{k}$ be non-negative integers, $|\alpha|=\sum_{k=1}^{n} \alpha_{k}, D^{\alpha}=D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}$, u be abstract function with the values from E. For $-\infty<\theta<\infty$ assume

$$
E\left(A^{\theta}\right)=\left\{u ; u \in D\left(A^{\theta}\right), \quad\|u\|_{E\left(A^{\theta}\right)}=\left\|A^{\theta} u\right\|_{E}+\|u\|_{E}<\infty\right\}
$$

Let $D\left(R^{n}\right)$ be a class of infinitely differentiable finite functions in R^{n}.
Definition 2. The fucntion D^{α} summable by the Bokhner is called a generalized derivative of the abstract fucntion u on R^{n} if at any $\varphi \in D\left(R^{n}\right)$ the equality

$$
\int_{R^{n}} D^{\alpha} u(x) \varphi(x) d x=(-1)^{|\alpha|} \int_{R^{n}} u(x) D^{\alpha} \varphi(x) d x
$$

holds, where the integral is understood by Bokhner.

Let E_{0} and E be a Banach space and E_{0} be continuously and densely embedded in $E, l=\left(l_{1}, \ldots, l_{n}\right),, l_{k}$ natural numbers and the differentiation $D_{k}^{l_{k}}, k=\overline{1, n}$ is understood in terms of definition 2.

Definition 3.

$$
\begin{gathered}
W_{p}^{l}\left(R^{n} ; E_{0}, E\right)=\left\{f ; f \in L_{p}\left(R^{n} ; E_{0}\right), D_{k}^{l_{k}} f \in L_{p}\left(R^{n} ; E_{0}\right), k=\overline{1, n},\right. \\
\left.\|f\|_{W_{p}^{l}\left(R^{n} ; E_{0} ; E\right)}^{p}=\int_{R^{n}}\left[\|f(x)\|_{E_{0}}^{p}+\sum_{k=1}^{n}\left\|D_{k}^{l_{k}} f\right\|_{E}^{p}\right] d x\right\}<\infty,
\end{gathered}
$$

at $E=H$ the space $E\left(A^{\theta}\right)$ we'll denote by $H\left(A^{\theta}\right)$.
Assume $x=\left(x_{1}, \ldots, x_{n}\right), \quad \xi=\left(\xi_{1}, \ldots, \xi_{n}\right), \xi^{\alpha}=\xi_{1}^{\alpha_{1}} \ldots \xi_{n}^{\alpha_{n}}$.
Definition 4. The fucntion $\mathrm{s} W_{p}^{l}\left(R^{n} ; E_{0}, E\right)$ satisfying the given equation on R^{n} almost everywhere on R^{n} is called a solution of the given equation.

We can easily show that at $\forall z_{1}, z_{2}, \quad \arg z_{1}=\varphi_{1}, \arg z_{2}=\varphi_{2}, \quad\left|\varphi_{1}-\varphi_{2}\right|=\varphi$, $\varphi \in[\beta, \pi], \beta>0$ there exists the constant C_{φ} such that at any such z_{1}, z_{2} it holds the following inequality

$$
\begin{equation*}
\left|z_{1}+z_{2}\right| \geq C_{\varphi}\left(\left|z_{1}\right|+\left|z_{2}\right|\right) . \tag{*}
\end{equation*}
$$

We'll assume that the constants appearing in estimations don't depend on variable of elements if there is no special stipulation.

Consider in $L_{p}\left(R^{n} ; H\right)$ the equation

$$
\begin{equation*}
(L-\lambda) u=\sum_{|\alpha: l|=1} a_{\alpha} D^{\alpha} u+A u-\lambda u+\sum_{|\alpha: l|<1} A_{\alpha}(x) D^{\alpha} u=f \tag{1}
\end{equation*}
$$

where A and $A_{\alpha}(x)$ in general are unbounded operators in H

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), l=\left(l_{1}, \ldots, l_{n}\right), \quad|\alpha: l|=\sum_{k=1}^{n} \frac{\alpha_{k}}{l_{k}} .
$$

Denote by L_{0} the differential operators defined by the equalities

$$
\begin{aligned}
D\left(L_{0}\right) & =W_{p}^{l}\left(R^{n} ; H(A), H\right), \\
L_{0} u & =\sum_{|\alpha: l|=1} a_{\alpha} D^{\alpha} u+A u .
\end{aligned}
$$

