Hummet K. MUSAEV

COERCIVE PROPERTIES OF ANISOTROPIC DIFFERENTIAL-OPERATOR EQUATIONS

Abstract

The coercive solvability o boundary value problems for uniformly elliptic equation in bounded domains was considered in different papers.

In the present paper we study some class of differential-operator equations defined in \mathbb{R}^n and having different derivatives by different variables it is main part, moreover, in general, with unbounded operator coefficients. The coercive solvability of the present paper in abstract L_p spaces is proved.

In half-space and on the whole space these questions were studied particularly in [3], [4] and others. The coercive properties were investigated in O.V.Besov's paper

[1] for the system of differential operators in the Sobolev anisotropic spaces.
 Introduce some definition.
 Assume

$$S_{\varphi} = \{\lambda : \lambda \in C, |\arg \lambda - \pi| \le \pi - \varphi, \quad 0 < \varphi \le \pi\},\$$

where C is a set of complex numbers.

Definition 1. The closed linear operator A is called positive in the Banach space E if $\overline{D(A)} = E$ and at $\lambda \in S_{\varphi}$ the estimation

$$\left\| (A - \lambda J)^{-1} \right\|_{Z(E)} \le M (1 + |\lambda|)^{-1},$$

holds, where D(A) is a domain of determination of the operator A, J is a unit operator in E, Z(E) is a space of linearly bounded operators acting from E to E.

Let $\alpha = (\alpha_1, ..., \alpha_n)$, α_k be non-negative integers, $|\alpha| = \sum_{k=1}^n \alpha_k$, $D^{\alpha} = D_1^{\alpha_1} ... D_n^{\alpha_n}$, u be abstract function with the values from E. For $-\infty < \theta < \infty$ assume

$$E\left(A^{\theta}\right) = \left\{u; \ u \in D\left(A^{\theta}\right), \quad \left\|u\right\|_{E\left(A^{\theta}\right)} = \left\|A^{\theta}u\right\|_{E} + \left\|u\right\|_{E} < \infty\right\}$$

Let $D(\mathbb{R}^n)$ be a class of infinitely differentiable finite functions in \mathbb{R}^n .

Definition 2. The function D^{α} summable by the Bokhner is called a generalized derivative of the abstract function u on \mathbb{R}^n if at any $\varphi \in D(\mathbb{R}^n)$ the equality

$$\int_{\mathbb{R}^{n}} D^{\alpha} u(x) \varphi(x) dx = (-1)^{|\alpha|} \int_{\mathbb{R}^{n}} u(x) D^{\alpha} \varphi(x) dx ,$$

holds, where the integral is understood by Bokhner.

$\frac{118}{[H.K.Musaev]}$

Let E_0 and E be a Banach space and E_0 be continuously and densely embedded in $E, l = (l_1, ..., l_n), l_k$ natural numbers and the differentiation $D_k^{l_k}, k = \overline{1, n}$ is understood in terms of definition 2.

Definition 3.

$$W_{p}^{l}(R^{n}; E_{0}, E) = \left\{f; \ f \in L_{p}(R^{n}; E_{0}), \ D_{k}^{l_{k}}f \in L_{p}(R^{n}; E_{0}), \ k = \overline{1, n} \right.$$
$$\|f\|_{W_{p}^{l}(R^{n}; E_{0}; E)}^{p} = \int_{R^{n}} \left[\|f(x)\|_{E_{0}}^{p} + \sum_{k=1}^{n} \left\|D_{k}^{l_{k}}f\right\|_{E}^{p}\right] dx \right\} < \infty,$$

at E = H the space $E(A^{\theta})$ we'll denote by $H(A^{\theta})$.

Assume $x = (x_1, ..., x_n), \quad \xi = (\xi_1, ..., \xi_n), \quad \xi^{\alpha} = \xi_1^{\alpha_1} ... \xi_n^{\alpha_n}.$

Definition 4. The function $sW_p^l(R^n; E_0, E)$ satisfying the given equation on R^n almost everywhere on R^n is called a solution of the given equation.

We can easily show that at $\forall z_1, z_2$, $\arg z_1 = \varphi_1$, $\arg z_2 = \varphi_2$, $|\varphi_1 - \varphi_2| = \varphi$, $\varphi \in [\beta, \pi], \beta > 0$ there exists the constant C_{φ} such that at any such z_1, z_2 it holds the following inequality

$$|z_1 + z_2| \ge C_{\varphi} \left(|z_1| + |z_2| \right) . \tag{(*)}$$

We'll assume that the constants appearing in estimations don't depend on variable of elements if there is no special stipulation.