At first consider the problem

$$
\begin{equation*}
\left(L_{0}-\lambda\right) u=f \tag{2}
\end{equation*}
$$

Assume

$$
\begin{gathered}
\left(L_{0}-\lambda\right) u=\sum_{|\alpha: l|=1} a_{\alpha} D^{\alpha} u-\lambda u, \\
B(\xi)=\sum_{|\alpha: l|=1}(-1)^{|\alpha|} a_{\alpha} \xi_{1}^{\alpha_{1}} \ldots \xi_{n}^{\alpha_{n}}, \quad D^{\alpha}=D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}, \quad D_{k}^{\alpha_{k}}=\left(i \frac{\partial}{\partial x_{k}}\right)^{\alpha_{k}},
\end{gathered}
$$

where i is an imaginary unit.
Condition 1. Let $\overline{D(A)}=H$ and at $\forall \lambda \in S_{\varphi}, \quad \varphi \in(0, \pi]$ the estimation $\left\|(A-\lambda J)^{-1}\right\|_{Z(H)} \leq C(1+|\lambda|)^{-1}$ hold.

Further let at $\forall \xi \in R^{n}$

$$
\lambda-B(\xi) \in S_{\varphi} \text { and } \quad|B(\xi)| \geq c \sum_{k=1}^{n}\left|\xi_{k}\right|^{l_{k}} .
$$

Theorem 1. Let condition 1 be fulfilled. Then at $\forall f \in L_{p}\left(R^{n} ; H\right)$ and $\forall \lambda \in$ $S_{\varphi}, \exists \varphi \in(0, \pi]$ problem (2) has a unique solution $u(x)$ belonging to the space $W_{p}^{l}\left(R^{n} ; H(A), H\right)$ and the estimation

$$
\begin{equation*}
\|u\|_{W_{p}^{l}\left(R^{n} ; H(A), H\right)} \leq c\|f\|_{L_{p}\left(R^{n} ; H\right)} \tag{3}
\end{equation*}
$$

holds.
Proof. Denote by F the Fourier transformation and by F^{-1} the inverse transformation. Since A is a closed operator having the bounded inverse not depending on the variables $x \in R^{n}$ then it commutes with F.

Allowing for this after the Fourier transformation we have

$$
\left(\sum_{|\alpha: l|=1}(-1)^{|\alpha|} a_{\alpha} \xi^{\alpha}-\lambda\right) \hat{u}+A \hat{u}=\hat{f}
$$

where $\hat{u}=F u, u=u(\xi), \forall \xi \in R^{n}$.
By the condition $\lambda-B(\xi) \in S_{\varphi}$, then

$$
\begin{equation*}
\hat{u}=(A-(\lambda-B(\xi)))^{-1} \hat{f} \tag{4}
\end{equation*}
$$

Then for $\forall u \in W_{p}^{l}\left(R^{n} ; H(A), H\right)$

$$
\begin{align*}
& \|u\|_{W_{p}^{l}\left(R^{n} ; H(A), H\right)}^{p}=\left\|F^{-1}(A-(\lambda-B(\xi)))^{-1} \hat{f}\right\|_{L_{p}\left(R^{n} ; H\right)}^{p}+ \\
& \quad+\left\|F^{-1} A(A-(\lambda-B(\xi)))^{-1} \hat{f}\right\|_{L_{p}\left(R^{n} ; H\right)}^{p}+ \\
& \quad+\sum_{k=1}^{n}\left\|F^{-1} \xi_{k}^{l_{k}}(A-(\lambda-B(\xi)))^{-1} \hat{f}\right\|_{L_{p}\left(R^{n} ; H\right)}^{p} . \tag{5}
\end{align*}
$$

In order to obtain estimation (3) it is sufficient to prove that the operators $(A-(\lambda-B(\xi)))^{-1}, A(A-(\lambda-B(\xi)))^{-1}, \xi_{k}^{l_{k}}(A-(\lambda-B(\xi)))^{-1}$ are uniformly bounded by $\xi \in R^{n}, \lambda \in S_{\varphi}$ in H and it is a multiplicator in the space $L_{p}\left(R^{n} ; H\right)$.

By virtue of positiveness of the operator A their uniform boundedness is seen at once.