Consider in $L_p(\mathbb{R}^n; H)$ the equation

$$(L-\lambda)u = \sum_{|\alpha:l|=1} a_{\alpha}D^{\alpha}u + Au - \lambda u + \sum_{|\alpha:l|<1} A_{\alpha}(x)D^{\alpha}u = f$$
(1)

where A and $A_{\alpha}(x)$ in general are unbounded operators in H

$$\alpha = (\alpha_1, ..., \alpha_n), \ l = (l_1, ..., l_n), \ |\alpha : l| = \sum_{k=1}^n \frac{\alpha_k}{l_k}.$$

Denote by L_0 the differential operators defined by the equalities

$$D(L_0) = W_p^l(R^n; H(A), H),$$
$$L_0 u = \sum_{|\alpha:l|=1} a_\alpha D^\alpha u + A u.$$

At first consider the problem

$$(L_0 - \lambda) u = f \tag{2}$$

Assume

$$(L_0 - \lambda) u = \sum_{|\alpha:l|=1} a_{\alpha} D^{\alpha} u - \lambda u ,$$

$$B\left(\xi\right) = \sum_{|\alpha:l|=1} \left(-1\right)^{|\alpha|} a_{\alpha} \xi_{1}^{\alpha_{1}} \dots \xi_{n}^{\alpha_{n}}, \quad D^{\alpha} = D_{1}^{\alpha_{1}} \dots D_{n}^{\alpha_{n}}, \quad D_{k}^{\alpha_{k}} = \left(i\frac{\partial}{\partial x_{k}}\right)^{\alpha_{k}}$$

Transactions of NAS of Azerbaijan ______ 119 _____[Coercive prop.of anisot.differ.-operat. equat.]

where i is an imaginary unit.

Condition 1. Let $\overline{D(A)} = H$ and at $\forall \lambda \in S_{\varphi}, \varphi \in (0, \pi]$ the estimation $\left\| (A - \lambda J)^{-1} \right\|_{Z(H)} \leq C \left(1 + |\lambda| \right)^{-1} hold.$ Further let at $\forall \xi \in \mathbb{R}^n$

$$\lambda-B\left(\xi
ight)\in S_{arphi} ext{ and } |B\left(\xi
ight)|\geq c\sum\limits_{k=1}^{n}|{arkappa}_{k}|^{l_{k}} ext{ .}$$

Theorem 1. Let condition 1 be fulfilled. Then at $\forall f \in L_p(\mathbb{R}^n; H)$ and $\forall \lambda \in$ $S_{\varphi}, \ \exists \varphi \in (0,\pi]$ problem (2) has a unique solution u(x) belonging to the space $W_{p}^{l}\left(R^{n};H\left(A
ight) ,H
ight)$ and the estimation

$$\|u\|_{W_p^l(R^n; H(A), H)} \le c \|f\|_{L_p(R^n; H)}$$
(3)

holds.

Proof. Denote by F the Fourier transformation and by F^{-1} the inverse transformation. Since A is a closed operator having the bounded inverse not depending on the variables $x \in \mathbb{R}^n$ then it commutes with F.

Allowing for this after the Fourier transformation we have

$$\left(\sum_{|\alpha:l|=1} (-1)^{|\alpha|} a_{\alpha} \xi^{\alpha} - \lambda\right) \hat{u} + A \ \hat{u} = \hat{f}$$

where $\hat{u} = Fu$, $u = u(\xi)$, $\forall \xi \in \mathbb{R}^n$.

By the condition $\lambda - B(\xi) \in S_{\varphi}$, then

$$\hat{u} = (A - (\lambda - B(\xi)))^{-1} \hat{f}$$
(4)

Then for $\forall u \in W_p^l(\mathbb{R}^n; H(A), H)$

$$\|u\|_{W_{p}^{l}(R^{n};H(A),H)}^{p} = \left\|F^{-1}\left(A - (\lambda - B(\xi))\right)^{-1}\hat{f}\right\|_{L_{p}(R^{n};H)}^{p} + \\ + \left\|F^{-1}A\left(A - (\lambda - B(\xi))\right)^{-1}\hat{f}\right\|_{L_{p}(R^{n};H)}^{p} + \\ + \sum_{k=1}^{n} \left\|F^{-1}\xi_{k}^{l_{k}}\left(A - (\lambda - B(\xi))\right)^{-1}\hat{f}\right\|_{L_{p}(R^{n};H)}^{p} .$$
(5)

In order to obtain estimation (3) it is sufficient to prove that the operators $(A - (\lambda - B(\xi)))^{-1}, A(A - (\lambda - B(\xi)))^{-1}, \xi_k^{l_k}(A - (\lambda - B(\xi)))^{-1}$ are uniformly bounded by $\xi \in \mathbb{R}^n$, $\lambda \in S_{\varphi}$ in H and it is a multiplicator in the space $L_p(\mathbb{R}^n; H)$.