Let's show now that there are multiplicators in $L_{p}\left(R^{n} ; H\right)$. For this by virtue of the theorem on multiplicators in $L_{p}\left(R^{n} ; H\right)$ it is sufficient to show that at

$$
\forall \xi \in R^{n}, \quad \forall \xi_{k} \neq 0, k=\overline{1, n}, \quad \beta=\left(\beta_{1}, \ldots, \beta_{n}\right), \beta_{k} \in\{0,1\}, \xi^{\beta}=\xi_{1}^{\beta_{1}} \ldots \xi_{n}^{\beta_{n}}
$$

the estimations

$$
\begin{gathered}
\left|\xi^{\beta}\right|\left\|D_{\xi}^{\beta}(A-(\lambda-B(\xi)))^{-1}\right\|_{Z(H)} \leq \\
\leq C_{1},\left|\xi^{\beta}\right|\left\|D_{\xi}^{\beta} \xi_{k}^{l_{k}}(A-(\lambda-B(\xi)))^{-1}\right\|_{Z(H)} \leq C_{2} \\
\left|\xi^{\beta}\right|\left\|D_{\xi}^{\beta} A(A-(\lambda-B(\xi)))^{-1}\right\|_{Z(H)} \leq C_{3}
\end{gathered}
$$

are true.
Really,

$$
\begin{gather*}
D_{\xi_{j}}\left[(A-(\lambda-B(\xi)))^{-1}\right]=-(A-(\lambda-B(\xi)))^{-1}(A-(\lambda-B(\xi)))_{\xi_{j}}^{\prime} \times \\
\times(A-(\lambda-B(\xi)))^{-1}=-(A-(\lambda-B(\xi)))^{-2} \sum_{|\alpha: l|=1} i \alpha_{j} a_{\alpha}\left(i \xi_{1}\right)^{\alpha_{1}} \ldots\left(i \xi_{j-1}\right)^{\alpha_{j-1}} \times \\
\times\left(i \xi_{j}\right)^{\alpha_{j}-1}\left(i \xi_{j+1}\right)^{\alpha_{j+1}} \ldots\left(i \xi_{n}\right)^{\alpha_{n}}, \quad j=\overline{1} \tag{6}
\end{gather*}
$$

Using equality (6) we obtain

$$
\begin{equation*}
\left|\xi_{j}\right|\left\|D_{\xi_{j}}(A-(\lambda-B(\xi)))^{-1}\right\|_{Z(H)} \leq C(1+|\lambda-B(\xi)|)^{-2} \sum_{|\alpha: l|=1}\left|a_{\alpha} \| \xi_{1}\right|^{\alpha_{1}} \ldots\left|\xi_{n}\right|^{\alpha_{n}} \tag{7}
\end{equation*}
$$

Further using estimation (*) and the known inequality

$$
\begin{equation*}
\left|\xi_{1}\right|^{\alpha_{1}} \ldots\left|\xi_{n}\right|^{\alpha_{n}} \leq c\left(1+\sum_{k=1}^{n}\left|\xi_{k}\right|^{l_{k}}\right) \tag{8}
\end{equation*}
$$

at $|\alpha ; l| \leq 1$ from estimation (7) we obtain

$$
\begin{equation*}
\left|\xi_{j}\right|\left\|D_{\xi_{j}}(A-(\lambda-B(\xi)))^{-1}\right\|_{Z(H)} \leq C \tag{9}
\end{equation*}
$$

Analogously at $\forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right), \forall \xi_{j} \neq 0, \forall \beta, j=\overline{1, n}$ we obtain

$$
\begin{equation*}
\left|\xi^{\beta}\right|\left\|D_{\xi}(A-(\lambda-B(\xi)))^{-1}\right\|_{Z(H)} \leq C_{1} \tag{10}
\end{equation*}
$$

Let's prove now

$$
\begin{equation*}
\left|\xi^{\beta}\right|\left\|D_{\xi}^{\beta} \xi_{k}^{l_{k}}(A-(\lambda-B(\xi)))^{-1}\right\|_{Z(H)} \leq C_{2} \tag{11}
\end{equation*}
$$

Really it is clear that

$$
\begin{gather*}
D_{\xi_{k}}\left[\xi_{k}^{l_{k}}(A-(\lambda-B(\xi)))^{-1}\right]= \\
=l_{k} \xi_{k}^{l_{k}-1}(A-(\lambda-B(\xi)))^{-1}+\xi_{k}^{l_{k}}(A-(\lambda-B(\xi)))^{-2} B_{\xi_{k}}^{\prime}(\xi) \tag{12}
\end{gather*}
$$

By virtue of the condition of theorems and inequalities $\left(^{*}\right)$ and (8) we obtain

$$
\left|\xi_{k}\right|\left\|D_{\xi_{k}}\left[\xi_{k}^{l_{k}}(A-(\lambda-B(\xi)))^{-1}\right]\right\| \leq\left|\xi_{k}\right|\left[l_{k}\left|\xi_{k}\right|^{l_{k}-1}\left\|(A-(\lambda-B(\xi)))^{-1}\right\|+\right.
$$

$$
\begin{gathered}
\left.+\left|\xi_{k}\right|^{l_{k}}\left\|(A-(\lambda-B(\xi)))^{-2}\right\|\left|B_{\xi_{k}}^{\prime}(\xi)\right|\right] \leq c\left[\left|\xi_{k}\right|^{l_{k}}(1+|\lambda|+|B(\xi)|)^{-1}+\right. \\
\left.+\left|\xi_{k}\right|\left|B_{\xi_{k}}^{\prime}(\xi)\right| 1+|\lambda|+|B(\xi)|^{-1}\left|\xi_{k}\right|^{l_{k}}(1+|\lambda|+|B(\xi)|)^{-1}\right] \leq \\
\leq c\left[\left|\xi_{k}^{l_{k}}\right|\left(1+|\lambda|+\sum_{k=1}^{n}\left|\xi_{k}\right|^{l_{k}}\right)^{-1}+\sum_{|\alpha: l|=1}\left|\xi_{1}\right|^{\alpha_{1}} \ldots\left|\xi_{n}\right|^{\alpha_{n}} \times\right. \\
\left.\times\left(1+|\lambda|+\sum_{k=1}^{n}\left|\xi_{k}^{l_{k}}\right|\right)^{-1}\left|\xi_{k}\right|^{l_{k}}\left(1+|\lambda|+\sum_{k=1}^{n}\left|\xi_{k}\right|^{l_{k}}\right)^{-1}\right] \leq c, \quad k=\overline{1, n} .
\end{gathered}
$$

Analogously at $\forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right), \quad \forall \xi_{j} \neq 0, \quad \forall \beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ we obtain (11).
Now let's show that the operator of the function $A(A-(\lambda-B(\xi)))^{-1}$ is a multiplicator from $L_{p}\left(R^{n} ; H\right)$ in $L_{p}\left(R^{n} ; H\right)$.

Since at $\forall \xi_{j} \neq 0, \quad \xi=\left(\xi_{1}, \ldots, \xi_{n}\right), \quad k=\overline{1, n}$

$$
D_{\xi_{k}} A(A-(\lambda-B(\xi)))^{-1}=-A(A-(\lambda-B(\xi)))^{-2} B_{\xi_{k}}^{\prime}(\xi)
$$

By virtue of definition of resolvent we have

$$
\begin{equation*}
A(A-(\lambda-B(\xi)))^{-1}=J+(\lambda-B(\xi))(A-(\lambda-B(\xi)))^{-1} \tag{13}
\end{equation*}
$$

where J is a unit operator in $L_{p}\left(R^{n} ; H\right)$.
Then by virtue of estimation (13) and previous arguments we have

$$
\begin{aligned}
& \left\|D_{\xi_{k}} A(A-(\lambda-B(\xi)))^{-1}\right\| \leq\left\|A(A-(\lambda-B(\xi)))^{-1}\right\|\left|B_{\xi_{k}}^{\prime}\right| \times \\
& \quad \times\left\|(A-(\lambda-B(\xi)))^{-1}\right\| \leq c\left(\|J\|+\frac{|\lambda-B(\xi)|}{1+|\lambda-B(\xi)|}\right) \times \\
& \quad \times \sum_{|\alpha: l|=1}\left|\xi_{1}^{\alpha_{1}}\right| \ldots\left|\xi_{n}^{\alpha_{n}}\right|(1+|\lambda-B(\xi)|)^{-1}\left|\xi_{k}\right|^{-1} \leq c\left|\xi_{k}\right|^{-1}
\end{aligned}
$$

Also at $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right), \quad \beta_{j} \in\{0,1\}, \forall \xi_{k} \neq 0, \xi=\left(\xi_{1}, \ldots, \xi_{n}\right), k=\overline{1, n}$ we obtain

$$
\left\|D_{\xi_{k}} A(A-(\lambda-B(\xi)))^{-1}\right\| \leq c\left|\xi_{1}\right|^{-\beta_{1}} \ldots\left|\xi_{n}\right|^{-\beta_{n}}
$$

So, we proved that the operators $(A-(\lambda-B(\xi)))^{-1}, A(A-(\lambda-B(\xi)))^{-1}$, $\xi_{k}^{l_{k}}(A-(\lambda-B(\xi)))^{-1}$ are multiplicators in $L_{p}\left(R^{n} ; H\right)$. Then hence estimation (3) follow.