By virtue of positiveness of the operator A their uniform boundedness is seen at once.

Let's show now that there are multiplicators in $L_p(\mathbb{R}^n; H)$. For this by virtue of the theorem on multiplicators in $L_p(\mathbb{R}^n; H)$ it is sufficient to show that at

$$\forall \xi \in R^n, \ \forall \xi_k \neq 0, \ k = \overline{1, n}, \ \beta = (\beta_1, ..., \beta_n), \ \beta_k \in \{0, 1\}, \ \xi^\beta = \xi_1^{\beta_1} ... \xi_n^{\beta_n}$$

the estimations

$$\begin{aligned} \left| \xi^{\beta} \right| & \left\| D_{\xi}^{\beta} \left(A - \left(\lambda - B \left(\xi \right) \right) \right)^{-1} \right\|_{Z(H)} \leq \\ \leq C_{1}, & \left| \xi^{\beta} \right| & \left\| D_{\xi}^{\beta} \xi_{k}^{l_{k}} \left(A - \left(\lambda - B \left(\xi \right) \right) \right)^{-1} \right\|_{Z(H)} \leq C_{2}, \\ & \left| \xi^{\beta} \right| & \left\| D_{\xi}^{\beta} A \left(A - \left(\lambda - B \left(\xi \right) \right) \right)^{-1} \right\|_{Z(H)} \leq C_{3} \end{aligned}$$

are true.

Really,

$$D_{\xi_{j}}\left[\left(A - (\lambda - B(\xi))\right)^{-1}\right] = -(A - (\lambda - B(\xi)))^{-1}(A - (\lambda - B(\xi)))'_{\xi_{j}} \times (A - (\lambda - B(\xi)))^{-1} = -(A - (\lambda - B(\xi)))^{-2} \sum_{|\alpha:l|=1} i\alpha_{j}a_{\alpha}(i\xi_{1})^{\alpha_{1}} \dots (i\xi_{j-1})^{\alpha_{j-1}} \times (i\xi_{j})^{\alpha_{j}-1}(i\xi_{j+1})^{\alpha_{j+1}} \dots (i\xi_{n})^{\alpha_{n}}, \quad j = \overline{1},$$
(6)

$$\times (i\xi_{j})^{\alpha_{j}} (i\xi_{j+1})^{\alpha_{j+1}} \dots (i\xi_{n})^{\alpha_{n}}, \quad j = 1,$$

Using equality (6) we obtain

$$\left|\xi_{j}\right| \left\| D_{\xi_{j}} \left(A - (\lambda - B(\xi)) \right)^{-1} \right\|_{Z(H)} \leq C \left(1 + |\lambda - B(\xi)| \right)^{-2} \sum_{|\alpha:l|=1} |a_{\alpha}| |\xi_{1}|^{\alpha_{1}} \dots |\xi_{n}|^{\alpha_{n}}$$
(7)

Further using estimation (*) and the known inequality

$$|\xi_1|^{\alpha_1} \dots |\xi_n|^{\alpha_n} \le c \left(1 + \sum_{k=1}^n |\xi_k|^{l_k} \right)$$
(8)

at $|\alpha; l| \leq 1$ from estimation (7) we obtain

$$\left|\xi_{j}\right| \left\| D_{\xi_{j}} \left(A - \left(\lambda - B \left(\xi \right) \right) \right)^{-1} \right\|_{Z(H)} \le C.$$
(9)

Analogously at $\forall \xi = (\xi_1, ..., \xi_n)$, $\forall \xi_j \neq 0, \ \forall \beta, \ j = \overline{1, n}$ we obtain

$$\xi^{\beta} \Big| \, \Big\| D_{\xi} \left(A - (\lambda - B(\xi)) \right)^{-1} \Big\|_{Z(H)} \le C_1.$$
(10)

Let's prove now

$$\left|\xi^{\beta}\right| \left\| D_{\xi}^{\beta} \xi_{k}^{l_{k}} \left(A - \left(\lambda - B\left(\xi \right) \right) \right)^{-1} \right\|_{Z(H)} \le C_{2}.$$
(11)

Really it is clear that

$$D_{\xi_k} \left[\xi_k^{l_k} \left(A - (\lambda - B(\xi)) \right)^{-1} \right] =$$

$$= l_k \xi_k^{l_k - 1} \left(A - \left(\lambda - B\left(\xi \right) \right) \right)^{-1} + \xi_k^{l_k} \left(A - \left(\lambda - B\left(\xi \right) \right) \right)^{-2} B'_{\xi_k} \left(\xi \right)$$
(12)

By virtue of the condition of theorems and inequalities (*) and (8) we obtain

$$|\xi_{k}| \left\| D_{\xi_{k}} \left[\xi_{k}^{l_{k}} \left(A - (\lambda - B(\xi)) \right)^{-1} \right] \right\| \le |\xi_{k}| \left[l_{k} |\xi_{k}|^{l_{k}-1} \left\| \left(A - (\lambda - B(\xi)) \right)^{-1} \right\| + |\xi_{k}| \left[l_{k} |\xi_{k}|^{l_{k}-1} \right] \right]$$

Transactions of NAS of Azerbaijan _

$$\begin{array}{l} \text{Implies the sections of NAS of Azerbaijan} & \hline [Coercive prop.of anisot.differ.-operat. equat.]} \\ + |\xi_k|^{l_k} \left\| (A - (\lambda - B(\xi)))^{-2} \right\| & \left| B'_{\xi_k}(\xi) \right| \right] \leq c \left[|\xi_k|^{l_k} (1 + |\lambda| + |B(\xi)|)^{-1} + \\ & + |\xi_k| |B'_{\xi_k}(\xi)| 1 + |\lambda| + |B(\xi)|^{-1} |\xi_k|^{l_k} (1 + |\lambda| + |B(\xi)|)^{-1} \right] \leq \\ & \leq c \left[|\xi_k^{l_k}| \left(1 + |\lambda| + \sum_{k=1}^n |\xi_k|^{l_k} \right)^{-1} + \sum_{|\alpha:l|=1}^n |\xi_1|^{\alpha_1} \dots |\xi_n|^{\alpha_n} \times \\ & \times \left(1 + |\lambda| + \sum_{k=1}^n |\xi_k^{l_k}| \right)^{-1} |\xi_k|^{l_k} \left(1 + |\lambda| + \sum_{k=1}^n |\xi_k|^{l_k} \right)^{-1} \right] \leq c, \quad k = \overline{1, n} . \end{array}$$

Analogously at $\forall \xi = (\xi_1, ..., \xi_n), \quad \forall \xi_j \neq 0, \quad \forall \beta = (\beta_1, ..., \beta_n)$ we obtain (11). Now let's show that the operator of the function $A \left(A - (\lambda - B(\xi))\right)^{-1}$ is a mul-

tiplicator from $L_p(\mathbb{R}^n; H)$ in $L_p(\mathbb{R}^n; H)$.

Since at $\forall \xi_j \neq 0, \ \xi = (\xi_1, ..., \xi_n), \ k = \overline{1, n}$

$$D_{\xi_k} A \left(A - (\lambda - B(\xi)) \right)^{-1} = -A \left(A - (\lambda - B(\xi)) \right)^{-2} B'_{\xi_k}(\xi) .$$

By virtue of definition of resolvent we have

$$A (A - (\lambda - B(\xi)))^{-1} = J + (\lambda - B(\xi)) (A - (\lambda - B(\xi)))^{-1}$$
(13)

where J is a unit operator in $L_p(\mathbb{R}^n; H)$.