Denote by $L-\lambda$ the operator determined by the equalities

$$
\begin{gather*}
D(L)=W_{p}^{l}\left(R^{n} ; H(A), H\right) \\
(L-\lambda) u=\sum_{|\alpha: l|=1} a_{\alpha} D^{\alpha} u+A u-\lambda u+\sum_{|\alpha: l|<1} A_{\alpha}(x) D^{\alpha} u . \tag{14}
\end{gather*}
$$

Theorem 2. Let condition 1 be fulfilled

$$
A_{\alpha}(x) A^{-(1-|\alpha: l|-\mu)} \in L_{\infty}\left(R^{n} ; Z(H)\right)
$$

at some $0<\mu<1-|\alpha: l|$. Then at sufficient large $\lambda_{0}, \forall|\lambda| \geq \lambda_{0}, \lambda \in S_{\varphi}$, $\exists \varphi \in(0, \pi]$ at $\forall f \in L_{p}\left(R^{n} ; H\right)$ there exists a unique solution of problem (1) belonging to the space $W_{p}^{1}\left(R^{n} ; H(A), H\right)$ and the estimation

$$
\begin{equation*}
\|u\|_{W_{p}^{l}\left(R^{n} ; H(A), H\right)} \leq c\|f\|_{L_{p}\left(R^{n} ; H\right)} \tag{15}
\end{equation*}
$$

holds.
Proof. By virtue of definition of the space $W_{p}^{1}\left(R^{n} ; H(A), H\right)$ and embedding at $\forall u \in W_{p}^{1}\left(R^{n} ; H(A), H\right)$ we have

$$
\begin{align*}
& \|(L-\lambda) u\|_{L_{p}\left(R^{n} ; H\right)} \leq c \sum_{|\alpha: l|=1}\left\|D^{\alpha} u\right\|_{L_{p}\left(R^{n} ; H\right)}+\|A u\|_{L_{p}\left(R^{n} ; H\right)}+|\lambda|\|u\|_{L_{p}\left(R^{n} ; H\right)}+ \\
& \quad+\sum_{|\alpha: l|<1}\left\|A_{\alpha}(x) D^{\alpha} u\right\|_{L_{p}\left(R^{n} ; H\right)} \leq c_{\lambda}\|u\|_{W_{p}^{l}\left(R^{n} ; H(A), H\right)}+ \\
& +\sum_{|\alpha: l|<1}\left\|A^{1-|\alpha: l|-\mu}(x) D^{\alpha} u\right\|_{L_{p}\left(R^{n} ; H\right)} \leq c_{\lambda}\|u\|_{W_{p}^{l}\left(R^{n} ; H(A), H\right)} \tag{16}
\end{align*}
$$

i.e. the operator $L-\lambda$ at the fixed λ is bounded from $W_{p}^{1}\left(R^{n} ; H(A), H\right)$ in $L_{p}\left(R^{n} ; H\right)$.

Now for proving the first part of theorem 2 it is sufficient to show that the operator $L-\lambda$ has an inverse operator in $L_{p}\left(R^{n} ; H\right)$ determined on whole space $L_{p}\left(R^{n} ; H\right)$, moreover this inverse operator $(L-\lambda)^{-1}$ is bounded from $L_{p}\left(R^{n} ; H\right)$ in $W_{p}^{1}\left(R^{n} ; H(A), H\right)$.

By virtue of theorem 1 the operator $\left(L_{0}-\lambda\right)$ is reversible from $L_{p}\left(R^{n} ; H\right)$ in $W_{p}^{1}\left(R^{n} ; H(A), H\right)$. From equalities (2) and (14) it follows that

$$
\begin{equation*}
(L-\lambda) u=\left(L_{0}-\lambda\right) u+L_{1} u=\left[J+L_{1}\left(L_{0}-\lambda\right)^{-1}\right]\left(L_{0}-\lambda\right) u, \tag{17}
\end{equation*}
$$

where $L_{1} u=\sum_{|\alpha: l|<1} A_{\alpha}(x) D^{\alpha} u$.
Let f be an arbitrary element from $L_{p}\left(R^{n} ; H\right)$. Then by virtue of embedding theorem we have