Then by virtue of estimation (13) and previous arguments we have

$$\begin{aligned} \left| D_{\xi_k} A \left(A - (\lambda - B(\xi)) \right)^{-1} \right\| &\leq \left\| A \left(A - (\lambda - B(\xi)) \right)^{-1} \right\| \left| B'_{\xi_k} \right| \times \\ &\times \left\| (A - (\lambda - B(\xi)))^{-1} \right\| \leq c \left(\|J\| + \frac{|\lambda - B(\xi)|}{1 + |\lambda - B(\xi)|} \right) \times \\ &\times \sum_{|\alpha:l|=1} |\xi_1^{\alpha_1}| \dots |\xi_n^{\alpha_n}| \ (1 + |\lambda - B(\xi)|)^{-1} |\xi_k|^{-1} \leq c |\xi_k|^{-1} . \end{aligned}$$

Also at $\beta = (\beta_1, ..., \beta_n), \quad \beta_j \in \{0, 1\}, \ \forall \xi_k \neq 0, \ \xi = (\xi_1, ..., \xi_n), \ k = \overline{1, n}$ we obtain

$$\left\| D_{\xi_{k}} A \left(A - (\lambda - B(\xi)) \right)^{-1} \right\| \le c \left| \xi_{1} \right|^{-\beta_{1}} \dots \left| \xi_{n} \right|^{-\beta_{n}}$$

So, we proved that the operators $(A - (\lambda - B(\xi)))^{-1}$, $A(A - (\lambda - B(\xi)))^{-1}$, $\xi_{k}^{l_{k}}\left(A-\left(\lambda-B\left(\xi\right)\right)\right)^{-1}$ are multiplicators in $L_{p}\left(R^{n};H\right)$. Then hence estimation (3) follow.

Denote by $L - \lambda$ the operator determined by the equalities

$$D(L) = W_p^l(R^n; H(A), H),$$

$$(L-\lambda)u = \sum_{|\alpha:l|=1} a_{\alpha}D^{\alpha}u + Au - \lambda u + \sum_{|\alpha:l|<1} A_{\alpha}(x)D^{\alpha}u .$$
(14)

[H.K.Musaev]

Theorem 2. Let condition 1 be fulfilled

$$A_{\alpha}(x) A^{-(1-|\alpha:l|-\mu)} \in L_{\infty}(R^{n}; Z(H))$$

at some $0 < \mu < 1 - |\alpha|$. Then at sufficient large $\lambda_0, \forall |\lambda| \ge \lambda_0, \lambda \in S_{\varphi}, \exists \varphi \in (0, \pi] \text{ at } \forall f \in L_p(\mathbb{R}^n; H) \text{ there exists a unique solution of problem (1) belonging to the space <math>W_p^1(\mathbb{R}^n; H(\Lambda), H)$ and the estimation

$$\|u\|_{W_p^l(R^n; H(A), H)} \le c \|f\|_{L_p(R^n; H)}$$
(15)

holds.

Proof. By virtue of definition of the space $W_p^1(\mathbb{R}^n; H(A), H)$ and embedding at $\forall u \in W_p^1(\mathbb{R}^n; H(A), H)$ we have

$$\| (L - \lambda) u \|_{L_{p}(R^{n};H)} \leq c \sum_{|\alpha:l|=1} \| D^{\alpha} u \|_{L_{p}(R^{n};H)} + \| A u \|_{L_{p}(R^{n};H)} + |\lambda| \| \| u \|_{L_{p}(R^{n};H)} + \sum_{|\alpha:l|<1} \| A_{\alpha} (x) D^{\alpha} u \|_{L_{p}(R^{n};H)} \leq c_{\lambda} \| u \|_{W_{p}^{l}(R^{n};H(A),H)} + \sum_{|\alpha:l|<1} \| A^{1-|\alpha:l|-\mu} (x) D^{\alpha} u \|_{L_{p}(R^{n};H)} \leq c_{\lambda} \| u \|_{W_{p}^{l}(R^{n};H(A),H)}$$

$$(16)$$

i.e. the operator $L - \lambda$ at the fixed λ is bounded from $W_p^1(\mathbb{R}^n; H(A), H)$ in $L_p(\mathbb{R}^n; H)$.

Now for proving the first part of theorem 2 it is sufficient to show that the operator $L - \lambda$ has an inverse operator in $L_p(\mathbb{R}^n; H)$ determined on whole space $L_p(\mathbb{R}^n; H)$, moreover this inverse operator $(L - \lambda)^{-1}$ is bounded from $L_p(\mathbb{R}^n; H)$ in $W_p^1(\mathbb{R}^n; H(A), H)$.

By virtue of theorem 1 the operator $(L_0 - \lambda)$ is reversible from $L_p(\mathbb{R}^n; H)$ in $W_p^1(\mathbb{R}^n; H(A), H)$. From equalities (2) and (14) it follows that

$$(L - \lambda) u = (L_0 - \lambda) u + L_1 u = \left[J + L_1 (L_0 - \lambda)^{-1} \right] (L_0 - \lambda) u , \qquad (17)$$

where $L_1 u = \sum_{|\alpha:l|<1} A_{\alpha}(x) D^{\alpha} u.$

Let f be an arbitrary element from $L_p(\mathbb{R}^n; H)$. Then by virtue of embedding theorem we have

$$\begin{aligned} \left\| L_{1} \left(L_{0} - \lambda \right)^{-1} f \right\|_{L_{p}(R^{n};H)} &\leq \sum_{|\alpha:l|<1} \left\| A_{\alpha} \left(x \right) D^{\alpha} \left(L_{0} - \lambda \right)^{-1} f \right\|_{L_{p}(R^{n};H)} \leq \\ &\leq c \sum_{|\alpha:l|<1} \left\| A^{1-|\alpha:l|-\mu} \left(x \right) D^{\alpha} \left(L_{0} - \lambda \right)^{-1} f \right\|_{L_{p}(R^{n};H)} \leq \\ &\leq \varepsilon \left\| (L_{0} - \lambda)^{-1} f \right\|_{W_{p}^{1}(R^{n};H(A),H)} + c \left(\varepsilon \right) \left\| (L_{0} - \lambda)^{-1} f \right\|_{L_{p}(R^{n};H)}, \end{aligned}$$
(18)

122

where $\varepsilon > 0$ is sufficiently small $c(\varepsilon) > 0$, $c(\varepsilon)$ is a continuous function from ε .

Since problem (2) is coercively solvable in $L_p(\mathbb{R}^n; H)$ and the operator is positive in $L_p(\mathbb{R}^n; H)$ then from (18) at

$$\forall u \in W_p^l \left(R^n; H\left(A \right), H \right), \quad \lambda \ge \lambda_0$$

we obtain

$$\left\| L_1 \left(L_0 - \lambda \right)^{-1} f \right\|_{L_p(R^n;H)} \le \varepsilon \left\| f \right\|_{L_p(R^n;H)} + \frac{c(\varepsilon)}{\lambda} \left\| f \right\|_{L_p(R^n;H)}$$
(19)

Choosing λ such that $\lambda > 2c(\varepsilon)$, $\varepsilon < \frac{1}{2}$ from estimation (19) at $\forall f \in L_p(\mathbb{R}^n; H)$ and at sufficiently large $\lambda > 0$ we obtain

$$\left\| L_1 \left(L_0 - \lambda \right)^{-1} f \right\|_{Z(L_p(R^n; H))} < 1 .$$
(20)

Then from estimation (20) it follows that at sufficiently large λ , $\forall |\lambda| \geq \lambda_0$ the operator $\left[J + L_1 (L_0 - \lambda)^{-1}\right]$ is invertible to $L_p(R^n; H)$.

Thus from equality (17) and (20) we obtain the operator $(L - \lambda)$ is invertible in the space $L_p(\mathbb{R}^n; H)$, i.e.

$$(L - \lambda)^{-1} = \left[J + L_1 \left(L_0 - \lambda\right)^{-1}\right]^{-1} \left(L_0 - \lambda\right)^{-1}, \qquad (21)$$

and at any $f \in L_p(\mathbb{R}^n; H)$

$$\left\| (L-\lambda)^{-1} f \right\|_{W_p((R^n; H(A), H))} \le C \| f \|_{L_p(R^n; H)}.$$

Hence the assertion of theorem 2 follows.

References

[1]. Besov O.V. On coerciveness in the S.L.Sobolev anisotropic space. Matem. sb., 1967, 73, p.115. (Russian)

[2]. Ewerittw H., Girtz M. Some properties of the domain certain differential operators. Proc. London Math. Soc., 1971, 23 (3).

[3]. Otelbaev M.O. Coercive estimations and separability theorems for elliptic equations in \mathbb{R}^n . Trudi MIAN SSSR, 1983, 161. (Russian)

[4]. Shakhmurov V.B. Coercive boundary-value problems for strongly denigrating abstract equations. DAN SSSR, 1986, 290, 3. (Russian)

[5]. Musaev H.K. Coercive solvability in the anisotropic L_p -spaces. 27th Annual Iranian Mathematics Conference, Iran, 1996.

124_____[H.K.Musaev]

Hummet K. Musaev

Baku States University. 23, Z.I.Khalilov str., AZ1148, Baku, Azerbaijan. Tel.: (99412) 464 70 86 (off.)

Received October 31, 2003; Revised April 19, 2004. Translated by Mamedova V.A.