$$
\begin{gather*}
\left\|L_{1}\left(L_{0}-\lambda\right)^{-1} f\right\|_{L_{p}\left(R^{n} ; H\right)} \leq \sum_{|\alpha: l|<1}\left\|A_{\alpha}(x) D^{\alpha}\left(L_{0}-\lambda\right)^{-1} f\right\|_{L_{p}\left(R^{n} ; H\right)} \leq \\
\leq c \sum_{|\alpha: l|<1}\left\|A^{1-|\alpha: l|-\mu}(x) D^{\alpha}\left(L_{0}-\lambda\right)^{-1} f\right\|_{L_{p}\left(R^{n} ; H\right)} \leq \\
\leq \varepsilon\left\|\left(L_{0}-\lambda\right)^{-1} f\right\|_{W_{p}^{1}\left(R^{n} ; H(A), H\right)}+c(\varepsilon)\left\|\left(L_{0}-\lambda\right)^{-1} f\right\|_{L_{p}\left(R^{n} ; H\right)}, \tag{18}
\end{gather*}
$$

where $\varepsilon>0$ is sufficiently small $c(\varepsilon)>0, c(\varepsilon)$ is a continuous fucntion from ε.
Since problem (2) is coercively solvable in $L_{p}\left(R^{n} ; H\right)$ and the operator is positive in $L_{p}\left(R^{n} ; H\right)$ then from (18) at

$$
\forall u \in W_{p}^{l}\left(R^{n} ; H(A), H\right), \quad \lambda \geq \lambda_{0}
$$

we obtain

$$
\begin{equation*}
\left\|L_{1}\left(L_{0}-\lambda\right)^{-1} f\right\|_{L_{p}\left(R^{n} ; H\right)} \leq \varepsilon\|f\|_{L_{p}\left(R^{n} ; H\right)}+\frac{c(\varepsilon)}{\lambda}\|f\|_{L_{p}\left(R^{n} ; H\right)} \tag{19}
\end{equation*}
$$

Choosing λ such that $\lambda>2 c(\varepsilon), \varepsilon<\frac{1}{2}$ from estimation (19) at $\forall f \in L_{p}\left(R^{n} ; H\right)$ and at sufficiently large $\lambda>0$ we obtain

$$
\begin{equation*}
\left\|L_{1}\left(L_{0}-\lambda\right)^{-1} f\right\|_{Z\left(L_{p}\left(R^{n} ; H\right)\right)}<1 \tag{20}
\end{equation*}
$$

Then from estimation (20) it follows that at sufficiently large $\lambda, \forall|\lambda| \geq \lambda_{0}$ the operator $\left[J+L_{1}\left(L_{0}-\lambda\right)^{-1}\right]$ is invertible to $L_{p}\left(R^{n} ; H\right)$.

Thus from equality (17) and (20) we obtain the operator $(L-\lambda)$ is invertible in the space $L_{p}\left(R^{n} ; H\right)$, i.e.

$$
\begin{equation*}
(L-\lambda)^{-1}=\left[J+L_{1}\left(L_{0}-\lambda\right)^{-1}\right]^{-1}\left(L_{0}-\lambda\right)^{-1} \tag{21}
\end{equation*}
$$

and at any $f \in L_{p}\left(R^{n} ; H\right)$

$$
\left\|(L-\lambda)^{-1} f\right\|_{W_{p}\left(\left(R^{n} ; H(A), H\right)\right)} \leq C\|f\|_{L_{p}\left(R^{n} ; H\right)} .
$$

Hence the assertion of theorem 2 follows.

References

[1]. Besov O.V. On coerciveness in the S.L.Sobolev anisotropic space. Matem. sb., 1967, 73, p.115. (Russian)
[2]. Ewerittw H., Girtz M. Some properties of the domain certain differential operators. Proc. London Math. Soc., 1971, 23 (3).
[3]. Otelbaev M.O. Coercive estimations and separability theorems for elliptic equations in R^{n}. Trudi MIAN SSSR, 1983, 161. (Russian)
[4]. Shakhmurov V.B. Coercive boundary-value problems for strongly denigrating abstract equations. DAN SSSR, 1986, 290, 3. (Russian)
[5]. Musaev H.K. Coercive solvability in the anisotropic L_{p}-spaces. 27th Annual Iranian Mathematics Conference, Iran, 1996.

Hummet K. Musaev

Baku States University.
23, Z.I.Khalilov str., AZ1148, Baku, Azerbaijan.
Tel.: (99412) 4647086 (off.)
Received October 31, 2003; Revised April 19, 2004.
Translated by Mamedova V.A.

